CN108559738A - A kind of system and method for plant RNA modification and editor - Google Patents

A kind of system and method for plant RNA modification and editor Download PDF

Info

Publication number
CN108559738A
CN108559738A CN201810144264.2A CN201810144264A CN108559738A CN 108559738 A CN108559738 A CN 108559738A CN 201810144264 A CN201810144264 A CN 201810144264A CN 108559738 A CN108559738 A CN 108559738A
Authority
CN
China
Prior art keywords
rna
rsmb
editor
dpspcas13b
modification
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201810144264.2A
Other languages
Chinese (zh)
Inventor
王东
刘志红
张月婷
贺热情
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanchang University
Original Assignee
Nanchang University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanchang University filed Critical Nanchang University
Priority to CN201810144264.2A priority Critical patent/CN108559738A/en
Publication of CN108559738A publication Critical patent/CN108559738A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/16Hydrolases (3) acting on ester bonds (3.1)
    • C12N9/22Ribonucleases RNAses, DNAses
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/113Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/65Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression using markers
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8201Methods for introducing genetic material into plant cells, e.g. DNA, RNA, stable or transient incorporation, tissue culture methods adapted for transformation
    • C12N15/8213Targeted insertion of genes into the plant genome by homologous recombination
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/1003Transferases (2.) transferring one-carbon groups (2.1)
    • C12N9/1007Methyltransferases (general) (2.1.1.)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/78Hydrolases (3) acting on carbon to nitrogen bonds other than peptide bonds (3.5)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y305/00Hydrolases acting on carbon-nitrogen bonds, other than peptide bonds (3.5)
    • C12Y305/04Hydrolases acting on carbon-nitrogen bonds, other than peptide bonds (3.5) in cyclic amidines (3.5.4)
    • C12Y305/04002Adenine deaminase (3.5.4.2)
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/10Type of nucleic acid

Abstract

The invention discloses a kind of system and methods of plant RNA modification and editor, using with transmethylase recombinant nucleic acid enzyme dCas13a RsmB and dPspCas13b RsmB and cytimidine C carried out to RNA with adenine deaminase active recombinant nucleic acid enzyme dPspCas13b hADAR (E488Q/T375G) methylate modification and the specific conversion of adenine A to hypoxanthine I, have the characteristics that high efficiency and specificity, be it is a kind of efficiently quickly RNA modification and editing system.

