CN104651387A - Yeast expression vector - Google Patents
Yeast expression vector Download PDFInfo
- Publication number
- CN104651387A CN104651387A CN201510077018.6A CN201510077018A CN104651387A CN 104651387 A CN104651387 A CN 104651387A CN 201510077018 A CN201510077018 A CN 201510077018A CN 104651387 A CN104651387 A CN 104651387A
- Authority
- CN
- China
- Prior art keywords
- pyes2
- expression vector
- vector
- gfp
- hindiii
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
Abstract
本发明公开一种酵母表达载体,该载体是利用HindIII和EcoRI对瞬时表达载体pJITI66-GFP和载体pYES2分别进行双酶切,回收酶切目的片段,以T4DNA连接酶连接后获得;该载体包含可用HindIII、SalI和BamHI的酶切多克隆位点以及NOS终止子;相比市售载体,其引入了SalI和HindIII两个新的酶切位点,基因选择的酶切位点范围扩大,便于基因的功能鉴定和克隆;同时添加了NOS终止子,便于融合蛋白翻译的有效终结。
The invention discloses a yeast expression vector. The vector is obtained by double enzyme digestion of the transient expression vector pJITI66-GFP and the vector pYES2 respectively by using HindIII and EcoRI, recovering the target fragments of enzyme digestion, and connecting them with T4 DNA ligase; the vector contains available HindIII, SalI and BamHI restriction restriction multiple cloning sites and NOS terminator; compared with commercially available vectors, it introduces two new restriction restriction sites SalI and HindIII, and the range of restriction restriction restriction sites for gene selection is expanded, which is convenient for gene selection. Functional identification and cloning; at the same time, a NOS terminator is added to facilitate the effective termination of fusion protein translation.
Description
技术领域 technical field
本发明属于生物技术领域,特别是一种酵母表达载体。 The invention belongs to the field of biotechnology, in particular to a yeast expression vector.
背景技术 Background technique
酿酒酵母表达载体是基因工程中常用的载体,目前商用载体主要是Invitrogen公司的pYES系列、pYC系列和ATCC的YEP系列、pBT系列等,其中,pYES2作为酿酒酵母表达系统的表达载体应用较为广泛,尤其在基因功能验证中具有广泛的应用:王留强等(2011)通过把二色补血草的DREB基因构建到 pYES2中,验证了该基因在干旱、高盐和冷害胁迫下的抗性,以及抗其他重金属的能力;周凯(2011)把棉花GhGnT基因构建到pYES2上,发现其过表达能提高酵母耐盐性;孙新华等(2012)则用pYES2载体验证了四翅滨黎AcERF基因对高温、强碱和活性氧的抗性。然而这些商用载体均为细胞内表达载体,不适于细胞外分泌表达。赵颖怡等(2002)将来源于克鲁维酵母的菊粉酶基因是信号肽克隆至pYES2载体上,构建了一种酿酒酵母分泌表达载体;胡亚冬等(2009)将酿酒酵母的a-交配因子克隆至酿酒酵母胞内表达载体pYES2/CT中,构建了一种新型酿酒酵母附加型分泌表达载体pYES2/CT/a-factor,实现了酵母系统分泌蛋白的外表达。 Saccharomyces cerevisiae expression vectors are commonly used in genetic engineering. At present, the commercial vectors are mainly pYES series, pYC series of Invitrogen Company, YEP series, pBT series of ATCC, etc. Among them, pYES2 is widely used as the expression vector of Saccharomyces cerevisiae expression system. It is especially widely used in gene function verification: Wang Liuqiang et al. (2011) constructed the DREB gene of Limonium bicolor into pYES2, and verified the resistance of the gene under drought, high-salt and cold stress, and resistance to other ability of heavy metals; Zhou Kai (2011) constructed the cotton GhGnT gene into pYES2 and found that its overexpression can improve the salt tolerance of yeast; Sun Xinhua et al. Resistance to strong alkalis and active oxygen. However, these commercial vectors are intracellular expression vectors and are not suitable for extracellular secretory expression. Zhao Yingyi et al. (2002) cloned the signal peptide of the inulinase gene from Kluyveromyces cerevisiae into the pYES2 vector, and constructed a secretion expression vector of S. cerevisiae; Hu Yadong et al. (2009) cloned the a-mating factor of S. cerevisiae Into the Saccharomyces cerevisiae intracellular expression vector pYES2/CT, a new type of Saccharomyces cerevisiae episomal secretion expression vector pYES2/CT/a-factor was constructed to realize the external expression of yeast system secreted proteins.
然而,当目的基因构建到表达载体pYES2上时,尽管在添加诱导剂诱导之后,仍然需要通过诸如SDS-PAGE和Western杂交等方式来确认目的蛋白是否表达以及表达量,为了快速检测目的基因是否在酵母细胞中有效表达,Biovector有限公司将绿色荧光蛋白基因(EGFP)引入表达载体中,构建pYES2-EGFP表达载体(如图1所示),目的基因与绿色荧光蛋白基因同时表达,通过荧光检测即可获得目的基因表达量,但是该表达载体仅有BamHI一个酶切位点可用,这样对目的基因的克隆以及含有该酶切位点基因酵母转化造成了限制,不能广泛应用于基因工程中。 However, when the target gene is constructed on the expression vector pYES2, it is still necessary to confirm whether the target protein is expressed and the expression level by methods such as SDS-PAGE and Western hybridization after induction by adding an inducer, in order to quickly detect whether the target gene is in the For effective expression in yeast cells, Biovector Co., Ltd. introduced the green fluorescent protein gene (EGFP) into the expression vector to construct the pYES2-EGFP expression vector (as shown in Figure 1). The expression level of the target gene can be obtained, but the expression vector has only one restriction site of BamHI , which limits the cloning of the target gene and the transformation of yeast containing the restriction site gene, and cannot be widely used in genetic engineering.
pJITI66-GFP瞬时表达载体是由南京农业大学作物遗传与育种国家重点实验室改造而成,已经在多篇文章中报道(如“棉花叶肉原生质体分离及目标基因瞬时表达体系的建立”李妮娜等,作物学报,2014;“葡萄花发育基因的亚细胞定位和表达分析”杨光等,中国农业科学,2011),载体所含GFP基因为增强型荧光蛋白基因;目前,含有该蛋白基因且具有多个酶切位点的酵母表达载体未见报道。 The pJITI66-GFP transient expression vector was transformed by the State Key Laboratory of Crop Genetics and Breeding, Nanjing Agricultural University, and has been reported in many articles (such as "Isolation of Cotton Mesophyll Protoplasts and Establishment of Transient Expression System for Target Genes", Li Nina et al., Crop Science, 2014; "Subcellular localization and expression analysis of grape flower development genes" Yang Guang et al., Chinese Agricultural Sciences, 2011), the GFP gene contained in the vector is an enhanced fluorescent protein gene; A yeast expression vector with a restriction site has not been reported.
