CN110511286B - RNA base editing molecule - Google Patents

RNA base editing molecule Download PDF

Info

Publication number
CN110511286B
CN110511286B CN201910807276.3A CN201910807276A CN110511286B CN 110511286 B CN110511286 B CN 110511286B CN 201910807276 A CN201910807276 A CN 201910807276A CN 110511286 B CN110511286 B CN 110511286B
Authority
CN
China
Prior art keywords
artificial sequence
lys
leu
seq
ala
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910807276.3A
Other languages
Chinese (zh)
Other versions
CN110511286A (en
Inventor
池天
黄行许
刘亚京
毛少帅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ShanghaiTech University
Original Assignee
ShanghaiTech University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ShanghaiTech University filed Critical ShanghaiTech University
Priority to CN201910807276.3A priority Critical patent/CN110511286B/en
Publication of CN110511286A publication Critical patent/CN110511286A/en
Application granted granted Critical
Publication of CN110511286B publication Critical patent/CN110511286B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/87Introduction of foreign genetic material using processes not otherwise provided for, e.g. co-transformation
    • C12N15/90Stable introduction of foreign DNA into chromosome
    • C12N15/902Stable introduction of foreign DNA into chromosome using homologous recombination
    • C12N15/907Stable introduction of foreign DNA into chromosome using homologous recombination in mammalian cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/16Hydrolases (3) acting on ester bonds (3.1)
    • C12N9/22Ribonucleases RNAses, DNAses
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/78Hydrolases (3) acting on carbon to nitrogen bonds other than peptide bonds (3.5)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y305/00Hydrolases acting on carbon-nitrogen bonds, other than peptide bonds (3.5)
    • C12Y305/04Hydrolases acting on carbon-nitrogen bonds, other than peptide bonds (3.5) in cyclic amidines (3.5.4)
    • C12Y305/04004Adenosine deaminase (3.5.4.4)
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Biochemistry (AREA)
  • Biotechnology (AREA)
  • General Health & Medical Sciences (AREA)
  • Microbiology (AREA)
  • Medicinal Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Plant Pathology (AREA)
  • Biophysics (AREA)
  • Mycology (AREA)
  • Cell Biology (AREA)
  • Peptides Or Proteins (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

The invention relates to the field of biotechnology, in particular to a fusion protein which can be an RNA base editing molecule. The invention provides a fusion protein, which comprises a dCas13Rx fragment, wherein an ADAR2DD fragment is inserted into a loop3 site of the dCas13Rx fragment in a chimeric way. The invention realizes accurate RNA positioning capacity by utilizing the protein dCasRx capable of specifically targeting RNA in the CRISPR system, embeds unbiased RNA double-stranded deaminase ADAR into the dCasRx on the premise of not changing the targeting activity of the dCasRx, not only blocks the random off-target activity of the ADAR on double-stranded RNA, but also realizes the RNA base editing purpose of a specific site under the mediation of the dCasRx, not only has higher base editing efficiency, but also depends on the specificity of CasRx more, and only needs shorter gRNA for guidance, so the accuracy is higher, and the protein dCasRx has the advantage of adult treatment because the volume is small, can be packaged into AAV.