Description

A kind of system and method for plant RNA modification and editor
Technical field
The present invention relates to gene engineering technology field more particularly to a kind of plant RNA modification and editor system and method, It is fast with dPspCas13b-RsmB and with gland more particularly to the recombinant nucleic acid enzyme dCas13a-RsmB with transmethylase is used The recombinant nucleic acid enzyme dPspCas13b-hADAR (E488Q/T375G) of purine deaminase active methylates to RNA progress cytimidine C and repaiies The specificity conversion of decorations and adenine A to hypoxanthine I.
Background technology
The effect of gene editing tool is very important in the research process of science of heredity, the CRISPR found in recent years Gene editing technology with its high specificity, targeting is good, applicability is wide the features such as become vast researcher research and develop Hot spot.Genomic DNA knock out using CRISPR systems and then the method for studying gene function is very convenient and high Effect.CRISPR systems can not only carry out knocking out for genomic DNA can also be by merging the Cas protein sequences being mutated and urging The albumen for changing function realizes various target gene edit operations, such as merges the fixed point editor that deaminase realizes A-I and C-U.
Above a variety of editor's modification modes carry out all on DNA level, and RNA is transmitted as important hereditary information Medium is constantly subjected to prodigious limitation to its research, until Zhang Feng had found Sharpe cilium bacterium in 2016 (Leptotrichiashahii) there are a kind of novel CRISPR effect proteins Cas13a (C2c2) in.Cas13a has RNA The RNA enzyme activity of mediation, this is found to be provides a kind of new tool Abudayyeh in rna level change hereditary information, O.O.,J.S.Gootenberg,S.Konermann,J.Joung,I.M.Slaymaker,D.B.Cox,S.Shmakov, K.S.Makarova,E.Semenova,L.Minakhin,K.Severinov,A.Regev,E.S.Lander,E.V.Koonin and F.Zhang(2016)."C2c2is a single-component programmable RNA-guided RNA- targeting CRISPR effector."Science.).2017 professors Nian Zhangfeng are found that PspCas13b again, PspCas13b is a kind of more efficient nuclease more more stable than Cas13a.The cutting that PspCas13b can not only carry out RNA may be used also By the protein fusion of dPspCas13b (PspCas13b of inactivation) and different function, to realize the editor of various targeted rnas, Fixed point editor such as by merging hADAR realization A-I on rna level in zooblast.But current rna editing system It is only used in zooblast, the RNA fixed point edit effects in botanical system have no knowledge about.
RNA has more than 100 and plants different chemical modification forms so far as important inhereditary material in plant It is found.RNA methylates one of the important content of (RNA methylation) as epigenetics research, refers to being happened at Methylate modification phenomenon, 6-methyladenine (N6-methyladenosine, m6A) and the 5- first of different location in RNA molecule Base cytimidine (C5-methylcytidine, m5C) is modified after most common two kinds of rna transcriptions in eucaryote.RNA methyl Change and plays an important role in controlling gene expression, editor, stability and degradation etc..Relative to DNA methylation, RNA methyl Change is more complicated, and type is various, and is prevalent in various advanced bios.So far, there are no can artificially target to repair The system for adoring RNA.
Therefore, a kind of efficiently quick rna editing modification system is badly in need of in this field.
Invention content
In view of above-mentioned defect existing in the prior art, the purpose of the present invention is to propose to a kind of modification of plant RNA and editors System and method.
To achieve the goals above, present invention employs following technical solutions:
A kind of system of plant RNA modification and editor, includes the recombination with RNA modification and editting function of targeted rna The gRNA of nuclease and its targeted rna.
Further, the recombinant nucleic acid enzyme is by the nuclease dCas13a without cleavage activity of targeted rna (DeadCas13a, Cas13a are also referred to as C2c2) and dPspCas13b respectively with methyl transferase domains and adenine deaminase Merged, the recombinant nucleic acid enzyme dCas13a-RsmB with methyl transferase activity and dPspCas13b-RsmB of formation and With the active recombinant nucleic acid enzyme dPspCas13b-hADAR of adenine deaminase.
A kind of method of plant RNA modification and editor, using the plant RNA modification and editing system, by corresponding work( The enzyme of energy is directed on corresponding RNA, realizes modification and the editor of plant RNA.
Further, methylating and adenine alkali for cytosine base is carried out at target site using the recombinant nucleic acid enzyme The deamination of base, it is final to realize that the m5C of plant RNA methylates modification and A is converted to I.
Further, the method for modifying of the plant RNA includes establishing RNAm5C to methylate the vitro expression systems of modification; The vitro expression systems carry out the expression of external albumen using prokaryotic expression system, obtain with His and Msb labels The fusion protein of dCas13a-RsmB and dPspCas13b-RsmB, and establish methylating in vitro reaction system.
Further, the method for modifying of the plant RNA includes establishing RNAm5C to methylate the internal expression system of modification; The internal expression system is utilized respectively the expression of AtU6 promoters driving gRNA, and dCas13a- is driven using 35S promoter The expression of RsmB and dPspCas13b-RsmB carries out pointed decoration experiment in plant.
Further, the edit methods of the plant RNA include the reporting system for the dGFP for establishing premature translation termination, Identification for its fixed point editor.
Further, the edit methods of the plant RNA are the Premature stop codon by being catalyzed on the RNA of dGFP A base transitions at the sites TAG for hypoxanthine I, during translation I will with C base pairings, to make termination codon Sub- TAG reverts to TGG, and GFP albumen is normally translated;Transient expression is carried out in plant, it is glimmering by the green for observing GFP Light, to judge the effect of RNA fixed point editors.
The present invention protrusion effect be:
The system and method for a kind of plant RNA modification and editor of the present invention, uses the recombinant nuclear with transmethylase Sour enzyme dCas13a-RsmB is with dPspCas13b-RsmB and with the active recombinant nucleic acid enzyme of adenine deaminase DPspCas13b-hADAR (E488Q/T375G) carries out cytimidine C to RNA and methylates modification and adenine A to hypoxanthine I's Specificity conversion, has the characteristics that high efficiency and specificity, is that a kind of efficient quick RNA is modified and editing system.
Description of the drawings
Figure 1A is the dCas13a-RsmB methylating in vitro protein purification used carriers and embodiment 2 of the embodiment of the present invention 1 The carrier schematic diagram that surely turns of arabidopsis;
Figure 1B is the SDS-PAGE glue of the dCas13a-RsmB fusion protein coomassie brilliant blue stainings of the embodiment of the present invention 1 Figure;
Fig. 1 C are the dCas13a-RsmB methylating in vitro result figures of the embodiment of the present invention 1;
Fig. 2A is the conserved domain structural schematic diagram of the arabidopsis transmethylase TRM4B albumen of the embodiment of the present invention 2;
Fig. 2 B are the carrier structure schematic diagram for subcellular localization of the embodiment of the present invention 2;
Fig. 2 C are the TRM4B subcellular localization result figures of the embodiment of the present invention 2;
Fig. 3 A are for 3dPspCas13b-RsmB of embodiment of the present invention methylating in vitro protein purification used carriers and for intending The carrier schematic diagram that southern mustard surely turns;
Fig. 3 B are the SDS-PAGE of the dPspCas13b-RsmB fusion protein coomassie brilliant blue stainings of the embodiment of the present invention 3 Glue figure;
Fig. 3 C are the dCas13b-RsmB methylating in vitro result figures of the embodiment of the present invention 3;
Fig. 4 is the target site sequence to methylate in the dCas13a-RsmB bodies of the embodiment of the present invention 2 and the positions gRNA;
Fig. 5 is the schematic diagram of dPspCas13b-hADAR tobacco RNA A to the I base editors of the embodiment of the present invention 4;
Fig. 6 is dPspCas13b-hADAR protoplasts of Arabidopsis thaliana broken by ultrasonic RNA A to the I base editors' of the embodiment of the present invention 5 Schematic diagram.
Specific implementation mode
Following will be combined with the drawings in the embodiments of the present invention, and technical solution in the embodiment of the present invention carries out clear, complete Site preparation describes, it is clear that described embodiments are only a part of the embodiments of the present invention, instead of all the embodiments.
A kind of method of plant RNA modification and editor of the present invention, includes the following steps:
1. be transformed pET28a procaryotic cell expression carriers, structure have Msb hyper acidics protein hydrolysate (Zou, Z., L.Cao, P.Zhou,Y.Su,Y.Sun and W.Li(2008)."Hyper-acidic protein fusion partners improve solubility and assist correct folding of recombinant proteins expressed in Escherichia coli."J Biotechnol 135(4):333-339.) the prokaryotic cell table of label Up to carrier
From DH5 α the DNA sequence dna of Msb is obtained with PCR amplification and by PCR by His labels and TEV protease enzyme site It is added separately to the N-terminal and C-terminal of Msb, NcoI and BamHI double digestions PCR product and pET28a carriers is then used, finally uses T4DNA Ligase connects to obtain pET28a-Msb procaryotic cell expression carriers.
The gene order of NcoI-His-Msb-TEV-BamHI is as shown in SEQ ID NO.1.
2. transformation inactivation nuclease dCas13a and dPspCas13b (Δ 984-1090), structure has methyl transfer activity Fusion protein dCas13a-RsmB and dPspCas13b-RsmB to prokaryotic expression carrier pET28a-Msb on
From GENEWIZ companies synthesis by vegetable codon optimize dCas13a (Komor, A.C., Y.B.Kim, M.S.Packer,J.A.Zuris and D.R.Liu(2016)."Programmable editing of a target base In genomic DNA without double-stranded DNA cleavage. " Nature.) and dPspCas13b (Cox,D.B.T.,J.S.Gootenberg,O.O.Abudayyeh,B.Franklin,M.J.Kellner,J.Joung and F.Zhang(2017)."RNA editing with CRISPR-Cas13."Science 358(6366):1019-1027.) sequence Row
The gene order of dCas13a is as shown in SEQ ID NO.2.
The gene order of dPspCas13b is as shown in SEQ ID NO.3.
The sequence of dCas13a and dPspCas13b are obtained with PCR amplification, is then connected by BamHI and HindIII double digestions Enter and obtains pET28a-Msb-dCas13a and pET28a-Msb-dPspCas13b on pET28a-Msb prokaryotic expression carriers.
PCR amplification obtains the RsmB structural domains of TRM4B from arabidopsis thaliana genomic dna, is passed through later with HindIII digestions RsmB is connected into carrier pET28a-Msb-dCas13a and pET28a-Msb-dPspCas13b and obtains protokaryon by the method for homologous recombination Expression vector pET28a-Msb-dCas13a-RsmB and pET28a-Msb-dPspCas13b-RsmB.RsmB structural domains lead to respectively Cross XTEN (Komor, A.C., Y.B.Kim, M.S.Packer, J.A.Zuris and D.R.Liu (2016) " Programmable editing of atarget base in genomic DNA without double-stranded DNA cleavage. " Nature.) and HIV NEX (Cox, D.B.T., J.S.Gootenberg, O.O.Abudayyeh, B.Franklin,M.J.Kellner,J.Joung and F.Zhang(2017)."RNA editing with CRISPR- Cas13."Science 358(6366):1019-1027.) it is connected to the C-terminal of dCas13a and dPspCas13b.
XTEN catenation sequences are as follows:
tctggatctgagactcctggaacttctgagtctgctactcctgagtct
HIV NEX catenation sequences are as follows:
ggatcacttcaattgcctccacttgaaagattgacattgggatct
The gene order of RsmB structural domains is as shown in SEQ ID NO.4.It is specific as follows:
Note:Overstriking marks out HindIII restriction enzyme site AAGCTT in the position protogene group come, and former sequence is passed through PCR It is mutated into AAACTT and eliminates the sites HindIII but without changing albumen coded sequence.
3. procaryotic cell expression purified fusion albumen dCas13a-RsmB and dPspCas13b-RsmB
The carrier pET28a-Msb-dCas13a-RsmB and pET28a-Msb-dPspCas13b-RsmB that build are transferred to In Rosetta (DE3) Competent cell.The bacterium solution that 12ml is incubated overnight is inoculated into 6 liters of LB culture mediums.At 37 DEG C It is 0.4 that cell density, which is grown to, to OD600, and then temperature is down to 16 DEG C.When cell density to OD600 is 0.8, IPTG is added To a concentration of 250 μM.Culture 16 hours after, harvest bacterium solution and be resuspended in lysis buffer (50mM Tris-HCl pH 8.0, 0.5M NaCl, 10mM imidazoles, 5% glycerine, 1%Trixton X-100,1mM PMSF, 7.15mM BME) in, it is broken by ultrasound Fragmentation solution and ultracentrifugation clarified lysates.Use Ni-NTA His resinsDetach soluble fusion protein. Eluent containing fusion protein is applied to 5ml HiTrap Q HP (GE Health) in AKTA systems (GE Health). The fusion protein of purifying is dense in storage buffer solution (20mM Tris-HCl pH7.5,0.5M NaCl, 5% glycerine, 2mM DTT) It is reduced to 1mg/ml.