发明内容 Contents of the invention
针对上述问题,发明提供一种酵母表达载体pYES2-GFP,较现有载体,引入HindIII和SalI酶切位点,便于多目标基因的克隆,本发明是这样实现的: In view of the above problems, the invention provides a yeast expression vector pYES2-GFP, which introduces HindIII and SalI restriction sites compared with the existing vectors to facilitate the cloning of multiple target genes. The present invention is achieved in this way:
一种酵母表达载体,该载体是利用HindIII和EcoRI对瞬时表达载体pJITI66-GFP和载体pYES2分别进行双酶切,回收酶切目的片段HindIII-GFP+NOS-EcoRI和HindIII-pYES2-EcoRI中,再以T4DNA连接酶连接后获得;所述酵母表达载体包含HindIII、SalI和BamHI的酶切位点以及NOS终止子。 A yeast expression vector, the vector uses HindIII and EcoRI to carry out double enzyme digestion on the transient expression vector pJITI66-GFP and the vector pYES2 respectively, recovers the target fragments HindIII-GFP+NOS-EcoRI and HindIII-pYES2-EcoRI, and then Obtained after ligation with T4 DNA ligase; the yeast expression vector contains restriction sites for HindIII , SalI and BamHI and NOS terminator.
由本发明方法获得的酵母表达载体pYES2-GFP。 Yeast expression vector pYES2-GFP obtained by the method of the present invention.
本发明所构建的pYES2-GFP酵母表达载体采用GALI启动子,可用的多克隆位点内切酶分别为HindIII、SalI和BamHI,相比市售pYES2-EGFP表达载体,引入了SalI和HindIII两个新的酶切位点,基因选择的酶切位点范围扩大,便于基因的功能鉴定和克隆;同时添加了NOS终止子,便于融合蛋白翻译的有效终结;当目标基因与GFP基因融合时,快速检测GFP的表达,即可推断目标蛋白表达与否,荧光信号强,目标蛋白亚细胞定位准确,省去了诸如SDA-PAGE和Western杂交等蛋白检测手段,操作简单,结果可靠,对于目标基因在酵母细胞中的快速表达检测和目标蛋白的细胞定位具有重要的意义。 The pYES2-GFP yeast expression vector constructed in the present invention adopts the GALI promoter, and the available multiple cloning site endonucleases are respectively HindIII, SalI and BamHI. Compared with the commercially available pYES2-EGFP expression vector, two SalI and HindIII The new enzyme cutting site, the range of enzyme cutting sites for gene selection is expanded, which is convenient for gene function identification and cloning; at the same time, the NOS terminator is added to facilitate the effective termination of fusion protein translation; when the target gene is fused with the GFP gene, it can quickly By detecting the expression of GFP, it can be inferred whether the target protein is expressed or not. The fluorescent signal is strong, and the subcellular localization of the target protein is accurate, eliminating the need for protein detection methods such as SDA-PAGE and Western hybridization. The operation is simple and the result is reliable. For the target gene in Rapid expression detection and cellular localization of target proteins in yeast cells are of great significance.
附图说明 Description of drawings
图1为市售pYES2-EGFP表达载体结构示意图。 Figure 1 is a schematic diagram of the structure of the commercially available pYES2-EGFP expression vector.
图2为实施例表达载体构建流程示意图。 Fig. 2 is a schematic diagram of the construction process of the expression vector of the embodiment.
图3为实施例pYES2-GFP表达载体结构示意图。 Fig. 3 is a schematic diagram of the structure of the pYES2-GFP expression vector of the embodiment.
图4为实施例HindIII-GFP+NOS-EcoRI电泳图。 Fig. 4 is the electrophoresis diagram of the embodiment HindIII-GFP+NOS-EcoRI.
图5为实施例HindIII-pYES2-EcoRI电泳图。 Fig. 5 is the electrophoresis diagram of the embodiment HindIII-pYES2-EcoRI.
图6为实施例pYES2-GFP电泳图。 Fig. 6 is the electrophoresis diagram of pYES2-GFP in the embodiment.
图7为细胞膜蛋白TIP5;1在酵母细胞中的表达及耐旱功能结果示意图。 Fig. 7 is a schematic diagram of the expression of cell membrane protein TIP5;1 in yeast cells and the results of drought tolerance function.
图8为细胞膜蛋白TIP5;1在拟南芥原生质体中的亚细胞定位分析结果示意图。 Fig. 8 is a schematic diagram of the results of subcellular localization analysis of cell membrane protein TIP5;1 in Arabidopsis protoplasts.
图9为细胞膜蛋白蛋白SIP1;3在酵母细胞中的表达结果示意图。 Fig. 9 is a schematic diagram of the expression results of cell membrane protein SIP1; 3 in yeast cells.
图10为细胞膜蛋白蛋白SIP1;3在酵母细胞中表达的耐旱功能结果示意图。 Fig. 10 is a schematic diagram of the drought tolerance function results of cell membrane protein SIP1;3 expressed in yeast cells.
图11为内质网膜蛋白SIP1;3转基因烟草的耐逆功能鉴定。 Fig. 11 is the stress tolerance function identification of endoplasmic reticulum membrane protein SIP1; 3 transgenic tobacco.
具体实施方式 Detailed ways
1.实施例中所涉及试剂: 1. Reagents involved in the examples:
HindIII、EcoRI限制性内切酶购自MBI公司(Fermentas)、T4 DNA连接酶、DNA聚合酶(ExTaq、rTaq)购自Takara公司; HindIII and EcoRI restriction enzymes were purchased from MBI Company (Fermentas), T4 DNA ligase and DNA polymerase (ExTaq, rTaq) were purchased from Takara Company;
氨苄青霉素和卡那霉素均购自Sigma公司; Both ampicillin and kanamycin were purchased from Sigma;
pYES2载体购自Invitrogen公司; The pYES2 vector was purchased from Invitrogen;
pJITI66-GFP瞬时表达载体由南京农业大学作物遗传与育种国家重点实验室惠赠; The pJITI66-GFP transient expression vector was donated by the State Key Laboratory of Crop Genetics and Breeding of Nanjing Agricultural University;
TIP5;1和SIP1;3基因均由本实验室克隆自大豆植株。 Both TIP5;1 and SIP1;3 genes were cloned from soybean plants in our laboratory.
2.实施例涉及试剂盒及基因测序 2. Embodiment relates to kit and gene sequencing
酿酒酵母INVScI((Saccharomyces cerevisiae)、SD/-ura酵母缺陷型培养基和酵母质粒提取试剂盒购自天根生化科技(北京)有限公司; Saccharomyces cerevisiae INVScI ((Saccharomyces cerevisiae), SD/-ura yeast deficient medium and yeast plasmid extraction kit were purchased from Tiangen Biochemical Technology (Beijing) Co., Ltd.;
大肠杆菌(Escherichia.coli)质粒提取试剂盒购自Axygen公司; Escherichia coli ( Escherichia.coli ) plasmid extraction kit was purchased from Axygen;
琼脂糖凝胶DNA纯化回收试剂盒和pGEM-T Easy Vector T 克隆试剂盒均购自Promega 公司; Both the Agarose Gel DNA Purification and Recovery Kit and the pGEM-T Easy Vector T Cloning Kit were purchased from Promega;
实施例中所用引物和测序由南京金斯瑞有限公司合成和完成。 The primers and sequencing used in the examples were synthesized and completed by Nanjing GenScript Co., Ltd.