Description

RNA base editing molecule
Technical Field
The invention relates to the field of biotechnology, in particular to a fusion protein which can be an RNA base editing molecule.
Background
With the progress of RNA base editing technology, RNA-dependent Adenosine Deaminase (ADAR) has been able to carry out highly efficient adenine (a) to hypoxanthine (I) mutations at the site of interest (Woolf et al, 1995); however, over-expressed ADAR causes severe off-target of transcriptome RNA (valley cillo-Viejo et al, 2018), thus limiting the application of ADAR-based RNA editing techniques. Therefore, it is still a difficult point to realize precise, efficient and low off-target base editing by using the CasRx protein mediated ADAR of the target RNA in the CRISPR system.
Single-base editing can BE realized at the DNA and RNA level, but the currently reported DNA base editing tools ABE and BE3 depend on a CRISPR/Cas9 system and have PAM limitation, so that all sites cannot BE covered (Rees and Liu, 2018). The RNA base editing system has no PAM dependency, has a wider editing range, and can recode genetic information at the RNA level, resulting in changes in protein function and RNA processing. In the case of compensatory responses that may be caused by DNA mutations, RNA editing techniques can compensate for this gap. Secondly, modulation of the relative abundance of alternatively spliced transcripts can be optimally achieved by manipulation at the RNA level (Konermann et al, 2018). Importantly, changes in RNA levels are reversible and therefore safer than DNA editing.
RNA site-directed base editing techniques were first reported in 1995 (Woolf et al, 1995). Various RNA base editing techniques developed at present use guide RNA to guide ADAR deaminase to a target site to achieve site-directed editing (egglington et al, 2011). However, these methods have various limitations and cannot achieve high efficiency, accuracy and convenience at the same time. For example, in 2018, Science reports that efficient RNA site-directed editing is achieved by using Cas13b protein capable of specifically targeting RNA in CRISPR system to mediate ADAR, but its off-target effect is severe, and the optimized V2 version reduces off-target effect but also greatly affects editing efficiency (Cox et al, 2017). And Cas13b requires a longer (40-50nt) guideRNA, which has inherent disadvantages.
The current RNA base editing technology is divided into two major categories, one is to edit a target site by using ADAR expressed in cells under the mediation of chemically modified gRNA, but not all cells express ADAR, and the background expression amount of ADAR in different cells is different, which will affect the editing efficiency (Merkle et al, 2019). Another category requires overexpression of ADAR, but direct overexpression of ADAR can cause severe transcriptome-level off-target (egglington et al, 2011).
Disclosure of Invention
In view of the above-described drawbacks of the prior art, it is an object of the present invention to provide a base editing molecule for solving the problems of the prior art.
To achieve the above and other related objects, the present invention provides a fusion protein comprising dCas13Rx fragment, wherein ADAR2DD fragment is inserted into the loop3 site of dCas13Rx fragment.
In some embodiments of the invention, the fusion protein comprises, in order from N-terminus to C-terminus, a first dCas13Rx fragment, an ADAR2DD fragment, and a second dCas13Rx fragment.
In some embodiments of the invention, the amino acid sequence of the first dCas13Rx fragment comprises:
a) an amino acid sequence shown as SEQ ID NO. 1; or the like, or, alternatively,
b) an amino acid sequence having a sequence similarity of 80% or more to SEQ ID No.1 and having the function of the amino acid sequence defined in a), preferably having dCasRx targeting activity;
and/or the amino acid sequence of the second dCas13Rx fragment comprises:
e) an amino acid sequence shown as SEQ ID NO. 3; or the like, or, alternatively,
f) an amino acid sequence having a sequence similarity of 80% or more to SEQ ID NO.3 and having the function of the amino acid sequence defined in e), preferably having dCasRx targeting activity; .
In some embodiments of the invention, the amino acid sequence of the ADAR2DD fragment comprises:
c) an amino acid sequence shown as SEQ ID NO. 2; or the like, or, alternatively,
d) an amino acid sequence having a sequence similarity of 80% or more to SEQ ID NO.2 and having the function of the amino acid sequence defined in c); preferably having adenosine deaminase activity.
In some embodiments of the invention, the fusion protein further comprises an NLS fragment, preferably, the N-terminus of the first dCas13Rx fragment, between the first dCas13Rx fragment and ADAR2DD fragment, between the ADAR2DD fragment and the second dCas13Rx fragment, and the C-terminus of the second dCas13Rx fragment are provided with the NLS fragment, preferably, the NLS fragment comprises an amino acid sequence as shown in SEQ ID No. 4.
In some embodiments of the invention, the amino acid sequence of the fusion protein comprises the amino acid sequence shown as SEQ ID No. 5.
In another aspect, the present invention provides an isolated polynucleotide encoding the fusion protein described above.
In another aspect, the invention provides a construct comprising the isolated polynucleotide described above.
In another aspect, the present invention provides an expression system comprising the above-described construct or a polynucleotide having an exogenous sequence integrated into its genome.
In some embodiments of the invention, the host cell of the expression system is selected from eukaryotic cells or prokaryotic cells, preferably from mouse cells, more preferably from mouse brain neuroma cells, more preferably from N2a cells.