4. synthesis targeted rna and crRNA in vitro
The DNA sequence dna of the targeted rna and crRNA for in-vitro transcription is obtained first with PCR.
The gene order of targeted rna is as shown in SEQ ID NO.5.It is specific as follows:
Note:The sequence of overstriking mark is T7 promoter sequences, is used for the in-vitro transcription of T7 RNA polymerases.
The gRNA17 sequences of dCas13a are as follows:
ccaccccaatatcgaaggggactaaaactagattgctgttctaccaagtaatccat
Note:The sequence of overstriking mark is T7 promoter sequences, is used for the in-vitro transcription of T7 RNA polymerases.
The gRNA18 sequences of dCas13a are as follows:
ccaccccaatatcgaaggggactaaaaccatgcctgcaggtcgagtagattgctgt
Note:The sequence of overstriking mark is T7 promoter sequences, is used for the in-vitro transcription of T7 RNA polymerases.
The gRNA27 sequences of dCas13a are as follows:
ccaccccaatatcgaaggggactaaaacgaaacagctatgaccatgattacgccaa
Note:The sequence of overstriking mark is T7 promoter sequences, is used for the in-vitro transcription of T7 RNA polymerases.
The gRNA31 sequences of dCas13a are as follows:
ccaccccaatatcgaaggggactaaaacataaacacaggaaacagctatgaccatg
Note:The sequence of overstriking mark is T7 promoter sequences, is used for the in-vitro transcription of T7 RNA polymerases.
The gRNA33 sequences of dCas13a are as follows:
ccaccccaatatcgaaggggactaaaacagcggataaacacaggaaacagctatga
Note:The sequence of overstriking mark is T7 promoter sequences, is used for the in-vitro transcription of T7 RNA polymerases.
The gRNA17 sequences of dPspCas13b are as follows:
tgcaggtcgagtagattgctgttctaccaagtaatccatatttctagagggttgtggaaggtccagttttgaggggc tattacaac
Note:The sequence of overstriking mark is T7 promoter sequences, is used for the in-vitro transcription of T7 RNA polymerases.
The gRNA18 sequences of dPspCas13b are as follows:
cgccaagcttgcatgcctgcaggtcgagtagattgctgttctaccaagtagttgtggaaggtccagttttgaggggc tattacaac
Note:The sequence of overstriking mark is T7 promoter sequences, is used for the in-vitro transcription of T7 RNA polymerases.
The gRNA27 sequences of dPspCas13b are as follows:
gataaacacaggaaacagctatgaccatgattacgccaagcttgcatgccgttgtggaaggtccagttttgaggggc tattacaac
Note:The sequence of overstriking mark is T7 promoter sequences, is used for the in-vitro transcription of T7 RNA polymerases.
The gRNA31 sequences of dPspCas13b are as follows:
attgtgagcggataaacacaggaaacagctatgaccatgattacgccaaggttgtggaaggtccagttttgaggggc tattacaac
Note:The sequence of overstriking mark is T7 promoter sequences, is used for the in-vitro transcription of T7 RNA polymerases.
The gRNA33 sequences of dPspCas13b are as follows:
gtggaattgtgagcggataaacacaggaaacagctatgaccatgattacggttgtggaaggtccagttttgaggggc tattacaac
Note:The sequence of overstriking mark is T7 promoter sequences, is used for the in-vitro transcription of T7 RNA polymerases.
Targeted rna and crRNA HiScribeTMT7Quick High Yield RNA Synthesis Kit (NEB) are closed At then with RNA Clean&Concentrator (ZYMO RESEARCH) purifying.
5. methylating in vitro
First is carried out with the fusion protein of 1XCutsmart buffer solutions, 80 μM of SAM, 8pM ssRNA, 5pM crRNA, 20pM Glycosylation reaction 1 hour passes through RNA Clean&Concentrator (ZYMO RESEARCH) purifying RNA.
6. bisulf iotate-treated RNA (David, R., A.Burgess, B.Parker, J.Li, K.Pulsford, T.Sibbritt,T.Preiss and I.R.Searle(2017)."Transcriptome-wide Mapping of RNA 5-Methylcytosine in Arabidopsis mRNAs and non-coding RNAs."Plant Cell.)
Configure bisulfite solution:40% sodium hydrogensulfite, 0.6mM hydroquinones, pH5.1.Add 100 μ L sulfurous acid In hydrogen salt solution to RNA to be treated, 75 DEG C are handled 4 hours, with Micro Bio-Spin 6chromatography Columns desalinations 2 times.The 1MHCl of 100 μ L is added in the RNA after desalting processing, pH9.0 DEG C 75 is handled 1 hour.Finally With RNA Clean&Concentrator (ZYMO RESEARCH) purifying RNA.
7. extracting RNA with Trizol
It is added in the Trizol to sample of 1ml, stands 5 minutes, 200 μ l chloroforms are added, acutely shake 15s.It is stored at room temperature 5 Minute, 12000g, 4 DEG C centrifuge 15 minutes.It takes supernatant that 500 μ l isopropanols are added, is stored at room temperature 5 minutes, centrifuge 10 minutes.With 75% ethyl alcohol is washed one time, and super-clean bench dries up ethyl alcohol, and suitable water dissolution RNA is added.
8.RT-PCR and Sanger sequencings detect the efficiency that methylates
By RNA TransScript One-Step gDNA Removal and cDNA Synthesis SuperMix Kit reverse transcription obtains cRNA, then is expanded with high fidelity enzyme to obtain DNA sequence dna.The DNA that amplification is obtained is used Gel Extraction Kit purifying, is then building up on carrier by pEASY-Blunt Zero Cloning Kit and is used Sanger sequencings 30 clones of detection.
Sequence for RT-PCR and the primer sequence BS-FP of amplification is as follows:
ttagtgaatttgagtttggt
Sequence for RT-PCR and the primer sequence BS-RP of amplification is as follows:
ctttatacttccaactcata
Sequence for RT-PCR and the primer sequence BS-S3FP of amplification is as follows:
attttgattatttaatgagg
Sequence for RT-PCR and the primer sequence BS-S3FP of amplification is as follows:
tcattctttatctcaaactt
9. pCambia1300AtU6-35S-dCas13a-RsmB carrier of the structure for arabidopsis stable conversion
By for transcribing gRNA promoter terminator and dCas13a gRNA frame sequences be inserted into pCambia1300 Between the sites HindIII and XmaI.
The gene order of AtU6 is as shown in SEQ ID NO.6.
DCas13a gRNA frame sequences are as follows:
ccaccccaatatcgaaggggactaaaac
Note:Overstriking mark is containing there are two the sequences in the sites BsaI, for being inserted into spacer.
Terminator sequence is as follows:
tttttttgttttttatgtct
Between 35S promoter for expressing dCas13a-RsmB and NOS terminator are inserted into XmaI and EcoRI, 35S is opened The sites NcoI and BamHI are inserted between mover and NOS terminator.
The gene order of 35S promoter sequence is as shown in SEQ ID NO.7.
The gene order of NOS terminator is as shown in SEQ ID NO.8.
With the dCas13a- that insertion is expanded from pET28a-Msb-dCas13a-RsmB after NcoI and BamHI double digestions RsmB sequences, and NLS nuclear localization signals are added respectively in the N-terminal of dCas13a-RsmB and C-terminal.
The gene order of NLS-dCas13a-RsmB-NLS is as shown in SEQ ID NO.9.It is specific as follows:
Note:Overstriking, which marks out, to be N-terminal and the NLS nuclear localization signal sequences of C-terminal.
10. pCambia1300AtU6-35S-dPspCas13b-RsmB carrier of the structure for arabidopsis stable conversion
The gRNA frame sequences of dPspCas13b are obtained with PCR amplification, and pass through the method for HindIII and XmaI double digestions Replace the gRNA frame sequences of dCas13a.
DPspCas13b frame sequences are as follows:
gttgtggaaggtccagttttgaggggctattacaac
Note:Overstriking mark is containing there are two the sequences in the sites BsaI, for being inserted into spacer.
It is expanded from pET28a-Msb-dPspCas13b-RsmB with insertion after NcoI and BamHI double digestions DPspCas13b-RsmB sequences, and added in C-terminal plus Flag-NLS nuclear localization signals in the N-terminal of dPspCas13b-RsmB NLS nuclear localization signals.
The gene order of Flag-NLS-dPspCas13b-RsmB-NLS is as shown in SEQ ID NO.10.It is specific as follows:
Note:Overstriking marks out the NLS nuclear localization signal sequences of the next Flag-NLS nuclear localization sequences and C-terminal for being N-terminal.
11. the vector construction for the positioning of TRM4B protein subcellulars
Between 35S promoter and NOS terminator are inserted into HindIII the and EcoRI restriction enzyme sites of pCambia1300,35S There are NcoI and SpeI restriction enzyme sites among promoter and NOS terminator.GFP sequences are passed through into homologous recombination after being cut with SpeI Method be inserted into, with the method for homologous recombination by the sequence of the TRM4B obtained from arabidopsis thaliana genomic dna after being cut with NcoI It is inserted into.
The gene order of GFP is as shown in SEQ ID NO.11.
The gene order of TRM4B is as shown in SEQ ID NO.12.
12. being inserted into spacer sequences in skeleton carrier
It is chosen on purpose RNA and synthesizes complementary primer after corresponding sequence (forward and reverse primer adds connect accordingly respectively Header sequence), on the skeleton carrier after being connected to BsaI digestions with T4DNA ligases after annealing.
DCas13a gRNA-S1 sequences are as follows:
ttccacacctctttccacccatctcttt
DCas13a gRNA-S2 sequences are as follows:
cttcctcagctgggggttccacacctct
DCas13a gRNA-S3 sequences are as follows:
aggaggtagtgcagcttcctcagctggg
DPspCas13b gRNA-S1 sequences are as follows:
tcagctgggggttccacacctctttccacccatctctttaggttatcgtc
DPspCas13b gRNA-S2 sequences are as follows:
aggtagtgcagcttcctcagctgggggttccacacctctttccacccatc
DPspCas13b gRNA-S3 sequences are as follows:
gacgttggaggaggaggtagtgcagcttcctcagctgggggttccacacc
DPspCas13b gRNA10 sequences are as follows:
gcactgcacgccgtaggtgaaggtggtcacgagggtgggccagggcacgg
DPspCas13b gRNA15 sequences are as follows:
gcacgccgtaggtgaaggtggtcacgagggtgggccagggcacgggcagc
DPspCas13b gRNA20 sequences are as follows:
ccgtaggtgaaggtggtcacgagggtgggccagggcacgggcagcttgcc
DPspCas13b gRNA25 sequences are as follows:
ggtgaaggtggtcacgagggtgggccagggcacgggcagcttgccggtgg
DPspCas13b gRNA30 sequences are as follows:
aggtggtcacgagggtgggccagggcacgggcagcttgccggtggtgcag
DPspCas13b gRNA35 sequences are as follows:
gtcacgagggtgggccagggcacgggcagcttgccggtggtgcagatgaa
DPspCas13b gRNA40 sequences are as follows:
gagggtgggccagggcacgggcagcttgccggtggtgcagatgaacttca
DPspCas13b gRNA45 sequences are as follows:
tgggccagggcacgggcagcttgccggtggtgcagatgaacttcagggtc
13. building dPspCas13b-hADAR carriers
It will successively be inserted after carrier pCambia1300AtU6-35S-dPspCas13b-RsmB XhoI and EcoRI digestions The sequence for entering dPspCas13b and NOS, is separated between dPspCas13b and NOS with BamHI.Synthesize vegetable codon optimization The sequence (Cox, Gootenberg et al.2017) of hADAR, then with the method for using homologous recombination after BamHI cut vector HADAR is inserted between dPspCas13b and NOS.
Obtain carrier pCambia1300AtU6-35S-dPspCas13b-hADAR.
It will be inserted after carrier pCambia1300AtU6-35S-dPspCas13b-hADAR HindIII and EcoRI cuttings Enter and obtains the carrier pUC19AtU6-35S- used in protoplast transformation between the sites HindIII and EcoRI of pUC19 dPspCas13b-hADAR。
The gene order of hADAR is as shown in SEQ ID NO.13.
The design of 14.dGFP reporting systems
35S promoter and NOS terminator sequence, 35S promoter are inserted between the SbfI and EcoRI of pCambia1300 The sites BamHI are added between sequence and NOS terminator sequence.DGFP is inserted into 35S with homologous recombination after being cut with BamHI Between promoter sequence and NOS terminator sequence.
The gene order of dGFP is as shown in SEQ ID NO.14.It is specific as follows:
Note:The place of overstriking mark is that original bases G is become A by PCR so that originally encodes the close of W amino acid Numeral becomes for terminator codon, to obtain dGFP sequences.
15. the preparation and conversion of protoplasts of Arabidopsis thaliana broken by ultrasonic
The tender Arabidopsis leaf of children is taken, blade is cut to 0.5mm-1mm sizes using blade.It immerses in 10ml enzymolysis liquids, mixes It is even, light culture 2h-3h, until protoplast is disintegrated down from blade completely.After enzymolysis, microscopy digests result.Use 200 10ml in mesh stainless steel screen filtration protoplast to new centrifuge tube.100 × g 4 DEG C, centrifuges 2min, collects protoplast. Protoplast is resuspended in the W5 fluid nutrient mediums being pre-chilled in equal volume, 100 × g centrifuges 2min, collects protoplast, is repeated 2 times. Protoplast is resuspended in the W5 liquid being pre-chilled in equal volume, ice bath 30min.100 × g centrifuges 2min, collects protoplast, is resuspended Protoplast is in 1/10 volume MMg.A small amount of resuspension protoplast microscopy is taken, remaining is for converting.
Each 10 μ l Plasmid DNA is added in 2ml centrifuge tubes, 120 μ l PEG/ are added in 100 μ l protoplasts after mixing well Ca2+ solution.It is placed at room temperature for 15min.500 μ l W5 are added after reaction, mix well.100 × g centrifuges 2min, collects former Raw plastid, removes supernatant.700 μ l W5 solution are added, 100 × g centrifuges 2min, collects protoplast, is repeated once.It is resuspended former Protoplast is transferred in the tissue culture plate with 1% BSA rinses, 23 DEG C of dark culturings 16 by raw plastid in 1ml W5 A hour observes fluorescence signal.