3.实施例所涉及培养基的配制 3. The preparation of medium involved in the embodiment
LB液体培养基:酵母提取物5 g,胰蛋白胨10 g,NaCl 10 g,加水至1L,高压灭菌(121℃ 0.1MPa 20 min)后备用; LB liquid medium: Yeast extract 5 g, tryptone 10 g, NaCl 10 g, add water to 1 L, autoclave (121°C 0.1MPa 20 min) for later use;
LB固体培养基:酵母提取物5 g,胰蛋白胨10 g,NaCl 10 g,琼脂粉20 g,加水至1L,高压灭菌(121℃ 0.1MPa 20 min)后备用; LB solid medium: 5 g of yeast extract, 10 g of tryptone, 10 g of NaCl, 20 g of agar powder, add water to 1 L, autoclave (121°C 0.1MPa 20 min) for later use;
YPDA液体培养基:称取YPDA粉50g, 量取0.2%(w/v)Adenine hemisulfate 15ml,加蒸馏水定容至1 L,高压灭菌(121 ℃ 0.1 MPa 20 min)后备用; YPDA liquid medium: Weigh 50g of YPDA powder, measure 15ml of 0.2% (w/v) Adenine hemisulfate, add distilled water to make up to 1 L, autoclave (121 ℃ 0.1 MPa 20 min) for later use;
YPDA固体培养基:称取YPDA粉50g, 量取0.2%(w/v)Adenine hemisulfate 15ml,琼脂粉20 g,加蒸馏水定容至1 L,高压灭菌(121 ℃ 0.1 MPa 20 min)后备用; YPDA solid medium: Weigh 50g of YPDA powder, measure 15ml of 0.2% (w/v) Adenine hemisulfate, 20g of agar powder, add distilled water to make up to 1 L, autoclave (121 ℃ 0.1 MPa 20 min) for later use ;
SD/-ura液体培养基:称取酵母无氨基氮源6.7 g, DO Supplement 0.60g,加水950 ml,高压灭菌(121℃ 0.I MPa 20 min),待冷却至55 ℃左右时加入50 ml过滤除菌的40%(w/v)的葡萄糖; SD/-ura liquid medium: Weigh 6.7 g of yeast amino-free nitrogen source, DO Supplement 0.60 g, add 950 ml of water, autoclave (121°C 0.I MPa 20 min), add 50 ml filter-sterilized 40% (w/v) glucose;
SD/-ura固体培养基:称取酵母无氨基氮源6.7 g, DO Supplement 0.60g,琼脂粉20g,加水950 ml,高压灭菌(121℃ 0.I MPa 20 min),待冷却至55 ℃左右时加入50 ml过滤除菌的40%(w/v)的葡萄糖; SD/-ura solid medium: Weigh 6.7 g of yeast amino-free nitrogen source, DO Supplement 0.60 g, agar powder 20 g, add water 950 ml, autoclave (121°C 0.I MPa 20 min), wait to cool to 55°C Add 50 ml of filter-sterilized 40% (w/v) glucose around the time;
4.实施例所述涉及溶液配制 4. The embodiment described relates to solution preparation
10×TE buffer:0.1 M Tris-HCI,10 mM EDTA,pH 7.5,过滤除菌后备用。10×LiAc buffer:1M LiAc,pH 7.5,过滤除菌后备用; 1×TE/LiAc buffer:1 ml 10×TE、1ml 10×LiAc与8 ml无菌水混合,现用现配。PEG / LiAc buffer:1ml 10×TE Buffer、1 ml 10×LiAc与8 ml PEG 4000(50% w/v)混合,此溶液现用现配。 10×TE buffer: 0.1 M Tris-HCl, 10 mM EDTA, pH 7.5, filtered and sterilized for later use. 10×LiAc buffer: 1M LiAc, pH 7.5, filter and sterilize for later use; 1×TE/LiAc buffer: mix 1 ml 10×TE, 1ml 10×LiAc and 8 ml sterile water, and prepare immediately. PEG / LiAc buffer: 1ml 10×TE Buffer, 1 ml 10×LiAc and 8 ml PEG 4000 (50% w/v) are mixed, and this solution is prepared immediately.
实施例1 pYES2-GFP载体的构建 Example 1 Construction of pYES2-GFP vector
(1)利用HindIII和EcoRI双酶切pJITI66-GFP瞬时表达载体,酶切体系为: (1) Use HindIII and EcoRI to cut pJITI66-GFP transient expression vector, the restriction system is:
120ng/uL-150ng/uL的pJITI66-GFP瞬时表达载体6 μl,10U uL–1的EcoR I内切酶1.5μl,10U uL–1的Hind III内切酶1.5 μl,10× buffer TangoTM3 μl,ddH2O 18 μl。 120ng/uL-150ng/uL pJITI66-GFP transient expression vector 6 μl, 10U uL –1 EcoR I endonuclease 1.5 μl, 10U uL –1 Hind III endonuclease 1.5 μl, 10× buffer Tango TM 3 μl , ddH 2 O 18 μl.
酶切反应条件为:根据Fermentas限制性内切酶手册进行酶切。 Reaction conditions for enzyme digestion were as follows: enzyme digestion was carried out according to the manual of Fermentas restriction endonucleases.
对酶切产物进1%琼脂糖凝胶电泳检测,电泳结果如图4所示,其中M泳道为DL2000分子量Marker,泳道1为没有酶切的pJITI66-GFP瞬时表达载体对照电泳,泳道2为酶切后的载体片段,大小为980bP,该片段包含GFP基因和NOS终止子序列,按照琼脂糖凝胶DNA纯化回收试剂盒说明书要求纯化回收该片段,即为纯化的HindIII-GFP+NOS-EcoRI。 The digested products were detected by 1% agarose gel electrophoresis, and the electrophoresis results are shown in Figure 4, where the M lane is the DL2000 molecular weight marker, the lane 1 is the control electrophoresis of the pJITI66-GFP transient expression vector without enzyme digestion, and the lane 2 is the enzyme The cut vector fragment is 980bP in size, which contains the GFP gene and NOS terminator sequence. Purify and recover the fragment according to the instructions of the agarose gel DNA purification and recovery kit, which is purified HindIII-GFP+NOS-EcoRI.
(2)利用HindIII和EcoRI双酶切pYES2载体,酶切体系为: (2) Use HindIII and EcoRI to double-digest the pYES2 vector, and the restriction system is:
120ng/uL-150ng/uLpYES2载体6μl,10U uL–1的EcoR I内切酶1.5μl,10U uL–1的Hind III内切酶1.5 μl,10× buffer TangoTM3 μl,ddH2O 18 μl; 120ng/uL-150ng/uLpYES2 vector 6μl, 10U uL -1 EcoR I endonuclease 1.5μl, 10U uL -1 Hind III endonuclease 1.5 μl, 10× buffer Tango TM 3 μl, ddH 2 O 18 μl;
酶切反应条件为:根据Fermentas限制性内切酶手册进行酶切。 Enzyme digestion reaction conditions are: carry out enzyme digestion according to the Fermentas restriction endonuclease manual.
对酶切产物进行1%琼脂糖凝胶电泳检测,电泳结果如图5所示,其中M泳道为DL2000分子量Marker,泳道1为没有进行酶切的pYES2载体对照电泳,泳道2、3均为酶切后载体片段,大小为5.9kb,依据琼脂糖凝胶DNA纯化回收试剂盒说明书回收纯化被切开后的载体片段,该片段即为纯化的HindIII-pYES2-EcoRI。 The digested products were detected by 1% agarose gel electrophoresis, and the electrophoresis results are shown in Figure 5, where the M lane is the DL2000 molecular weight marker, the lane 1 is the pYES2 carrier control electrophoresis without enzyme digestion, and the lanes 2 and 3 are enzymes The vector fragment after cutting is 5.9kb in size. According to the instructions of the agarose gel DNA purification and recovery kit, the vector fragment after cutting is recovered and purified. This fragment is the purified HindIII-pYES2-EcoRI.
(3)利用T4DNA连接酶把步骤1获得的HindIII-GFP+NOS-EcoRI构建到步骤2获得的HindIII-pYES2-EcoRI中,连接反应体系为: (3) Construct the HindIII-GFP+NOS-EcoRI obtained in step 1 into the HindIII-pYES2-EcoRI obtained in step 2 using T4 DNA ligase. The ligation reaction system is:
纯化的HindIII-GFP+NOS-EcoRI和HindIII-pYES2-EcoRI各50ng,3U uL–1的T4DNA连接酶1μl,10×T4 buffer 2.5μl,ddH2O补足至25 μl。 Purified HindIII-GFP+NOS-EcoRI and HindIII-pYES2-EcoRI 50ng each, 3U uL -1 T4 DNA ligase 1μl, 10×T4 buffer 2.5μl, ddH 2 O to make up to 25 μl.
连接反应条件为:根据Fermentas 公司手册进行连接,同时将连接终产物自命名为pYES2-GFP表达载体,其结构如图3所示。 The ligation reaction conditions are: Ligating according to the manual of Fermentas company, and at the same time, the final product of the ligation is named pYES2-GFP expression vector, and its structure is shown in Figure 3.
(4)取步骤3获得的连接产物pYES2-GFP表达载体以EcoR I和Hind III进行双酶切,酶切体系为: (4) Take the ligation product pYES2-GFP expression vector obtained in step 3 and perform double enzyme digestion with EcoR I and Hind III . The enzyme digestion system is:
120ng/uL-150ng/uL的pYES2-GFP表达载体6 μl,10U uL–1的EcoR I内切酶1.5μl,10U uL–1的Hind III内切酶1.5 μl,10× buffer TangoTM3 μl,ddH2O 18 μl。 120ng/uL-150ng/uL pYES2-GFP expression vector 6 μl, 10U uL –1 EcoR I endonuclease 1.5 μl, 10U uL –1 Hind III endonuclease 1.5 μl, 10× buffer Tango TM 3 μl, ddH 2 O 18 μl.
反应条件为:根据Fermentas限制性内切酶手册进行酶切。 The reaction conditions are: digestion according to the Fermentas restriction endonuclease manual.
取酶切产物1%琼脂糖凝胶电泳检测,检测结果如图6所示,图6中M泳道为DL2000分子量Marker,泳道1为步骤3获得的pYES2-GFP载体,泳道2、3均为经双酶切后的pYES2-GFP片段,该片段大小约为5.9kb,GFP+NOS片段理论大小约为980bp可见,GFP+NOS确实连接入pYES2载体中,与目前商用载体pYES2-EGFP(如图1所示)比较而言,增加了HindIII、NcoI ,SalI, Xba1和BamH I四个酶切位点,但由于NcoI 和Xba1在pYES2载体上还有另外一个切点,因此相比较pYES2-EGFP载体而言增加了SalI和HindIII两个新的、有效酶切位点。 The digestion product was detected by 1% agarose gel electrophoresis, and the detection results are shown in Figure 6. The M lane in Figure 6 is the DL2000 molecular weight marker, the lane 1 is the pYES2-GFP carrier obtained in step 3, and the lanes 2 and 3 are the The pYES2-GFP fragment after double enzyme digestion is about 5.9kb in size, and the theoretical size of the GFP+NOS fragment is about 980bp. It can be seen that GFP+NOS is indeed connected into the pYES2 vector, which is compatible with the current commercial vector pYES2-EGFP (as shown in Figure 1 Shown) In comparison, four enzyme cutting sites of HindIII , NcoI, SalI, Xba1 and BamH I are added, but because NcoI and Xba1 have another cutting site on the pYES2 vector, compared with the pYES2-EGFP vector, the Two new and effective enzyme cutting sites, SalI and HindIII, were added.
对pYES2载体的区段进行测序,其中多克隆位点(MCS)序列如SEQ ID NO.1所示,GFP和NOS序列分别如SEQ ID NO.2和SEQ ID NO.3所示: The segment of the pYES2 vector was sequenced, wherein the multiple cloning site (MCS) sequence is shown in SEQ ID NO.1, and the GFP and NOS sequences are shown in SEQ ID NO.2 and SEQ ID NO.3 respectively:
SEQ ID NO.1: SEQ ID NO.1:
AAGCTTCCACCATGGCGTGCAGGTCGACTCTAGAGGATCC AAGCTTCCACCATGGCGTGCAGGTCGAC TCTAGA GGATCC
HindIII NcoI SalI Xba1 BamH I HindIII NcoI SalI Xba1 BamH I
SEQ ID NO.2:GFP 序列 SEQ ID NO.2: GFP sequence
atggtgagca agggcgagga gctgttcacc ggggtggtgc ccatcctggt cgagctggac 60 atggtgagca agggcgagga gctgttcacc gggtggtgc ccatcctggt cgagctggac 60
ggcgacgtaa acggccacaa gttcagcgtg tccggcgagg gcgagggcga tgccacctac 120 ggcgacgtaa acggccacaa gttcagcgtg tccggcgagg gcgagggcga tgccacctac 120
ggcaagctga ccctgaagtt catctgcacc accggcaagc tgcccgtgcc ctggcccacc 180 ggcaagctga ccctgaagtt catctgcacc accggcaagc tgcccgtgcc ctggcccacc 180
ctcgtgacca ccttcaccta cggcgtgcag tgcttcagcc gctaccccga ccacatgaag 240 ctcgtgacca ccttcaccta cggcgtgcag tgcttcagcc gctaccccga ccacatgaag 240
cagcacgact tcttcaagtc cgccatgccc gaaggctacg tccaggagcg caccatcttc 300 cagcacgact tcttcaagtc cgccatgccc gaaggctacg tccaggagcg caccatcttc 300
ttcaaggacg acggcaacta caagacccgc gccgaggtga agttcgaggg cgacaccctg 360 ttcaaggacg acggcaacta caagacccgc gccgaggtga agttcgaggg cgacaccctg 360
gtgaaccgca tcgagctgaa gggcatcgac ttcaaggagg acggcaacat cctggggcac 420 gtgaaccgca tcgagctgaa gggcatcgac ttcaaggagg acggcaacat cctggggcac 420
aagctggagt acaactacaa cagccacaac gtctatatca tggccgacaa gcagaagaac 480 aagctggagt acaactacaa cagccacaac gtctatatca tggccgacaa gcagaagaac 480
ggcatcaagg tgaacttcaa gatccgccac aacatcgagg acggcagcgt gcagctcgcc 540 ggcatcaagg tgaacttcaa gatccgccac aacatcgagg acggcagcgt gcagctcgcc 540
gaccactacc agcagaacac ccccatcggc gacggccccg tgctgctgcc cgacaaccac 600 gaccactacc agcagaacac ccccatcggc gacggccccg tgctgctgcc cgacaaccac 600
tacctgagca cccagtccgc cctgagcaaa gaccccaacg agaagcgcga tcacatggtc 660 tacctgagca cccagtccgc cctgagcaaa gaccccaacg agaagcgcga tcacatggtc 660
ctgctggagt tcgtgaccgc cgccgggatc actcacggca tggacgagct gtacaagtaa 720 ctgctggagt tcgtgaccgc cgccgggatc actcacggca tggacgagct gtacaagtaa 720
SEQ ID NO.3:NOS 终止子序列 SEQ ID NO.3: NOS terminator sequence
cctcgatcga gttgagagtg aatatgagac tctaattgga taccgagggg aatttatgga 60 cctcgatcga gttgagagtg aatatgagac tctaattgga taccgagggg aatttatgga 60
acgtcagtgg agcatttttg acaagaaata tttgctagct gatagtgacc ttaggcgact 120 acgtcagtgg agcatttttg acaagaaata tttgctagct gatagtgacc ttaggcgact 120
tttgaacgcg caataatggt ttctgacgta tgtgcttagc tcattaaact ccagaaaccc 180 tttgaacgcg caataatggt ttctgacgta tgtgcttagc tcattaaact ccagaaaccc 180
gcggctcagt ggctccttca acgttgcggt tctgtcagtt ccaaacgtaa aacggcttgt 240 gcggctcagt ggctccttca acgttgcggt tctgtcagtt ccaaacgtaa aacggcttgt 240
cccgcgtcat cggcgggggt cataacgtga ctcccttaat tctccgctca tgatc 295 cccgcgtcat cggcgggggt cataacgtga ctcccttaat tctccgctca tgatc 295
测序结果表明两个新的有效酶切位点(SalI和HindIII)成功引入了pYES2-GFP载体中。 Sequencing results showed that two new effective restriction sites ( SalI and HindIII ) were successfully introduced into the pYES2-GFP vector.