16. tobacco transient expression
Corresponding carrier is transferred to Agrobacterium GV3101,28 DEG C of dark culturings two days, picking monoclonal is in 5ml LB resistances In culture medium (50mg/L kanamycins, 25mg/L rifampins), 28 DEG C, 240rpm is cultivated 16 hours, with 1:100 ratio switching Into new 5ml LB resistance culture bases, 28 degree, 240rpm overnight incubations to OD600=3.4000rpm, 10min collect thalline, With 10mM MES pH 5.6,10mM MgCl2,10 μm of acetosyringone solution hang thalline, adjust OD600 20 to 1.Wen Jing After setting 2-3 hours, Agrobacterium is injected into 4 weeks or so the good Tobacco Leafs of growth conditions with the 1ml injector for medical purpose without syringe needle The piece back side.Sampling observation fluorescence signal after culture 36-48 hours.
17. transformation of Arabidopsis thaliana and positive seedling screening
Corresponding carrier is transferred in Agrobacterium GV3101, the healthy and strong arabidopsis for having opened flower is chosen and is lost with flower-dipping method Pass conversion.Normal growth collects T1 for seed after one month, then screened on the 1/2MS tablets of the hygromycin containing 50mg/L positive Seedling is transplanted in soil.
1 dCas13a-RsmB methylating in vitro of embodiment
First, it constructs expression vector and purifies and obtained fusion protein dCas13a-RsmB, dCas13a-RsmB's Expression is driven using T7 promoters, and has added Msb labels with Enhanced expressing in N-terminal, has His labels for melting in N-terminal and C-terminal The purifying (Figure 1A and Figure 1B) of hop protein.Then methylating in vitro experiment has been carried out, sodium hydrogensulfite is used in combination to handle external first RNA after base.By sanger be sequenced to have obtained dCas13a-RsmB methylating in vitro as a result, be utilized 5 gRNA come The different location of targeted rna is targeted, used 5 gRNA can make targeted rna methylate, but be different gRNA first The position of base and efficiency are all different (Fig. 1 C).Although methylating in vitro it is less efficient be 3.33% to 6.67% between, DCas13a-RsmB can be methylated really with cytimidine on mediate rna.In addition the site of dCas13a-RsmB methylating in vitro More than cytosine base being limited in inside gRNA binding sites, around gRNA binding sites having also discovered many has occurred first The cytimidine of base, be similarly to CRISPR mediation DNA methylation (Liu, X.S., H.Wu, X.Ji, Y.Stelzer, X.Wu, S.Czauderna,J.Shu,D.Dadon,R.A.Young and R.Jaenisch(2016)."Editing DNA Methylation in the Mammalian Genome."Cell 167(1):233-247e217.).And dCas13a- RsmB's methylates with certain site preference, for example other four gRNA other than gRNA27 can be mediated DCas13a-RsmB is to C79, C83, C87 and C91.C96 can be methylated by gRNA17, gRNA18 and gRNA31 simultaneously.In vitro It methylates and shows that only certain specific sites can be methylated by the gRNA dCas13a-RsmB mediated, this is the same as existing research Match (David, R., A.Burgess, B.Parker, J.Li, K.Pulsford, T.Sibbritt, T.Preiss and I.R.Searle(2017)."Transcriptome-wide Mapping of RNA 5-Methylcytosine in ArabidopsismRNAs and non-coding RNAs."Plant Cell.).And the binding site of gRNA is to methylating Efficiency has a great impact, as only there are one the discoveries of the cytimidine in site to methylate by gRNA27.
It methylates in 2 dCas13a-RsmB bodies of embodiment
The modification that methylates of progress RNA in vivo after the cytosine methylation of RNA, will be successfully attempted in vitro.For The methylating of the internal targeted rna of realization, has done the subcellular localization of arabidopsis transmethylase TRM4B first.Shown in Fig. 2A, Only there are one conservative structural domain RsmB by TRM4B, so being all to use RsmB rather than overall length in the experiment that methylates in vivo afterwards TRM4B carry out the experiment that methylates.Tobacco instantaneous conversion the result shows that TRM4B is located in plant in nucleus (Fig. 2 B and Fig. 2 C) is imported dCas13a-RsmB carefully using nuclear localization signal so in order to successfully be methylated in vivo In karyon.Then the expression for utilizing AtU6 drivings gRNA, the expression (Figure 1A and Fig. 4) of dCas13a-RsmB is driven using 35S. The mRNA of MAG5 is the targeted rna of TRM4B in arabidopsis body, and TRM4B can methylate the specific site of MAG5 genes (David,R.,A.Burgess,B.Parker,J.Li,K.Pulsford,T.Sibbritt,T.Preiss and I.R.Searle(2017)."Transcriptome-wide Mapping of RNA 5-Methylcytosine in Arabidopsis mRNAs and non-coding RNAs."Plant Cell.).Target MAG5mRNA's so constructing Carrier and successful conversion the mutant trm4b-1 of TRM4B and genetically modified plants are obtained.It is had detected in T1 generations The methylation level of MAG5mRNA.The result shows that dCas13a-RsmB really can be by the specific site first of targeted rna in vivo Base, in 3 gRNA sequences of trial, a transgenosis line of gRNA_S3 can methylate 10% C111. Although the vivo results of dCas13a-RsmB show that it is the feasible efficiency ratio to methylate to carry out methylating for target site in vivo It is relatively low.
3 dPspCas13b-RsmB methylating in vitro of embodiment
The cytimidine on targeted rna although dCas13a-RsmB can methylate, the less efficient (figure to methylate 1C).In order to improve the efficiency that methylates, the load of dPspCas13b-RsmB fusion proteins is constructed with the dPspCas13b newly reported Body and purifying have obtained fusion protein (Fig. 3 A and Fig. 3 B) and have been same methylating in vitro experiment, dPspCas13b- The expression of RsmB is driven using T7 promoters, and has added Msb labels with Enhanced expressing in N-terminal, has His labels in N-terminal and C-terminal Purifying for fusion protein.The methylating in vitro efficiency of dPspCas13b-RsmB is most of obviously than dCas13a-RsmB high The efficiency that methylates reached 6.67% or more, the highest efficiency that methylates is 23.3%.As dCas13a-RsmB, first Base is apparently higher than elsewhere in the efficiency in some sites and some sites are under the mediation of multiple gRNA to occur Methylate (Fig. 3 C), and 5 gRNA are utilized to target the different location of targeted rna.5 gRNA used can make targeting RNA methylates, but is different position that gRNA methylates and efficiency is all different, compared with dCas13a-RsmB Methylating for dPspCas13b-RsmB is more efficient.And most methylate is happened at targeting in dCas13a-RsmB The centre position of RNA, and most methylate is happened at the N-terminal of targeted rna pair in dPspCas13b-RsmB.So can With think targeted rna methylate efficiency mainly with gRNA pairs of binding site in relation to and the methyl of a certain specific targeted rna Change pattern and gRNA relationships are not very big.
The editor of adenine A to I in embodiment 4dPspCas13b-hADAR tobaccos
DPspCas13b-hADAR by the A on RNA it is reported that can become I, so having carried out the alkali of A to I in tobacco Base editor trial (Cox, D.B.T., J.S.Gootenberg, O.O.Abudayyeh, B.Franklin, M.J.Kellner, J.Joung and F.Zhang(2017)."RNA editing with CRISPR-Cas13."Science 358(6366): 1019-1027).One in the mRNA of GFP is encoded the codon of W amino acid by the reporting system for constructing a dGFP first It is substituted for terminator codon, so the mRNA of dGFP can be carried out normally transcribing but can not be translated.It then will report The blade that announcement system and the carrier for expressing gRNA and dPspCas13b-hADAR inject tobacco simultaneously is tested.Experimental result table Bright, A bases can be compiled as I bases by dPspCas13b-hADAR really, to successfully that the green florescent signal of GFP is extensive Multiple, one has shared 8 different gRNA to restore dGFP green florescent signals (Fig. 5) in tobacco A to I base editors test.
The editor of adenine A to I in embodiment 5dPspCas13b-hADAR protoplasts of Arabidopsis thaliana broken by ultrasonic
DGFP successfully compiled in tobacco after GFP sees green florescent signal, in protoplasts of Arabidopsis thaliana broken by ultrasonic into Capable same dGFP edits experiment, and successfully realizes the editor of dGFP to GFP, used and tobacco in it is same GRNA and similar result (Fig. 6) is obtained.Similar in tobacco as a result, only part cell has green florescent signal, It is considered that this is relatively low caused by expression dGFP reporting systems and dPspCas13b-hADAR and two carriers of gRNA with having used Transformation efficiency it is related.
The foregoing is only a preferred embodiment of the present invention, but scope of protection of the present invention is not limited thereto, Any one skilled in the art in the technical scope disclosed by the present invention, according to the technique and scheme of the present invention and its Inventive concept is subject to equivalent substitution or change, should be covered by the protection scope of the present invention.
Sequence table
<110>University Of Nanchang
<120>A kind of system and method for plant RNA modification and editor
<160> 14
<170> SIPOSequenceListing 1.0
<210> 1
<211> 431
<212> DNA
<213>Artificial sequence ()
<400> 1
ccatggagca tcaccatcac catcaccatc accatcacac catgtacgca acgcttgaag 60
aagccattga cgctgcacgc gaagaatttc ttgcagacaa ccccggcatc gacgccgaag 120
atgcgaatgt gcaacagttc aatgcccaaa aatacgtttt gcaggacggc gacatcatgt 180
ggcaagttga gttttttgcc gacgaagggg aagaaggtga atgtttacct atgcttagcg 240
gtgaagccgc gcaaagtgtt tttgatggcg actatgatga gatagagata cgccaggagt 300
ggcaggaaga gaatacatta catgaatggg acgaggggga atttcagctt gagccaccgc 360
tggataccga ggaaggacgc gcagcagctg atgagtggga tgaacgtgaa aacctgtatt 420
ttcagggatc c 431
<210> 2
<211> 4164
<212> DNA
<213>Artificial sequence ()
<400> 2
ggaaatcttt tcggacataa aagatggtac gaagtgagag ataagaagga tttcaagatt 60
aagagaaagg ttaaggttaa gaggaattac gatggaaaca agtacattct taatatcaat 120
gagaataaca ataaggaaaa aattgataat aataagttca ttaggaaata catcaactat 180
aaaaaaaacg ataatatcct taaggaattt actagaaagt tccatgcagg taacattctt 240
tttaaattaa aaggtaaaga gggaattatc aggatcgaaa ataacgatga ttttcttgag 300
actgaggagg tggtgttgta catcgaggca tatggtaagt cagaaaaatt aaaggcattg 360
ggaatcacaa agaaaaagat catcgacgag gctatcaggc aaggaattac taaggatgat 420
aagaaaatcg agattaaaag gcaggagaac gaggaagaga tcgaaatcga tattagagac 480
gagtatacaa acaagacact taatgattgt tctatcatcc ttagaatcat tgaaaatgat 540
gaacttgaaa ctaagaagtc aatctatgag atctttaaga acattaacat gtcattgtat 600
aagattatcg agaagatcat cgagaacgag actgagaagg tgttcgagaa tagatattac 660
gaagagcatc ttagggagaa attgttgaaa gacgataaaa ttgatgttat tttgacaaat 720
ttcatggaaa ttagagagaa aattaagtct aacttggaaa ttcttggttt cgttaagttc 780
tacttgaatg ttggaggtga caaaaagaaa tctaagaata agaaaatgtt ggttgaaaag 840
attcttaaca tcaatgttga ccttacagtt gaagacattg ctgatttcgt tattaaggaa 900
ttggaatttt ggaacattac taagagaatc gaaaaagtta aaaaagttaa caatgaattt 960
ttggaaaaaa gaaggaatag gacttacatc aagtcatatg ttcttttgga taagcatgag 1020
aaatttaaga tcgaaagaga gaacaagaaa gataaaattg tgaagttttt tgttgagaac 1080
attaagaaca actctatcaa agagaaaatt gagaagattc ttgctgagtt taaaatcgac 1140
gagttgatca aaaagttgga aaaagagttg aagaagggaa actgtgatac tgaaattttc 1200
ggaattttca aaaaacatta caaagttaac ttcgattcta agaaattctc taagaagtct 1260
gatgaggaga aggagcttta caaaatcatc tatagatacc ttaagggaag gattgaaaag 1320
atccttgtta atgagcagaa ggttagattg aagaagatgg agaagattga aatcgagaaa 1380
atccttaatg agtcaatcct ttcagagaag atccttaaga gggttaagca gtacactctt 1440
gagcatatta tgtatcttgg taaattgaga cataatgata tcgatatgac tactgtgaac 1500
actgatgatt tctcaagatt gcatgcaaag gaggagcttg acttggagtt gattactttt 1560
ttcgcttcta ctaatatgga gttgaacaag attttttccc gtgaaaacat caacaacgac 1620
gagaacatcg acttcttcgg tggagacagg gagaaaaact acgttttgga taagaagatt 1680
ttgaactcta agattaagat tatcagagat ttggatttca tcgataacaa gaacaatatc 1740
actaataatt ttattagaaa gttcactaaa attggaacta atgaagcaaa ccgtatttta 1800
cacgctattt ctaaggagag agatcttcag ggaactcaag acgattataa taaggtgatt 1860
aacattatcc aaaatttgaa gatctctgat gaagaggttt ctaaagctct taatttggat 1920
gtggtgttca aggataagaa gaatatcatt actaaaatca acgatatcaa aatttcagag 1980
gagaataaca acgatattaa atacttgcct tctttctcta aggttttgcc agaaattctt 2040
aacctttata gaaataaccc taagaatgag ccattcgata caattgagac agaaaagatt 2100
gttcttaacg cacttattta tgttaacaag gagttgtata agaaattaat tcttgaggat 2160
gaccttgaag agaatgaatc aaaaaatatc ttccttcagg agttgaaaaa gactcttggt 2220
aacattgatg aaattgatga gaacatcatt gagaattatt acaaaaatgc tcagatttca 2280
gcttctaagg gtaataacaa ggctattaaa aaatatcaaa agaaggttat cgaatgctac 2340
atcggttatc ttagaaaaaa ttatgaggaa cttttcgact tttctgactt caaaatgaac 2400
atccaagaaa tcaagaagca aatcaaggat attaacgaca ataagactta cgagagaatt 2460
actgttaaga catctgacaa gactatcgtt atcaatgatg atttcgaata catcatttct 2520
attttcgcac ttcttaattc taatgctgtt atcaataaaa tcaggaatag gttcttcgct 2580
acttcagtgt ggcttaacac atctgagtac cagaatatca tcgatatcct tgatgagatc 2640
atgcagctta atactttgag aaatgaatgt attacagaga actggaactt gaatcttgag 2700
gagttcattc aaaagatgaa ggagatcgag aaggattttg atgattttaa aattcagact 2760
aagaaggaaa tttttaacaa ctattacgag gatatcaaaa acaatattct tacagagttt 2820
aaggatgata ttaacggttg tgatgttctt gaaaagaaat tagagaagat tgttattttt 2880
gatgacgaaa ctaaatttga aattgacaaa aagtctaata ttcttcaaga cgagcagaga 2940
aagttgtcta atatcaataa gaaggacttg aagaagaaag tggatcagta tattaaagat 3000
aaggatcaag aaatcaaatc taaaatcctt tgtaggatca tcttcaactc tgactttttg 3060
aagaagtata aaaaggagat cgataatttg attgaagata tggaatctga aaatgagaac 3120
aagtttcagg aaatctacta tcctaaagag agaaaaaacg aattgtacat ctataagaaa 3180
aacctttttt tgaatattgg taatccaaat tttgataaaa tctacggact tatttctaac 3240
gacattaaga tggcagatgc taagttcctt tttaatatcg atggaaagaa tatcagaaaa 3300
aataaaatct ctgaaatcga cgctattctt aagaacttga acgacaaatt gaacggatat 3360
tctaaggagt ataaggaaaa gtacattaaa aaattgaagg aaaatgatga tttttttgca 3420
aagaacatcc aaaacaaaaa ttacaagtct tttgagaagg attataacag agtgtctgaa 3480
tataaaaaaa tcagggatct tgtggaattt aactatttga ataaaattga atcttacctt 3540
attgatatca actggaaatt agctatccag atggcaagat tcgagaggga catgcactac 3600
atcgtgaacg gacttaggga acttggtatt atcaaattgt ctggatacaa cacaggtatc 3660
tcccgtgcat accctaagag gaatggatct gatggattct acacaacaac tgcttactat 3720
aagttctttg atgaggaatc atataaaaag ttcgagaaga tttgctacgg tttcggtatc 3780
gatctttctg aaaattctga gatcaacaag cctgagaacg aatctattag aaactacatc 3840
tctcattttt atatcgtgag aaatccattc gctgattatt ctatcgctga gcaaatcgat 3900
agagtttcaa atcttttgtc ttactctact aggtataaca actctacata cgcttctgtt 3960
ttcgaagttt ttaagaagga cgttaacctt gattatgatg aacttaagaa aaagttcaag 4020
ttgattggaa ataacgatat cttggagaga ttgatgaaac caaagaaagt ttctgttttg 4080
gaacttgagt cttataactc tgattacatc aaaaacctta ttattgaact tttgacaaag 4140
attgagaata ctaatgatac tctt 4164
<210> 3
<211> 2949
<212> DNA
<213>Artificial sequence ()
<400> 3
atgaatattc cagctttggt tgaaaaccaa aagaaatatt ttggaactta ctcagttatg 60
gctatgttga atgcacaaac tgttcttgat catattcaga aggttgcaga catagagggt 120
gagcagaacg agaacaatga gaacctttgg ttccatccag ttatgtcaca tctttacaat 180
gctaaaaatg gttatgataa gcagccagaa aaaactatgt ttattattga gagacttcaa 240
tcatactttc ctttccttaa gattatggct gaaaaccaga gagaatactc taatggaaag 300
tataagcaaa acagagttga ggttaattca aatgacatat ttgaggtttt gaagagagct 360
ttcggtgttt tgaaaatgta tagagacttg actaatgctt ataaaacata tgaggaaaag 420
ttgaacgacg gatgtgagtt ccttacttct actgagcagc cactttctgg tatgattaac 480
aactattaca ctgttgcttt gagaaatatg aatgaaagat atggttataa aacagaggac 540
cttgctttta ttcaagacaa gagatttaag tttgttaaag atgcttatgg taaaaagaag 600
tcacaagtta acactggttt cttcctttca ttgcaagact ataacggaga tactcaaaaa 660
aagttgcatt tgtctggtgt gggaatagca ttgcttattt gccttttttt ggataagcaa 720
tacattaata tttttttgtc tagattgcct atattttcat cttataatgc tcagtctgaa 780
gaaaggagga ttattattag atcatttgga ataaactcta ttaaattgcc taaagatagg 840
attcattctg aaaagtctaa taagtcagtt gcaatggata tgttgaacga agtgaagagg 900
tgccccgatg aactttttac tactttgtca gctgaaaaac aatctaggtt taggattatt 960
tctgatgatc ataatgaagt tcttatgaag cgttcttctg ataggtttgt tccacttctt 1020
cttcaatata tagactacgg aaagttgttt gaccacatta ggttccacgt taacatggga 1080
aaacttagat atttgttgaa ggctgataag acatgtattg acggtcaaac tagggttagg 1140
gttattgagc agccattgaa cggattcggt agacttgagg aggcagagac tatgaggaag 1200
caagaaaacg gaactttcgg aaattctggt attaggatta gggattttga aaatatgaag 1260
agggatgacg ctaacccagc taactaccca tatattgttg atacatacac acattacatt 1320
cttgagaata acaaggttga gatgtttatt aatgataagg aggactctgc tccattgctt 1380
ccagtgattg aagatgatag atacgttgtt aagactatac cttcatgtag aatgtctact 1440
cttgagattc ccgctatggc ttttcatatg tttctttttg gttctaagaa aacagaaaag 1500
ttgattgttg acgttcataa tagatataag agattgttcc aagctatgca gaaggaggag 1560
gtgacagctg agaacattgc atctttcgga atagcagagt ctgatttgcc tcagaaaatt 1620
ttggatctta tttctggaaa tgcacacggt aaggacgtgg acgctttcat taggttgaca 1680
gttgatgata tgcttactga cactgagaga agaattaaga ggtttaaaga tgataggaaa 1740
tcaattaggt ctgctgacaa caaaatggga aaaaggggat tcaagcaaat ttctactgga 1800
aagttggcag actttttggc taaagacata gttttgtttc aaccatctgt taatgatgga 1860
gagaacaaga ttactggtct taactatcgt attatgcaat ctgctattgc tgtgtacgac 1920
tctggtgacg attacgaggc aaagcaacag ttcaaattaa tgtttgaaaa ggctagattg 1980
attggaaagg gaactactga gcctcaccct ttcttgtata aagtgtttgc aaggtcaatt 2040
cccgctaatg ctgttgagtt ctacgaaagg tatcttattg aaagaaaatt ttatcttact 2100
ggtctttcta atgaaattaa aaagggtaat agagtggacg tgccattcat taggagggac 2160
cagaacaagt ggaaaactcc cgctatgaaa actcttggaa gaatttactc tgaggacctt 2220
ccagttgagc ttcctaggca aatgtttgac aacgagatta aatctcatct taagtcattg 2280
cctcaaatgg agggtattga tttcaataat gcaaatgtga cttatcttat tgctgaatac 2340
atgaaaaggg ttttggatga cgatttccag acattttatc aatggaatag gaattataga 2400
tatatggata tgcttaaggg agagtacgat cgtaagggtt ctcttcagca ctgcttcact 2460
tctgtggagg aaagggaggg tttgtggaag gagagggctt ctaggacaga aaggtatcgt 2520
aagcaagcct ctaataagat aagatctaat cgtcagatga ggaacgcatc atcagaggaa 2580
attgagacta ttcttgataa aagactttct aattcaagga acgaatatca aaaatctgag 2640
aaggttatta gaagatatcg tgttcaagat gcattgcttt tcttgcttgc taaaaagact 2700
ttgacagaat tggctgactt tgatggagaa aggtttaagt tgaaagagat aatgccagac 2760
gcagagaagg gaattttgtc tgaaattatg cctatgtcat ttacatttga gaaaggtgga 2820
aagaagtaca ctattacatc tgagggaatg aaacttaaaa attacggaga ttttttcgtt 2880
cttgcatctg ataagagaat tggtaatttg cttgagttgg ttggttctga tattgtttca 2940
aaggaagat 2949
<210> 4
<211> 993
<212> DNA
<213>Artificial sequence ()
<400> 4
ttcgaggaat attacaagaa acaagggata gtgaaagctg aagagtggga tttgttcatg 60
gagattcttc gtaagccttt acctgctgcg tttagggtta actccaatgg ccaattttgc 120
gatgagatta tatcgatctt ggagaatgac tttatgaaat cacttcaggc tgaggccata 180
gaaggtggtg aattggaggc tattaagccc ttgccttggt atccaaagaa tctcgcttgg 240
cattctaatt tttctcgaaa ggagataaga aaaaatcaga cacttgagag gtttcatgag 300
tttctgaagt tagaaaatga agttggaaat attactaggc aggaagctgt tagcatggta 360
cctcctctct tcctagacgt acatccagat catttcgtac ttgacatgtg tgctgcaccg 420
ggttccaaaa catttcagct gcttgagatt atacatgaag catcagaacc aggatctctt 480
cctaatggat tggtggtggc taatgatgtt gattttaaaa gatctaacct tctcattcac 540
caaacaaaga gaatgtgcac atccaacttg atagtgacaa atcatgaagg gcaacagttt 600
cctggttgcc gtttgaacaa atcccgagct tctgagaaag gaataagtga aaatatgcct 660
attaatcaac ttgcctttga ccgtgttcta tgcgatgttc cgtgcagtgg tgatggtaca 720
ctgcgcaagg ctccagatat ctggcgcaaa tggaactctg gtatgggcaa tggacttcat 780
agccttcaga ttattcttgc tatgagaggt ttatctctgt tgaaagttgg tgggaagatg 840
atatactcaa cctgctcaat gaacccagtg gaggatgaag ctgttgttgc tgagattcta 900
aggaggtgtg gagactctgt tgaactttta gatgtttccg ataaacttcc tgaacttata 960
cgaagaccag gacttaaggc atggaaggtg cgt 993
<210> 5
<211> 190
<212> DNA
<213>Artificial sequence ()
<400> 5
taatacgact cactataggg ccagtgaatt cgagctcggt acccggggat cctctagaaa 60
tatggattac ttggtagaac agcaatctac tcgacctgca ggcatgaagc ttggcgtaat 120
catggtcata gctgtttcct gtgtttatcc gctcacaatt ccacacaaca tacgagccgg 180
aagcataaag 190
<210> 6
<211> 293
<212> DNA
<213>Artificial sequence ()
<400> 6
cattcggagt ttttgtatct tgtttcatag tttgtcccag gattagaatg attaggcatc 60
gaaccttcaa gaatttgatt gaataaaaca tcttcattct taagatatga agataatctt 120
caaaaggccc ctgggaatct gaaagaagag aagcaggccc atttatatgg gaaagaacaa 180
tagtatttct tatataggcc catttaagtt gaaaacaatc ttcaaaagtc ccacatcgct 240
tagataagaa aacgaagctg agtttatata cagctagagt cgaagtagtg att 293
<210> 7
<211> 883
<212> DNA
<213>Artificial sequence ()
<400> 7
tcaacatggt ggagcacgac acacttgtct actccaaaaa tatcaaagat acagtctcag 60
aagaccaaag ggcaattgag acttttcaac aaagggtaat atccggaaac ctcctcggat 120
tccattgccc agctatctgt cactttattg tgaagatagt ggaaaaggaa ggtggctcct 180
acaaatgcca tcattgcgat aaaggaaagg ccatcgttga agatgcctct gccgacagtg 240
gtcccaaaga tggaccccca cccacgagga gcatcgtgga aaaagaagac gttccaacca 300
cgtcttcaaa gcaagtggat tgatgtgata acatggtgga gcacgacaca cttgtctact 360
ccaaaaatat caaagataca gtctcagaag accaaagggc aattgagact tttcaacaaa 420
gggtgatatc cggaaacctc ctcggattcc attgcccagc tatctgtcac tttattgtga 480
agatagtgga aaaggaaggt ggctcctaca aatgccatca ttgcgataaa ggaaaggcca 540
tcgttgaaga tgcctctgcc gacagtggtc ccaaagatgg acccccaccc acgaggagca 600
tcgtggaaaa agaagacgtt ccaaccacgt cttcaaagca agtggattga tgtgatatct 660
ccactgacgt aagggatgac gcacaatccc actatccttc gcaagaccct tcctctatat 720
aaggaagttc atttcatttg gagaggacct cgacctcaac acaacatata caaaacaaac 780
gaatctcaag caatcaagca ttctacttct attgcagcaa tttaaatcat ttcttttaaa 840
gcaaaagcaa ttttctgaaa attttcacca tttacgaacg ata 883
<210> 8
<211> 284
<212> DNA
<213>Artificial sequence ()
<400> 8
tgattgatcg atagagctcg aatttccccg atcgttcaaa catttggcaa taaagtttct 60
taagattgaa tcctgttgcc ggtcttgcga tgattatcat ataatttctg ttgaattacg 120
ttaagcatgt aataattaac atgtaatgca tgacgttatt tatgagatgg gtttttatga 180
ttagagtccc gcaattatac atttaatacg cgatagaaaa caaaatatag cgcgcaaact 240
aggataaatt atcgcgcgcg gtgtcatcta tgttactaga tcgg 284
<210> 9
<211> 5301
<212> DNA
<213>Artificial sequence ()
<400> 9
gccccaaaga agaagcggaa ggtcggtatc cacggagtcc cagcagccgg aaatcttttc 60
ggacataaaa gatggtacga agtgagagat aagaaggatt tcaagattaa gagaaaggtt 120
aaggttaaga ggaattacga tggaaacaag tacattctta atatcaatga gaataacaat 180
aaggaaaaaa ttgataataa taagttcatt aggaaataca tcaactataa aaaaaacgat 240
aatatcctta aggaatttac tagaaagttc catgcaggta acattctttt taaattaaaa 300
ggtaaagagg gaattatcag gatcgaaaat aacgatgatt ttcttgagac tgaggaggtg 360
gtgttgtaca tcgaggcata tggtaagtca gaaaaattaa aggcattggg aatcacaaag 420
aaaaagatca tcgacgaggc tatcaggcaa ggaattacta aggatgataa gaaaatcgag 480
attaaaaggc aggagaacga ggaagagatc gaaatcgata ttagagacga gtatacaaac 540
aagacactta atgattgttc tatcatcctt agaatcattg aaaatgatga acttgaaact 600
aagaagtcaa tctatgagat ctttaagaac attaacatgt cattgtataa gattatcgag 660
aagatcatcg agaacgagac tgagaaggtg ttcgagaata gatattacga agagcatctt 720
agggagaaat tgttgaaaga cgataaaatt gatgttattt tgacaaattt catggaaatt 780
agagagaaaa ttaagtctaa cttggaaatt cttggtttcg ttaagttcta cttgaatgtt 840
ggaggtgaca aaaagaaatc taagaataag aaaatgttgg ttgaaaagat tcttaacatc 900
aatgttgacc ttacagttga agacattgct gatttcgtta ttaaggaatt ggaattttgg 960
aacattacta agagaatcga aaaagttaaa aaagttaaca atgaattttt ggaaaaaaga 1020
aggaatagga cttacatcaa gtcatatgtt cttttggata agcatgagaa atttaagatc 1080
gaaagagaga acaagaaaga taaaattgtg aagttttttg ttgagaacat taagaacaac 1140
tctatcaaag agaaaattga gaagattctt gctgagttta aaatcgacga gttgatcaaa 1200
aagttggaaa aagagttgaa gaagggaaac tgtgatactg aaattttcgg aattttcaaa 1260
aaacattaca aagttaactt cgattctaag aaattctcta agaagtctga tgaggagaag 1320
gagctttaca aaatcatcta tagatacctt aagggaagga ttgaaaagat ccttgttaat 1380
gagcagaagg ttagattgaa gaagatggag aagattgaaa tcgagaaaat ccttaatgag 1440
tcaatccttt cagagaagat ccttaagagg gttaagcagt acactcttga gcatattatg 1500
tatcttggta aattgagaca taatgatatc gatatgacta ctgtgaacac tgatgatttc 1560
tcaagattgc atgcaaagga ggagcttgac ttggagttga ttactttttt cgcttctact 1620
aatatggagt tgaacaagat tttttcccgt gaaaacatca acaacgacga gaacatcgac 1680
ttcttcggtg gagacaggga gaaaaactac gttttggata agaagatttt gaactctaag 1740
attaagatta tcagagattt ggatttcatc gataacaaga acaatatcac taataatttt 1800
attagaaagt tcactaaaat tggaactaat gaagcaaacc gtattttaca cgctatttct 1860
aaggagagag atcttcaggg aactcaagac gattataata aggtgattaa cattatccaa 1920
aatttgaaga tctctgatga agaggtttct aaagctctta atttggatgt ggtgttcaag 1980
gataagaaga atatcattac taaaatcaac gatatcaaaa tttcagagga gaataacaac 2040
gatattaaat acttgccttc tttctctaag gttttgccag aaattcttaa cctttataga 2100
aataacccta agaatgagcc attcgataca attgagacag aaaagattgt tcttaacgca 2160
cttatttatg ttaacaagga gttgtataag aaattaattc ttgaggatga ccttgaagag 2220
aatgaatcaa aaaatatctt ccttcaggag ttgaaaaaga ctcttggtaa cattgatgaa 2280
attgatgaga acatcattga gaattattac aaaaatgctc agatttcagc ttctaagggt 2340
aataacaagg ctattaaaaa atatcaaaag aaggttatcg aatgctacat cggttatctt 2400
agaaaaaatt atgaggaact tttcgacttt tctgacttca aaatgaacat ccaagaaatc 2460
aagaagcaaa tcaaggatat taacgacaat aagacttacg agagaattac tgttaagaca 2520
tctgacaaga ctatcgttat caatgatgat ttcgaataca tcatttctat tttcgcactt 2580
cttaattcta atgctgttat caataaaatc aggaataggt tcttcgctac ttcagtgtgg 2640
cttaacacat ctgagtacca gaatatcatc gatatccttg atgagatcat gcagcttaat 2700
actttgagaa atgaatgtat tacagagaac tggaacttga atcttgagga gttcattcaa 2760
aagatgaagg agatcgagaa ggattttgat gattttaaaa ttcagactaa gaaggaaatt 2820
tttaacaact attacgagga tatcaaaaac aatattctta cagagtttaa ggatgatatt 2880
aacggttgtg atgttcttga aaagaaatta gagaagattg ttatttttga tgacgaaact 2940
aaatttgaaa ttgacaaaaa gtctaatatt cttcaagacg agcagagaaa gttgtctaat 3000
atcaataaga aggacttgaa gaagaaagtg gatcagtata ttaaagataa ggatcaagaa 3060
atcaaatcta aaatcctttg taggatcatc ttcaactctg actttttgaa gaagtataaa 3120
aaggagatcg ataatttgat tgaagatatg gaatctgaaa atgagaacaa gtttcaggaa 3180
atctactatc ctaaagagag aaaaaacgaa ttgtacatct ataagaaaaa cctttttttg 3240
aatattggta atccaaattt tgataaaatc tacggactta tttctaacga cattaagatg 3300
gcagatgcta agttcctttt taatatcgat ggaaagaata tcagaaaaaa taaaatctct 3360
gaaatcgacg ctattcttaa gaacttgaac gacaaattga acggatattc taaggagtat 3420
aaggaaaagt acattaaaaa attgaaggaa aatgatgatt tttttgcaaa gaacatccaa 3480
aacaaaaatt acaagtcttt tgagaaggat tataacagag tgtctgaata taaaaaaatc 3540
agggatcttg tggaatttaa ctatttgaat aaaattgaat cttaccttat tgatatcaac 3600