本实施例 pYES2-GFP载体构建流程如图2所示。 In this embodiment, the pYES2-GFP vector construction process is shown in Figure 2.
实施例2 pYES2-GFP载体表达检测 Example 2 Detection of pYES2-GFP vector expression
SEQ ID NO.4:AT A A G C T T T T C G A A ATGggtggcattgcat; SEQ ID NO.4: AT A A G C T T T T T C G A A ATGggtggcattgcat;
SEQ ID NO.5:cg CGGATCCG AAATTCACTGGAAAGA SEQ ID NO.5: cg CGGATCCG AAATTCACTGGAAAGA
以本实验室克隆的一个细胞膜蛋白TIP验证实施例1获得的pYES2-GFP该载体的有效性: Verify the effectiveness of the pYES2-GFP vector obtained in Example 1 with a cell membrane protein TIP cloned in our laboratory:
(1)首先构建上游引物TIP-F(其序列如SEQ ID NO.4所示)和下游引物TIP-R(其序列如SEQ ID NO.5所示),引物交由南京金斯瑞生物有限公司合成。 (1) First construct the upstream primer TIP-F (its sequence is shown in SEQ ID NO.4) and the downstream primer TIP-R (its sequence is shown in SEQ ID NO.5). Company Synthesis.
(2)利用Hind III 和BamH I 双酶切pYES2-GFP表达载体,酶切反应体系为:120ng/uL-150ng/uL的pYES2-GFP表达载体6 μl,10U uL–1的EcoR I内切酶1.5μl,10U uL–1的Hind III内切酶1.5 μl,10× buffer TangoTM3 μl,ddH2O 18 μl。 (2) Use Hind III and BamH I to double digest the pYES2-GFP expression vector. The enzyme digestion reaction system is: 120ng/uL-150ng/uL pYES2-GFP expression vector 6 μl, 10U uL -1 EcoR I endonuclease 1.5 μl, 10U uL –1 Hind III endonuclease 1.5 μl, 10× buffer Tango TM 3 μl, ddH 2 O 18 μl.
反应条件为:根据Fermentas限制性内切酶手册进行酶切。 The reaction conditions are: digestion according to the Fermentas restriction endonuclease manual.
将酶切产物经1%琼脂糖凝胶电泳后切胶纯化回收PYES2片段,具体操作依据琼脂糖凝胶DNA纯化回收试剂盒使用说明进行,获得纯化的PYES2片段。 The digested product was subjected to 1% agarose gel electrophoresis and then gel-cut and purified to recover the PYES2 fragment. The specific operation was performed according to the instructions of the agarose gel DNA purification and recovery kit to obtain the purified PYES2 fragment.
(3)利用分别带有Hind III 和BamH I酶切位点的正反向引物克隆TIP5;I基因,具体步骤为: 利用 RT-PCR 方法从大豆幼苗根部组织mRNA中以正向引物TIP-F和反向引物TIP-R扩增全长开放阅读框(ORF)。 (3) The TIP5;I gene was cloned using forward and reverse primers with Hind III and BamH I restriction sites respectively. The specific steps were as follows: Use the forward primer TIP-F from soybean seedling root tissue mRNA by RT-PCR and reverse primer TIP-R to amplify the full-length open reading frame (ORF).
扩增体系为:cDNA1μL(100ng/uL) ,10×PCR buffer 2.5 μL, I0 mmol L–1dNTPs 0.5 μL, 25 mmol L–1MgCl2 1.5 μL, 10 mmolL–1 上下游引物各1 μL, 5 U mL–1Taq DNA 聚合酶0.2μL, ddH2O 补足至25 μL。 The amplification system is: cDNA 1μL (100ng/uL), 10×PCR buffer 2.5 μL, I0 mmol L –1 dNTPs 0.5 μL, 25 mmol L –1 MgCl 2 1.5 μL, 10 mmolL –1 upstream and downstream primers 1 μL each, 5 U mL –1 Taq DNA polymerase 0.2 μL, make up to 25 μL with ddH 2 O.
反应程序为: 94℃预变性3 min; 94℃变性45 s, 55℃复性45 s, 72℃延伸1 min,35 个循环; 72℃延伸10 min。 The reaction program was: pre-denaturation at 94°C for 3 min; denaturation at 94°C for 45 s, refolding at 55°C for 45 s, extension at 72°C for 1 min, 35 cycles; extension at 72°C for 10 min.
将PCR反应产物经1%琼脂糖凝胶电泳后切胶纯化回收TIP5;I基因片段,具体操作依据琼脂糖凝胶DNA纯化回收试剂盒使用说明进行,获得纯化的TIP5;I基因片段,将该片段连入pGEM-T Easy Vector T 克隆试剂盒载体中, 送交南京金思瑞生物科技有限公司测序, 重复3 次, 验证为TIP5;1基因片段。 The PCR reaction product was subjected to 1% agarose gel electrophoresis and then gel-cut and purified to recover the TIP5;1 gene fragment. The specific operation was carried out according to the instructions of the agarose gel DNA purification and recovery kit to obtain the purified TIP5;1 gene fragment. The fragment was ligated into the pGEM-T Easy Vector T cloning kit vector, sent to Nanjing Gensirui Biotechnology Co., Ltd. for sequencing, repeated 3 times, and verified as a TIP5;1 gene fragment.
(4)将TIP 5;1基因构建到步骤2获得的PYES2片段中,连接反应体系为:纯化的TIP5;1基因片段和纯化的PYES2片段各50ng,3U uL–1的T4DNA连接酶1μl,10×T4 buffer 2.5μl,ddH2O补足至25 μl。 (4) Construct the TIP5;1 gene into the PYES2 fragment obtained in step 2. The ligation reaction system is: 50ng each of the purified TIP5;1 gene fragment and the purified PYES2 fragment, 3U uL -1 T4 DNA ligase 1μl, 10 ×T4 buffer 2.5 μl, make up to 25 μl with ddH 2 O.
反应根据Fermentas 公司手册进行连接。 Reactions were ligated according to the Fermentas company manual.
通过醋酸锂介导的方法转化到酿酒酵母INVSc I (Saccharomy cescerevisiae)中(方法参照“大豆GmTIP1;1基因的克隆与表达分析 ”,张大勇等,作物学报,2013),以转入空载体为对照, 将重组酵母分别命名为INVScI (pYES2-TIP5;I) 和INVScI(pYES2); 为了验证非转基因酵母与转质粒酵母在正常生长条件下是否具有相同的生长势, 在30℃条件下, 将等摩尔数的INVScI (pYES2-TIP5;1)、INVScI (pYES2)和INVScI, 不稀释以及分别稀释100、1000 和10 000 倍后, 吸取2 μL 接种在YPDA固体培养基上, 过夜培养后观察3 种酵母的生长势;酵母胁迫处理实验参照潘妍等(“二色补血草LbGRP基因的克隆及抗逆能力分析”,遗传,2010)方法, 分别为质量体积分数30% PEG6000 和5 mol L–1 NaCl 溶液处理40 h, 以水处理为对照, 实验重复3 次, 实验结果经UNISCANCI880 平板扫描仪扫描,对酵母克隆进行荧光显微镜观察和该基因耐逆功能的鉴定,其结果如图7所示,发现其定位于细胞膜部位(以图8拟南芥原生质体亚细胞定位为辅助实验证据),且能提高酵母的耐旱性,图7a表示细胞膜蛋白TIP5;1在酿酒酵母细胞中的表达,其中该蛋白位于酵母细胞膜部位,图7b为酵母耐旱功能鉴定,可见转基因酵母表现对干旱提高了耐性,这与转基因拟南芥的结果是一致;图8为示细胞膜蛋白TIP5;1在拟南芥原生质体中的亚细胞定位分析,图8(A)为pJITI66-GFP-TIP5;1在拟南芥原生质体的亚细胞定位,其定位于细胞膜,图8(B)为pJITI66-GFP空载体对照,绿色荧光分布于整个细胞。检测结果也发现其位于细胞膜部位,这与酵母细胞的定位是一致的(具体过程参照刘晓庆等,2013,plant biotechnology reports)。 Transformed into Saccharomyces cerevisiae INVSc I ( Saccharomy cescerevisiae ) by a lithium acetate-mediated method (for the method, refer to "cloning and expression analysis of soybean GmTIP1; 1 gene", Zhang Dayong et al., Acta Crops Sinica, 2013), and the empty vector was used as a control , and named the recombinant yeasts as INVScI (pYES2- TIP5;I ) and INVScI(pYES2); in order to verify whether the non-transgenic yeast and the transgenic yeast had the same growth potential under normal growth conditions, at 30°C, et al. The number of moles of INVScI (pYES2- TIP5;1 ), INVScI (pYES2) and INVScI was undiluted or diluted 100, 1000 and 10 000 times respectively, pipetted 2 μL and inoculated on YPDA solid medium, and observed three species after overnight culture Yeast growth potential; Yeast stress treatment experiments refer to the method of Pan Yan et al. ("Cloning of LbGRP gene of Limonium bicolor and analysis of stress resistance ability", Genetics, 2010), with mass fractions of 30% PEG6000 and 5 mol L –1 The NaCl solution was treated for 40 h, and the water treatment was used as the control. The experiment was repeated three times. The experimental results were scanned by UNISCANCI880 flatbed scanner. The yeast clones were observed by fluorescence microscope and the stress tolerance function of the gene was identified. The results are shown in Figure 7. It was found that it is localized in the cell membrane (subcellular localization of Arabidopsis protoplasts in Figure 8 is the auxiliary experimental evidence), and it can improve the drought tolerance of yeast. Figure 7a shows the expression of cell membrane protein TIP5;1 in Saccharomyces cerevisiae cells, where The protein is located in the yeast cell membrane. Figure 7b is the drought tolerance function identification of yeast. It can be seen that the transgenic yeast has improved tolerance to drought, which is consistent with the results of transgenic Arabidopsis; Figure 8 shows that the cell membrane protein TIP5;1 in Arabidopsis Analysis of subcellular localization in protoplasts, Figure 8 (A) is the subcellular localization of pJITI66-GFP-TIP5;1 in Arabidopsis protoplasts, which is located in the cell membrane, Figure 8 (B) is the pJITI66-GFP empty vector control , green fluorescence distributed throughout the cell. The test results also found that it is located in the cell membrane, which is consistent with the location of the yeast cell (for the specific process, refer to Liu Xiaoqing et al., 2013, plant biotechnology reports).
实施例3 内质网膜蛋白SIP1验证 Example 3 Verification of endoplasmic reticulum membrane protein SIP1
SEQ ID NO.6:AT A A G C T T T T C G A A ATGGTTGGTGCTATAAAAGCAGCGA; SEQ ID NO.6: AT A A G C T T T T C G A A ATGGTTGGTGCTATAAAAGCAGCGA;
SEQ ID NO.7:GC CGGATCCG TCATGCTTTCTTCTGTTTTACTTC; SEQ ID NO. 7: GC CGGATCCG TCATGCTTTCTTCTGTTTTACTTC;
以本实验室克隆的另一个内质网膜蛋白SIP1;3为例,根据SIP1;3基因的序列设计正向引物SEQ ID NO.6和反向引物SEQ ID NO.7,两个引物分别带有Hind III 和BamHI 酶切位点,利用然后构建到酶切后的pYES2-GFP载体中,再通过醋酸锂介导的方法转化到酿酒酵母中,基因克隆和酵母转化与功能鉴定方法同实施例2。 Taking another endoplasmic reticulum membrane protein SIP1;3 cloned in our laboratory as an example, the forward primer SEQ ID NO.6 and the reverse primer SEQ ID NO.7 were designed according to the sequence of the SIP1;3 gene. There are Hind III and BamHI restriction sites, and then constructed into the digested pYES2-GFP vector, and then transformed into Saccharomyces cerevisiae through the method mediated by lithium acetate. The methods of gene cloning, yeast transformation and functional identification are the same as the examples 2.