tggaaattag ctatccagat ggcaagattc gagagggaca tgcactacat cgtgaacgga 3660
cttagggaac ttggtattat caaattgtct ggatacaaca caggtatctc ccgtgcatac 3720
cctaagagga atggatctga tggattctac acaacaactg cttactataa gttctttgat 3780
gaggaatcat ataaaaagtt cgagaagatt tgctacggtt tcggtatcga tctttctgaa 3840
aattctgaga tcaacaagcc tgagaacgaa tctattagaa actacatctc tcatttttat 3900
atcgtgagaa atccattcgc tgattattct atcgctgagc aaatcgatag agtttcaaat 3960
cttttgtctt actctactag gtataacaac tctacatacg cttctgtttt cgaagttttt 4020
aagaaggacg ttaaccttga ttatgatgaa cttaagaaaa agttcaagtt gattggaaat 4080
aacgatatct tggagagatt gatgaaacca aagaaagttt ctgttttgga acttgagtct 4140
tataactctg attacatcaa aaaccttatt attgaacttt tgacaaagat tgagaatact 4200
aatgatactc tttctggatc tgagactcct ggaacttctg agtctgctac tcctgagtct 4260
ttcgaggaat attacaagaa acaagggata gtgaaagctg aagagtggga tttgttcatg 4320
gagattcttc gtaagccttt acctgctgcg tttagggtta actccaatgg ccaattttgc 4380
gatgagatta tatcgatctt ggagaatgac tttatgaaat cacttcaggc tgaggccata 4440
gaaggtggtg aattggaggc tattaagccc ttgccttggt atccaaagaa tctcgcttgg 4500
cattctaatt tttctcgaaa ggagataaga aaaaatcaga cacttgagag gtttcatgag 4560
tttctgaagt tagaaaatga agttggaaat attactaggc aggaagctgt tagcatggta 4620
cctcctctct tcctagacgt acatccagat catttcgtac ttgacatgtg tgctgcaccg 4680
ggttccaaaa catttcagct gcttgagatt atacatgaag catcagaacc aggatctctt 4740
cctaatggat tggtggtggc taatgatgtt gattttaaaa gatctaacct tctcattcac 4800
caaacaaaga gaatgtgcac atccaacttg atagtgacaa atcatgaagg gcaacagttt 4860
cctggttgcc gtttgaacaa atcccgagct tctgagaaag gaataagtga aaatatgcct 4920
attaatcaac ttgcctttga ccgtgttcta tgcgatgttc cgtgcagtgg tgatggtaca 4980
ctgcgcaagg ctccagatat ctggcgcaaa tggaactctg gtatgggcaa tggacttcat 5040
agccttcaga ttattcttgc tatgagaggt ttatctctgt tgaaagttgg tgggaagatg 5100
atatactcaa cctgctcaat gaacccagtg gaggatgaag ctgttgttgc tgagattcta 5160
aggaggtgtg gagactctgt tgaactttta gatgtttccg ataaacttcc tgaacttata 5220
cgaagaccag gacttaaggc atggaaggtg cgtaaaaggc cggcggccac gaaaaaggcc 5280
ggccaggcaa aaaagaaaaa g 5301
<210> 10
<211> 4152
<212> DNA
<213>Artificial sequence ()
<400> 10
atggactata aggaccacga cggagactac aaggatcatg atattgatta caaagacgat 60
gacgataagg ccccaaagaa gaagcggaag gtcggtatcc acggagtccc agcagccaat 120
attccagctt tggttgaaaa ccaaaagaaa tattttggaa cttactcagt tatggctatg 180
ttgaatgcac aaactgttct tgatcatatt cagaaggttg cagacataga gggtgagcag 240
aacgagaaca atgagaacct ttggttccat ccagttatgt cacatcttta caatgctaaa 300
aatggttatg ataagcagcc agaaaaaact atgtttatta ttgagagact tcaatcatac 360
tttcctttcc ttaagattat ggctgaaaac cagagagaat actctaatgg aaagtataag 420
caaaacagag ttgaggttaa ttcaaatgac atatttgagg ttttgaagag agctttcggt 480
gttttgaaaa tgtatagaga cttgactaat gcttataaaa catatgagga aaagttgaac 540
gacggatgtg agttccttac ttctactgag cagccacttt ctggtatgat taacaactat 600
tacactgttg ctttgagaaa tatgaatgaa agatatggtt ataaaacaga ggaccttgct 660
tttattcaag acaagagatt taagtttgtt aaagatgctt atggtaaaaa gaagtcacaa 720
gttaacactg gtttcttcct ttcattgcaa gactataacg gagatactca aaaaaagttg 780
catttgtctg gtgtgggaat agcattgctt atttgccttt ttttggataa gcaatacatt 840
aatatttttt tgtctagatt gcctatattt tcatcttata atgctcagtc tgaagaaagg 900
aggattatta ttagatcatt tggaataaac tctattaaat tgcctaaaga taggattcat 960
tctgaaaagt ctaataagtc agttgcaatg gatatgttga acgaagtgaa gaggtgcccc 1020
gatgaacttt ttactacttt gtcagctgaa aaacaatcta ggtttaggat tatttctgat 1080
gatcataatg aagttcttat gaagcgttct tctgataggt ttgttccact tcttcttcaa 1140
tatatagact acggaaagtt gtttgaccac attaggttcc acgttaacat gggaaaactt 1200
agatatttgt tgaaggctga taagacatgt attgacggtc aaactagggt tagggttatt 1260
gagcagccat tgaacggatt cggtagactt gaggaggcag agactatgag gaagcaagaa 1320
aacggaactt tcggaaattc tggtattagg attagggatt ttgaaaatat gaagagggat 1380
gacgctaacc cagctaacta cccatatatt gttgatacat acacacatta cattcttgag 1440
aataacaagg ttgagatgtt tattaatgat aaggaggact ctgctccatt gcttccagtg 1500
attgaagatg atagatacgt tgttaagact ataccttcat gtagaatgtc tactcttgag 1560
attcccgcta tggcttttca tatgtttctt tttggttcta agaaaacaga aaagttgatt 1620
gttgacgttc ataatagata taagagattg ttccaagcta tgcagaagga ggaggtgaca 1680
gctgagaaca ttgcatcttt cggaatagca gagtctgatt tgcctcagaa aattttggat 1740
cttatttctg gaaatgcaca cggtaaggac gtggacgctt tcattaggtt gacagttgat 1800
gatatgctta ctgacactga gagaagaatt aagaggttta aagatgatag gaaatcaatt 1860
aggtctgctg acaacaaaat gggaaaaagg ggattcaagc aaatttctac tggaaagttg 1920
gcagactttt tggctaaaga catagttttg tttcaaccat ctgttaatga tggagagaac 1980
aagattactg gtcttaacta tcgtattatg caatctgcta ttgctgtgta cgactctggt 2040
gacgattacg aggcaaagca acagttcaaa ttaatgtttg aaaaggctag attgattgga 2100
aagggaacta ctgagcctca ccctttcttg tataaagtgt ttgcaaggtc aattcccgct 2160
aatgctgttg agttctacga aaggtatctt attgaaagaa aattttatct tactggtctt 2220
tctaatgaaa ttaaaaaggg taatagagtg gacgtgccat tcattaggag ggaccagaac 2280
aagtggaaaa ctcccgctat gaaaactctt ggaagaattt actctgagga ccttccagtt 2340
gagcttccta ggcaaatgtt tgacaacgag attaaatctc atcttaagtc attgcctcaa 2400
atggagggta ttgatttcaa taatgcaaat gtgacttatc ttattgctga atacatgaaa 2460
agggttttgg atgacgattt ccagacattt tatcaatgga ataggaatta tagatatatg 2520
gatatgctta agggagagta cgatcgtaag ggttctcttc agcactgctt cacttctgtg 2580
gaggaaaggg agggtttgtg gaaggagagg gcttctagga cagaaaggta tcgtaagcaa 2640
gcctctaata agataagatc taatcgtcag atgaggaacg catcatcaga ggaaattgag 2700
actattcttg ataaaagact ttctaattca aggaacgaat atcaaaaatc tgagaaggtt 2760
attagaagat atcgtgttca agatgcattg cttttcttgc ttgctaaaaa gactttgaca 2820
gaattggctg actttgatgg agaaaggttt aagttgaaag agataatgcc agacgcagag 2880
aagggaattt tgtctgaaat tatgcctatg tcatttacat ttgagaaagg tggaaagaag 2940
tacactatta catctgaggg aatgaaactt aaaaattacg gagatttttt cgttcttgca 3000
tctgataaga gaattggtaa tttgcttgag ttggttggtt ctgatattgt ttcaaaggaa 3060
gattctggat ctgagactcc tggaacttct gagtctgcta ctcctgagtc tttcgaggaa 3120
tattacaaga aacaagggat agtgaaagct gaagagtggg atttgttcat ggagattctt 3180
cgtaagcctt tacctgctgc gtttagggtt aactccaatg gccaattttg cgatgagatt 3240
atatcgatct tggagaatga ctttatgaaa tcacttcagg ctgaggccat agaaggtggt 3300
gaattggagg ctattaagcc cttgccttgg tatccaaaga atctcgcttg gcattctaat 3360
ttttctcgaa aggagataag aaaaaatcag acacttgaga ggtttcatga gtttctgaag 3420
ttagaaaatg aagttggaaa tattactagg caggaagctg ttagcatggt acctcctctc 3480
ttcctagacg tacatccaga tcatttcgta cttgacatgt gtgctgcacc gggttccaaa 3540
acatttcagc tgcttgagat tatacatgaa gcatcagaac caggatctct tcctaatgga 3600
ttggtggtgg ctaatgatgt tgattttaaa agatctaacc ttctcattca ccaaacaaag 3660
agaatgtgca catccaactt gatagtgaca aatcatgaag ggcaacagtt tcctggttgc 3720
cgtttgaaca aatcccgagc ttctgagaaa ggaataagtg aaaatatgcc tattaatcaa 3780
cttgcctttg accgtgttct atgcgatgtt ccgtgcagtg gtgatggtac actgcgcaag 3840
gctccagata tctggcgcaa atggaactct ggtatgggca atggacttca tagccttcag 3900
attattcttg ctatgagagg tttatctctg ttgaaagttg gtgggaagat gatatactca 3960
acctgctcaa tgaacccagt ggaggatgaa gctgttgttg ctgagattct aaggaggtgt 4020
ggagactctg ttgaactttt agatgtttcc gataaacttc ctgaacttat acgaagacca 4080
ggacttaagg catggaaggt gcgtaaaagg ccggcggcca cgaaaaaggc cggccaggca 4140
aaaaagaaaa ag 4152
<210> 11
<211> 717
<212> DNA
<213>Artificial sequence ()
<400> 11
gtgagcaagg gcgaggagct gttcaccggg gtggtgccca tcctggtcga gctggacggc 60
gacgtaaacg gccacaagtt cagcgtgtcc ggcgagggcg agggcgatgc cacctacggc 120
aagctgaccc tgaagttcat ctgcaccacc ggcaagctgc ccgtgccctg gcccaccctc 180
gtgaccacct tcacctacgg cgtgcagtgc ttcagccgct accccgacca catgaagcag 240
cacgacttct tcaagtccgc catgcccgaa ggctacgtcc aggagcgcac catcttcttc 300
aaggacgacg gcaactacaa gacccgcgcc gaggtgaagt tcgagggcga caccctggtg 360
aaccgcatcg agctgaaggg catcgacttc aaggaggacg gcaacatcct ggggcacaag 420
ctggagtaca actacaacag ccacaacgtc tatatcatgg ccgacaagca gaagaacggc 480
atcaaggtga acttcaagat ccgccacaac atcgaggacg gcagcgtgca gctcgccgac 540
cactaccagc agaacacccc catcggcgac ggccccgtgc tgctgcccga caaccactac 600
ctgagcaccc agtccgccct gagcaaagac cccaacgaga agcgcgatca catggtcctg 660
ctggagttcg tgaccgccgc cgggatcact cacggcatgg acgagctgta caagtga 717
<210> 12
<211> 2424
<212> DNA
<213>Artificial sequence ()
<400> 12
atgggaagag gaggaagaca tagaggtcgt actcagagaa aagatttcaa agaaagcaga 60
gagaatgttt ggaaacgacc caaatccgat gcttccgttg atggttccga caacgccgta 120
ccggaacaaa aacccacttg ggaacctatt gtcactgtta accctaactt cgaggaatat 180
tacaagaaac aagggatagt gaaagctgaa gagtgggatt tgttcatgga gattcttcgt 240
aagcctttac ctgctgcgtt tagggttaac tccaatggcc aattttgcga tgagattata 300
tcgatcttgg agaatgactt tatgaaatca cttcaggctg aggccataga aggtggtgaa 360
ttggaggcta ttaagccctt gccttggtat ccaaagaatc tcgcttggca ttctaatttt 420
tctcgaaagg agataagaaa aaatcagaca cttgagaggt ttcatgagtt tctgaagtta 480
gaaaatgaag ttggaaatat tactaggcag gaagctgtta gcatggtacc tcctctcttc 540
ctagacgtac atccagatca tttcgtactt gacatgtgtg ctgcaccggg ttccaaaaca 600
tttcagctgc ttgagattat acatgaagca tcagaaccag gatctcttcc taatggattg 660
gtggtggcta atgatgttga ttttaaaaga tctaaccttc tcattcacca aacaaagaga 720
atgtgcacat ccaacttgat agtgacaaat catgaagggc aacagtttcc tggttgccgt 780
ttgaacaaat cccgagcttc tgagaaagga ataagtgaaa atatgcctat taatcaactt 840
gcctttgacc gtgttctatg cgatgttccg tgcagtggtg atggtacact gcgcaaggct 900
ccagatatct ggcgcaaatg gaactctggt atgggcaatg gacttcatag ccttcagatt 960
attcttgcta tgagaggttt atctctgttg aaagttggtg ggaagatgat atactcaacc 1020
tgctcaatga acccagtgga ggatgaagct gttgttgctg agattctaag gaggtgtgga 1080
gactctgttg aacttttaga tgtttccgat aagcttcctg aacttatacg aagaccagga 1140
cttaaggcat ggaaggtgcg tgataaaggt gggtggttta cttcttacaa agatgttcca 1200
caaaaccgga gaggtggagt tcttgtgagc atgtttcctt ctgggaaata cctcaaggac 1260
tcaactgaaa ccacggaaaa gaacgagaat ggtgatgtta atggctgtga ggatggactc 1320
aaagaaacag atatttctgt ggtggatgct actcctgaag aacaagctga ggaagtctct 1380
gatcttccac ttgaacgttg catgaggata atacctcatg atcagaacac cggagccttc 1440
ttcattgcgg tccttcaaaa aaaatctccc ttaccagaat ttcaggagaa accaaatacg 1500
aaaaggaact caactgctaa gtctactgac tcgacagaaa agtctccgag taaagaatct 1560
gttgttacag tggatgctgg tgtaccagat gagagtgcag tggagaaagt tattgaagca 1620
gattcaaaca ttgagaaaaa tgatagcttg gagcctgaga agaaaatcac agaaggagaa 1680
agcatcacgg aagataaaga ggccaattcg agtaatgcgg gaggcaagag aaaagtaccg 1740
atgcaaggga agtggaaagg ctttgaccca gttgttttcg tgaaagatga aacagtaatc 1800
aatggcatca aggaattcta cggtatcaaa gatgaatcat ttccattaca tggtcatctc 1860
gtggcaagaa acaccgacac aagcagcgtt aagaggattt actatgtttc aaaatcagtt 1920
aaggaagttc ttcagttgaa ttttgcagtc gggcagcagc ttaagatcgc ttctgttggc 1980
ctcaaaatgt ttgagagaca atcggcaaaa gaaggttcaa gcacgctgtg cccattccgt 2040
atatcatccg agggactacc tgtgattctt ccatacatta ccaaacaagt actttatact 2100
ccaatggcag acttcaaact tctcctgcaa gacaaatcaa tcaagtttca cgattttgtc 2160
aatccacagt tggcccagaa agcaactgac cttgttatgg gaagctgcgt ggtgattctc 2220
agcgatggtg aagtaccggt gaaagcggat gcatcaacaa ttgccatcag ttgctggaga 2280
gggaaggcta gtttggctgt tatggccact gtcgcagatt gccaggagct gctagagaga 2340
tttgccgaga aaacaccaaa aacagaaggt ggttcggtaa atggaagcaa cggcgattcg 2400
gacggtccac tagctatgga gact 2424
<210> 13
<211> 1155
<212> DNA
<213>Artificial sequence ()
<400> 13
cagcttcatt tgccacaggt tcttgctgat gctgtgtcta ggcttgtgtt gggtaagttt 60
ggtgatttga cagataattt ctcttcacct cacgctagga gaaaagtgct tgctggagtg 120
gtgatgacta ctggaactga cgtgaaggac gcaaaggtga tttctgtttc tactggtggt 180
aagtgcatta acggagagta catgtcagat aggggattgg ctcttaatga ttgtcatgct 240
gaaattattt ctagaagatc tttgcttagg ttcttgtata cacagttgga actttatctt 300
aataataagg acgatcaaaa aaggtctatt tttcagaagt ctgagagggg aggttttcgt 360
cttaaggaaa acgttcagtt tcacttgtat atttctactt caccatgtgg tgacgctagg 420
attttttcac cacacgagcc tattcttgag gagcccgctg atagacaccc aaatcgtaag 480
gctaggggac agcttaggac taaaattgaa tctggacaag gaactattcc agttagatct 540
aatgcatcaa ttcagacttg ggatggtgtg ttgcaaggtg agaggctttt gactatgtca 600
tgctcagaca agatagctag gtggaacgtg gtgggtattc aaggttcttt gttgtctatt 660
tttgttgaac caatttattt ttcttctatt attttgggat ctctttatca tggtgatcat 720
ctttctaggg ctatgtatca aagaatttct aatattgaag atttgccacc actttatact 780
cttaataagc ctcttctttc tggaatttca aacgctgagg ctaggcaacc cggtaaggct 840
ccaaacttct ctgtgaactg gactgtggga gattcagcta tagaggtgat taacgcaact 900
actggtaagg atgagcttgg tagggcttct aggttgtgca agcacgcatt gtactgtagg 960
tggatgaggg ttcacggtaa ggttccatct cacttgttga ggtctaagat tacaaaacct 1020
aacgtttacc acgagtcaaa gttggctgct aaggagtacc aagctgcaaa ggcaaggctt 1080
ttcactgcat tcattaaggc tggtcttgga gcttgggtgg agaagccaac tgaacaagat 1140
cagttttctt tgaca 1155
<210> 14
<211> 718
<212> DNA
<213>Artificial sequence ()
<400> 14
atggtgagca agggcgagga gctgttcacc ggggtggtgc ccatcctggt cgagctggac 60
ggcgacgtaa acggccacaa gttcagcgtg tccggcgagg gcgagggcga tgccacctac 120
ggcaagctga ccctgaagtt catctgcacc accggcaagc tgcccgtgcc ctagcccacc 180
ctcgtgacca ccttcaccta cggcgtgcag tgcttcagcc gctaccccga ccacatgaag 240
cagcacgact tcttcaagtc cgccatgccc gaaggctacg tccaggagcg caccatcttc 300
ttcaaggacg acggcaacta caagacccgc gccgaggtga agttcgaggg cgacaccctg 360
gtgaaccgca tcgagctgaa gggcatcgac ttcaaggagg acggcaacat cctggggcac 420
aagctggagt acaactacaa cagccacaac gtctatatca tggccgacaa gcagaagaac 480
ggcatcaagg tgaacttcaa gatccgccac aacatcgagg acggcagcgt gcagctcgcc 540
gaccactacc agcagaacac ccccatcggc gacggccccg tgctgctgcc cgacaaccac 600
tacctgagca cccagtccgc cctgagcaaa gaccccaacg agaagcgcga tcacatggtc 660
ctgctggagt tcgtgaccgc cgccgggatc actcacggca tggacgagct gtacaagt 718