烟草遗传转化方法主要参照Horsch et al的农杆菌转化法: The tobacco genetic transformation method mainly refers to the Agrobacterium transformation method of Horsch et al:
1)农杆菌菌液的制备;将携带构建好的携带p53植物表达载体农杆菌接种于YEB液体培养液(含100μg/ml Kan和50μg/ml Rif)中,于28℃摇床振荡培养至OD600为0.6-0.8,用MS盐溶液将菌体悬浮; 1) Preparation of Agrobacterium liquid: inoculate the constructed Agrobacterium carrying the p53 plant expression vector into YEB liquid culture medium (containing 100 μg/ml Kan and 50 μg/ml Rif), and culture it on a shaking table at 28°C until OD600 0.6-0.8, suspend the bacteria with MS salt solution;
2)烟草叶片的无菌处理:取温室生长的烟草幼嫩叶片,流水下冲洗表面杂质,超净工作台内用蒸馏水冲洗一遍后于70%乙醇中浸泡30s,2.5%次氯酸钠处理10min;无菌水冲洗3遍后备用; 2) Aseptic treatment of tobacco leaves: take the young tobacco leaves grown in the greenhouse, wash the surface impurities under running water, rinse with distilled water in the ultra-clean workbench, soak in 70% ethanol for 30 seconds, and treat with 2.5% sodium hypochlorite for 10 minutes; aseptic Rinse with water 3 times and set aside;
3)用手术刀片切去烟草叶边缘及主脉,然后将叶片切成0.5cm2大小; 3) cut off tobacco leaf edge and main vein with scalpel, then blade is cut into 0.5cm Size;
4)将切好的叶片浸泡于农杆菌菌液中I0-I5min; 4) soak the cut blade in the Agrobacterium bacterium liquid for 10-15min;
5)无菌水冲洗浸泡过的烟草叶片3-4遍,无菌滤纸将叶片表面菌液吸干,接种于MS培养基中于25℃暗培养72h; 5) Rinse the soaked tobacco leaves with sterile water for 3-4 times, blot the bacterial solution on the surface of the leaves with sterile filter paper, inoculate them in MS medium and incubate in dark at 25°C for 72 hours;
6)将共培养后的叶片重新接种至含抗生素的分化培养基(MS+2.0mg/L 6-BA+0.5mg/L NAA+50mg/L Kan+500 mg/L cef)中进行培养; 6) Re-inoculate the co-cultured leaves into the antibiotic-containing differentiation medium (MS+2.0mg/L 6-BA+0.5mg/L NAA+50mg/L Kan+500 mg/L cef) for culture;
7)待抗性芽簇生长至2-3cm时,切下小芽转入生根培养基(MS+50mg/L Kan+500 mg/L cef)中诱导生根; 7) When the resistant bud cluster grows to 2-3cm, cut off the small buds and transfer them to the rooting medium (MS+50mg/L Kan+500 mg/L cef) to induce rooting;
8)待诱导出的根达2cm左右即可移栽,获得再生植株。 8) The roots to be induced can be transplanted to obtain regenerated plants when they reach about 2 cm.
对酵母克隆进行荧光显微镜观察和该基因耐逆功能的鉴定,结果如图9-11所示,发现其定位于内质网部位,且能降低酵母的耐盐性。 The yeast clone was observed by fluorescence microscopy and the stress tolerance function of the gene was identified. The results are shown in Figure 9-11. It was found that it was located in the endoplasmic reticulum and could reduce the salt tolerance of the yeast.
图9为内质网膜蛋白SIP1;3在酵母细胞中表达的荧光显微镜观察结果示意图,其中SIP-FGP为本发明pYES2-GFP载体融合SIP1;3基因在酵母细胞中的内质网定位,GFP为本发明pYES2-GFP空载体对照,其分布于整个酵母细胞。 Figure 9 is a schematic diagram of the fluorescence microscope observation results of the endoplasmic reticulum membrane protein SIP1; 3 expressed in yeast cells, wherein SIP-FGP is the fusion of the pYES2-GFP vector of the present invention ; the endoplasmic reticulum location of the 3 gene in yeast cells, GFP It is the pYES2-GFP empty vector control of the present invention, which is distributed in the whole yeast cell.
图10为酵母耐逆功能鉴定结果示意图,可见SIP1;3基因的异源酵母表达降低了酵母的耐盐性;图11为内质网膜蛋白SIP1;3转基因烟草的耐逆功能鉴定,图中WT为野生型烟草,OE1-3为转SIP1;3基因的3个不同转基因株系,发现过表达该基因是,烟草的耐盐性降低,这与酵母系统功能验证的结果是一致的。 Figure 10 is a schematic diagram of yeast stress tolerance function identification results, it can be seen that heterologous yeast expression of SIP1; 3 gene reduces the salt tolerance of yeast; Figure 11 is the stress tolerance function identification of endoplasmic reticulum membrane protein SIP1; 3 transgenic tobacco, in the figure WT refers to wild-type tobacco, and OE1-3 refers to three different transgenic lines transgenic for the SIP1;3 gene. It was found that overexpressing the gene reduced the salt tolerance of tobacco, which was consistent with the results of the functional verification of the yeast system.
SEQUENCE LISTING SEQUENCE LISTING
the
<110> 江苏省农业科学院 <110> Jiangsu Academy of Agricultural Sciences
the
<120> 一种酵母表达载体 <120> A yeast expression vector
the
<130> 7 <130> 7
the
<160> 7 <160> 7
the
<170> PatentIn version 3.3 <170> PatentIn version 3.3
the
<210> 1 <210> 1
<211> 40 <211> 40
<212> DNA <212> DNA
<213> 人工合成 <213> Synthetic
the
<400> 1 <400> 1
aagcttccac catggcgtgc aggtcgactc tagaggatcc 40 aagcttccac catggcgtgc aggtcgactc tagaggatcc 40
the
the
<210> 2 <210> 2
<211> 720 <211> 720
<212> DNA <212> DNA
<213> 人工合成 <213> Synthetic
the
<400> 2 <400> 2
atggtgagca agggcgagga gctgttcacc ggggtggtgc ccatcctggt cgagctggac 60 atggtgagca agggcgagga gctgttcacc gggtggtgc ccatcctggt cgagctggac 60
the
ggcgacgtaa acggccacaa gttcagcgtg tccggcgagg gcgagggcga tgccacctac 120 ggcgacgtaa acggccacaa gttcagcgtg tccggcgagg gcgagggcga tgccacctac 120
the
ggcaagctga ccctgaagtt catctgcacc accggcaagc tgcccgtgcc ctggcccacc 180 ggcaagctga ccctgaagtt catctgcacc accggcaagc tgcccgtgcc ctggcccacc 180
the
ctcgtgacca ccttcaccta cggcgtgcag tgcttcagcc gctaccccga ccacatgaag 240 ctcgtgacca ccttcaccta cggcgtgcag tgcttcagcc gctaccccga ccacatgaag 240
the
cagcacgact tcttcaagtc cgccatgccc gaaggctacg tccaggagcg caccatcttc 300 cagcacgact tcttcaagtc cgccatgccc gaaggctacg tccaggagcg caccatcttc 300
the
ttcaaggacg acggcaacta caagacccgc gccgaggtga agttcgaggg cgacaccctg 360 ttcaaggacg acggcaacta caagacccgc gccgaggtga agttcgaggg cgacaccctg 360
the
gtgaaccgca tcgagctgaa gggcatcgac ttcaaggagg acggcaacat cctggggcac 420 gtgaaccgca tcgagctgaa gggcatcgac ttcaaggagg acggcaacat cctggggcac 420
the
aagctggagt acaactacaa cagccacaac gtctatatca tggccgacaa gcagaagaac 480 aagctggagt acaactacaa cagccacaac gtctatatca tggccgacaa gcagaagaac 480
the
ggcatcaagg tgaacttcaa gatccgccac aacatcgagg acggcagcgt gcagctcgcc 540 ggcatcaagg tgaacttcaa gatccgccac aacatcgagg acggcagcgt gcagctcgcc 540
the
gaccactacc agcagaacac ccccatcggc gacggccccg tgctgctgcc cgacaaccac 600 gaccactacc agcagaacac ccccatcggc gacggccccg tgctgctgcc cgacaaccac 600
the
tacctgagca cccagtccgc cctgagcaaa gaccccaacg agaagcgcga tcacatggtc 660 tacctgagca cccagtccgc cctgagcaaa gaccccaacg agaagcgcga tcacatggtc 660
the
ctgctggagt tcgtgaccgc cgccgggatc actcacggca tggacgagct gtacaagtaa 720 ctgctggagt tcgtgaccgc cgccgggatc actcacggca tggacgagct gtacaagtaa 720
the
the
<210> 3 <210> 3
<211> 295 <211> 295
<212> DNA <212> DNA