Claims (8)

1. a kind of system of plant RNA modification and editor, it is characterised in that:There is RNA modifications and editor's work(including targeted rna The recombinant nucleic acid enzyme of energy and its gRNA of targeted rna.
2. the system of a kind of plant RNA modification and editor according to claim 1, it is characterised in that:The recombinant nucleic acid Enzyme be by the nuclease dCas13a and dPspCas13b without cleavage activity of targeted rna respectively with methyl transferase domains and Adenine deaminase is merged, the recombinant nucleic acid enzyme dCas13a-RsmB with methyl transferase activity of formation with DPspCas13b-RsmB and have the active recombinant nucleic acid enzyme dPspCas13b-hADAR of adenine deaminase.
3. a kind of method of plant RNA modification and editor, it is characterised in that:It is repaiied using plant RNA as claimed in claim 1 or 2 Decorations and editing system, the enzyme of corresponding function is directed on corresponding RNA, realizes modification and the editor of plant RNA.
4. the method for a kind of plant RNA modification and editor as claimed in claim 3, it is characterised in that:Utilize the recombinant nuclear Sour enzyme carries out the deamination of cytosine base to methylate with adenine base at target site, the final m5C first for realizing plant RNA Baseization is modified and A is converted to I.
5. the method for a kind of plant RNA modification and editor as claimed in claim 4, it is characterised in that:The plant RNA is repaiied Decorations method includes establishing RNAm5C to methylate the vitro expression systems of modification;The vitro expression systems utilize prokaryotic expression system The expression of external albumen is carried out, the fusion egg of the dCas13a-RsmB with His and Msb labels and dPspCas13b-RsmB is obtained In vain, and methylating in vitro reaction system is established.
6. the method for a kind of plant RNA modification and editor as claimed in claim 4, it is characterised in that:The plant RNA is repaiied Decorations method includes establishing RNAm5C to methylate the internal expression system of modification;The internal expression system is utilized respectively AtU6 startups The expression of son driving gRNA, the expression of dCas13a-RsmB and dPspCas13b-RsmB is driven using 35S promoter, in plant Pointed decoration experiment is carried out in vivo.
7. the method for a kind of plant RNA modification and editor as claimed in claim 4, it is characterised in that:The volume of the plant RNA The method of collecting includes the reporting system for the dGFP for establishing premature translation termination, the identification for its fixed point editor.
8. the method for a kind of plant RNA modification and editor as claimed in claim 7, it is characterised in that:The volume of the plant RNA Volume method is by the A base transitions at the sites Premature stop codon TAG that are catalyzed on the RNA of dGFP for hypoxanthine I, I will be with C base pairings during translation, and to make terminator codon TAG revert to TGG, GFP albumen is normally turned over It translates;Transient expression is carried out in plant, by observing the green fluorescence of GFP, to judge the effect of RNA fixed point editors.
CN201810144264.2A 2018-02-12 2018-02-12 A kind of system and method for plant RNA modification and editor Pending CN108559738A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810144264.2A CN108559738A (en) 2018-02-12 2018-02-12 A kind of system and method for plant RNA modification and editor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810144264.2A CN108559738A (en) 2018-02-12 2018-02-12 A kind of system and method for plant RNA modification and editor