<213> 人工合成 <213> Synthetic
the
<400> 3 <400> 3
cctcgatcga gttgagagtg aatatgagac tctaattgga taccgagggg aatttatgga 60 cctcgatcga gttgagagtg aatatgagac tctaattgga taccgagggg aatttatgga 60
the
acgtcagtgg agcatttttg acaagaaata tttgctagct gatagtgacc ttaggcgact 120 acgtcagtgg agcatttttg acaagaaata tttgctagct gatagtgacc ttaggcgact 120
the
tttgaacgcg caataatggt ttctgacgta tgtgcttagc tcattaaact ccagaaaccc 180 tttgaacgcg caataatggt ttctgacgta tgtgcttagc tcattaaact ccagaaaccc 180
the
gcggctcagt ggctccttca acgttgcggt tctgtcagtt ccaaacgtaa aacggcttgt 240 gcggctcagt ggctccttca acgttgcggt tctgtcagtt ccaaacgtaa aacggcttgt 240
the
cccgcgtcat cggcgggggt cataacgtga ctcccttaat tctccgctca tgatc 295 cccgcgtcat cggcgggggt cataacgtga ctcccttaat tctccgctca tgatc 295
the
the
<210> 4 <210> 4
<211> 30 <211> 30
<212> DNA <212> DNA
<213> 人工合成 <213> Synthetic
the
<400> 4 <400> 4
ataagctttt cgaaatgggt ggcattgcat 30 ataagctttt cgaaatgggt ggcattgcat 30
the
the
<210> 5 <210> 5
<211> 26 <211> 26
<212> DNA <212> DNA
<213> 人工合成 <213> Synthetic
the
<400> 5 <400> 5
cgcggatccg aaattcactg gaaaga 26 cgcggatccg aaattcactg gaaaga 26
the
the
<210> 6 <210> 6
<211> 39 <211> 39
<212> DNA <212> DNA
<213> 人工合成 <213> Synthetic
the
<400> 6 <400> 6
ataagctttt cgaaatggtt ggtgctataa aagcagcga 39 ataagctttt cgaaatggtt ggtgctataa aagcagcga 39
the
the
<210> 7 <210> 7
<211> 34 <211> 34
<212> DNA <212> DNA
<213> 人工合成 <213> Synthetic
the
<400> 7 <400> 7
gccggatccg tcatgctttc ttctgtttta cttc 34 gccggatccg tcatgctttc ttctgtttta cttc 34
the
the
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510077018.6A CN104651387A (en) | 2015-02-12 | 2015-02-12 | Yeast expression vector |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510077018.6A CN104651387A (en) | 2015-02-12 | 2015-02-12 | Yeast expression vector |
Publications (1)
Publication Number | Publication Date |
---|---|
CN104651387A true CN104651387A (en) | 2015-05-27 |
Family
ID=53243030
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201510077018.6A Pending CN104651387A (en) | 2015-02-12 | 2015-02-12 | Yeast expression vector |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN104651387A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108220313A (en) * | 2018-01-12 | 2018-06-29 | 辽宁科技大学 | A kind of fusion expression method of green fluorescent protein |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104120136A (en) * | 2014-05-27 | 2014-10-29 | 哈尔滨师范大学 | Chloroplast iron transporter gene NtPIC1 and application thereof |
-
2015
- 2015-02-12 CN CN201510077018.6A patent/CN104651387A/en active Pending
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104120136A (en) * | 2014-05-27 | 2014-10-29 | 哈尔滨师范大学 | Chloroplast iron transporter gene NtPIC1 and application thereof |
Non-Patent Citations (2)
Title |
---|
李妮娜等: "棉花叶肉原生质体分离及目标基因瞬时表达体系的建立", 《作物学报》 * |
骆媛媛: "碱茅铵转运蛋白(PutAMT1;1)基因的克隆及功能研究", 《中国优秀硕士学位论文全文数据库 基础科学辑》 * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108220313A (en) * | 2018-01-12 | 2018-06-29 | 辽宁科技大学 | A kind of fusion expression method of green fluorescent protein |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN108103090B (en) | RNA Cas9-m6A modified carrier system targeting RNA methylation and its construction method and application | |
CN108559738A (en) | A kind of system and method for plant RNA modification and editor | |
CN103966256B (en) | Construction method and application of potato virus X overexpression and bimolecular fluorescent complementation vector | |
CN102443574B (en) | Recombinase gene, binary expression vector, construction method for recombinase gene and binary expression vector, and application of binary expression vector | |
CN102559677B (en) | Tissue-specific promoter and application thereof | |
CN104651387A (en) | Yeast expression vector | |
CN109517048B (en) | An optogenetic tool for regulating long-distance chromatin interactions under blue light | |
CN116463318A (en) | Plant RNA methylation and demethylation editing methods and their applications | |
CN109486850B (en) | Optogenetic tool for UV-B light-down regulation of chromatin long-distance interaction | |
CN112430260B (en) | Application of abundant protein DoLEA36 in late embryonic development or coding gene thereof in regulation and control of plant callus formation | |
US20040191912A1 (en) | New constitutive plant promoter | |
CN102517285A (en) | Tissue-specific promoter and its application | |
CN112689678B (en) | Virus-based replicon for editing genome without inserting replicon in genome of plant and use thereof | |
CN110387377B (en) | Rape drought-tolerant gene BnNAC129 and application thereof in preparing drought-tolerant transgenic plants | |
CN103304653B (en) | Application of arabidopsis ERF protein and coding gene of arabidopsis ERF protein for regulating and controlling plant pollen fertility | |
CN108727480B (en) | Transcription inhibition structure domain, coding gene and application thereof | |
CN106591357B (en) | A method for genetic transformation of rapeseed | |
CN112552383A (en) | Application of transcription factor HINGE1 in regulation and control of plant nitrogen-phosphorus homeostasis | |
CN101624595A (en) | Promoter of cotton brassinosteroids synthetase GhDWF4 gene and application thereof | |
CN107177602B (en) | NtDR1 gene related to drought tolerance of plant and application thereof | |
CN106046175B (en) | Fusion protein for specifically detecting Salicylic Acid (SA) | |
KR101611425B1 (en) | Constitutive promoter Br16 | |
CN102643851A (en) | Prokaryotic expression vector of Arabidopsis transcription factor Dof1 (DNA-binding with one finger) and application of prokaryotic expression vector | |
JP5907483B2 (en) | Method for producing plant transformed so as to promote dedifferentiation or redifferentiation, transformant, and chimeric protein, chimeric gene, DNA, recombinant expression vector and kit used in the method | |
KR101101774B1 (en) | Fruit specific expression promoter derived from tomato histidine decarboxylase gene and use thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20150527 |
|
RJ01 | Rejection of invention patent application after publication |