Publications (1)

Publication Number Publication Date
CN108559738A true CN108559738A (en) 2018-09-21

Family

ID=63531214

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810144264.2A Pending CN108559738A (en) 2018-02-12 2018-02-12 A kind of system and method for plant RNA modification and editor

Country Status (1)

Country Link
CN (1) CN108559738A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110157695A (en) * 2019-01-25 2019-08-23 南昌大学 A kind of system and method for plant RNA m5C methylation modification
CN110511286A (en) * 2019-08-29 2019-11-29 上海科技大学 A kind of RNA base editor's molecule
CN110564726A (en) * 2019-08-15 2019-12-13 南昌大学 strawberry long-chain non-coding RNA-FRILAIR and application thereof in fruit ripening
CN112481259A (en) * 2020-11-24 2021-03-12 南昌大学 Cloning and application of two sweet potato U6 gene promoters IbU6
EP3906042A4 (en) * 2019-01-04 2023-03-15 The University of Chicago Systems and methods for modulating rna

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105132409A (en) * 2015-09-02 2015-12-09 中国科学院北京基因组研究所 Library construction method for RNA 5mC bisulfite sequencing and application of library
WO2016205764A1 (en) * 2015-06-18 2016-12-22 The Broad Institute Inc. Novel crispr enzymes and systems
CN106868031A (en) * 2017-02-24 2017-06-20 北京大学 A kind of cloning process of multiple sgRNA series parallels expression based on classification assembling and application
WO2017219027A1 (en) * 2016-06-17 2017-12-21 The Broad Institute Inc. Type vi crispr orthologs and systems
CN107557455A (en) * 2017-09-15 2018-01-09 国家纳米科学中心 A kind of detection method of the nucleic acid specific fragment based on CRISPR Cas13a

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016205764A1 (en) * 2015-06-18 2016-12-22 The Broad Institute Inc. Novel crispr enzymes and systems
CN105132409A (en) * 2015-09-02 2015-12-09 中国科学院北京基因组研究所 Library construction method for RNA 5mC bisulfite sequencing and application of library
WO2017219027A1 (en) * 2016-06-17 2017-12-21 The Broad Institute Inc. Type vi crispr orthologs and systems
CN106868031A (en) * 2017-02-24 2017-06-20 北京大学 A kind of cloning process of multiple sgRNA series parallels expression based on classification assembling and application
CN107557455A (en) * 2017-09-15 2018-01-09 国家纳米科学中心 A kind of detection method of the nucleic acid specific fragment based on CRISPR Cas13a

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
DAVID B. T. COX等: "RNA editing with CRISPR-Cas13", 《SCIENCE》 *
NCBI: "GenBank登录号:AEC07299.1", 《NCBI GENBANK》 *
OMAR O. ABUDAYYEH等: "RNA targeting with CRISPR–Cas13", 《NATURE》 *
V NARRY KIM: "RNA-targeting CRISPR comes of age", 《NATURE BIOTECHNOLOGY》 *
XUEAN CUI等: "5-Methylcytosine RNA Methylation in Arabidopsis Thaliana", 《MOLECULAR PLANT》 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3906042A4 (en) * 2019-01-04 2023-03-15 The University of Chicago Systems and methods for modulating rna
CN110157695A (en) * 2019-01-25 2019-08-23 南昌大学 A kind of system and method for plant RNA m5C methylation modification
CN110564726A (en) * 2019-08-15 2019-12-13 南昌大学 strawberry long-chain non-coding RNA-FRILAIR and application thereof in fruit ripening
CN110564726B (en) * 2019-08-15 2022-06-14 南昌大学 Strawberry long-chain non-coding RNA-FRILAIR and application thereof in fruit ripening
CN110511286A (en) * 2019-08-29 2019-11-29 上海科技大学 A kind of RNA base editor's molecule
CN110511286B (en) * 2019-08-29 2022-08-02 上海科技大学 RNA base editing molecule
CN112481259A (en) * 2020-11-24 2021-03-12 南昌大学 Cloning and application of two sweet potato U6 gene promoters IbU6
CN112481259B (en) * 2020-11-24 2022-09-16 南昌大学 Cloning and application of two sweet potato U6 gene promoters IbU6

Similar Documents

Publication Publication Date Title
CN108559738A (en) A kind of system and method for plant RNA modification and editor
Citovsky et al. Subcellular localization of interacting proteins by bimolecular fluorescence complementation in planta
KR101540496B1 (en) Bacterial toxin vaccine
CA2374497A1 (en) Method for generating split, non-transferable genes that are able to express an active protein product
KR102435811B1 (en) A Method of mass production of carbonic anhydrase in plant
EP1059354A2 (en) Sequence-determined DNA fragments and corresponding polypeptides encoded thereby
Davies et al. Recombinant baculovirus vectors expressing glutathione–S–transferase fusion proteins
CN111542610A (en) Novel strategy for precise genome editing
Hashemolhosseini et al. Characterization of the helper proteins for the assembly of tail fibers of coliphages T4 and lambda
CN106471124B (en) Tonoplast proton/sugar antiporter and its use to increase sucrose concentration in plant sucrose storage organs
AU781815B2 (en) Isolation and characterization of a fiber-specific beta-tubulin promoter from cotton
AU748910B2 (en) Novel synthetic genes for plant gums
WO2000011196A1 (en) Polynucleotide sequences
US20040096938A1 (en) Method for generating split, non-transferable genes that are able to express an active protein product
JP2001515724A (en) Microbial genes of secreted β-glucuronidase, gene products and uses thereof
US20090070895A1 (en) Vacuole targeting peptide and nucleic acid
CA2261186A1 (en) Expression and secretion of heterologous polypeptides from freshwater caulobacter
CA3087218A1 (en) Biological synthesis of amino acid chains for preparation of peptides and proteins
CN110157695A (en) A kind of system and method for plant RNA m5C methylation modification
CN114686456A (en) Base editing system based on bimolecular deaminase complementation and application thereof
KR20220066111A (en) Methods and compositions for DNA base editing
KR101297355B1 (en) Recombinant vector for increasing tolerance to paraquat, salt, and drought stresses, uses thereof and transformed plants thereby
CN114057893A (en) Myristoylation polypeptide for encoding mitochondrial localization and preparation method and application thereof
Janakirama Functional characterization of the HUA2 gene family in Arabidopsis thaliana
Sabelli et al. Molecular cloning and characterisation of a maize cDNA for a homologue of the large subunit of the eukaryotic initiation factor 3 (eIF3)

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20180921

RJ01 Rejection of invention patent application after publication