In another aspect, the present invention provides the use of the fusion protein described above, the isolated polynucleotide described above, the construct described above or the expression system described above in gene editing.
In some embodiments of the invention, the use is in particular in gene editing in eukaryotes.
In another aspect, the invention provides a base editing system, which includes the fusion protein, and the base editing system further includes sgRNA.
In another aspect, the present invention provides a gene editing method, including: the gene is edited by the above-mentioned fusion protein or the above-mentioned base editing system.
Drawings
FIG. 1 is a schematic diagram of Vx, wherein the upper diagram is a schematic diagram of a Vx carrier, and the lower diagram is a schematic diagram of a Vx structure.
FIG. 2 is a fluorescent reporter system design.
FIG. 3 is a graph of the position of A within the deep-seq sequencing range.
FIG. 4 shows FACS results of efficiency of Vx editing on the reporting system.
FIG. 5 shows the fluorescent results of efficiency of Vx editing on a reporter system under guidance of sgRNA of 30nt length
FIG. 6 is the deep-seq sequencing analysis of Vx on a reporter system (heat map).
FIG. 7 is an edit of Vx flanking non-target A on the reporting system.
FIG. 8a shows the results of the fluorescence ratios of efficiencies compiled by Vx on the reporter system under different lengths of sgRNA guidance.
FIG. 8b is the sequencing result of efficiency of Vx editing on the reporter system under guidance of different length sgRNAs.
FIG. 9 shows the result of dep-seq sequencing analysis of Vx at target site editing A45 guided by sgRNAs of different lengths.
FIG. 10a shows the fluorescence results of the editing efficiency of Vx under sgRNA guidance of 22nt length of different mismatches C.
FIG. 10b shows the result of deep-seq sequencing analysis of target site A45 with Vx guided by sgRNA of 22nt length of different mismatches C.
FIG. 11 shows the sequencing analysis of deep-seq for Vx targeting different bases on both sides of A.
FIG. 12a is the fluorescence scale results of the efficiency of Vx editing at the reporter system targeting different sites.
FIG. 12b is the sequencing analysis result of the edit efficiency deep-seq of Vx in targeting A in different reporting systems.
FIG. 13 shows the result of editing on endogenous transcripts
FIG. 14 shows the whole transcriptome off-target for V1, V2, and Vx at 50nt sgRNA guide.
Detailed Description
In order to make the objects, technical solutions and advantageous technical effects of the present invention more clear, the present invention is further described in detail with reference to the following embodiments. It should be understood that the embodiments described in this specification are only for the purpose of explaining the present invention and are not intended to limit the present invention.
For the sake of brevity, only some numerical ranges are explicitly disclosed herein. However, any lower limit may be combined with any upper limit to form ranges not explicitly recited; and any lower limit may be combined with any other lower limit to form a range not explicitly recited, and any upper limit may be combined with any other upper limit to form a range not explicitly recited. Also, although not explicitly recited, each point or individual numerical value between the endpoints of a range is encompassed within that range. Thus, each point or individual value can form a range not explicitly recited as its own lower or upper limit in combination with any other point or individual value or in combination with other lower or upper limits.
In the description herein, it is to be noted that, unless otherwise specified, "above" and "below" are inclusive, and "one or more" of "plural" means two or more.
The above summary of the present invention is not intended to describe each disclosed embodiment or every implementation of the present invention. The following description more particularly exemplifies illustrative embodiments. At various points throughout this application, guidance is provided through a list of embodiments that can be used in various combinations. In each instance, the list is merely a representative group and should not be construed as exhaustive.
The present inventors have conducted extensive exploratory studies and provided a fusion protein, which is a novel base editing molecule, and which can include a dCas13Rx fragment and an ADAR2DD fragment, can achieve efficient editing of a > I in a sgRNA target region, and has higher efficiency and specificity, thereby completing the present invention.
The invention provides a fusion protein, which comprises a dCas13Rx fragment, wherein an ADAR2DD fragment is inserted into a loop3 site of the dCas13Rx fragment in a chimeric mode. The specific position of the loop3 site of the dCas13Rx fragment is known to those skilled in the art (DOI: https:// doi.org/10.1016/j.cell.2018.09.001), for example, the position can be the position between 558Asn and 587Met of dCas13Rx fragment, the 559-586 amino acid fragment is replaced by an ADAR2DD fragment, the ADAR2DD fragment is chimeric between dCasRx to reduce the off-target effect of ADAR, and base editing is performed at the target site under the guide of sgRNA, so that the base editing efficiency of the target site can be increased.
In the fusion protein provided by the invention, the loop3 site of the dCas13Rx fragment is inserted with the ADAR2DD fragment in a chimeric way, so that the dCas13Rx fragment can comprise a first dCas13Rx fragment positioned at the N-terminal of the ADAR2DD fragment and a second dCas13Rx fragment positioned at the C-terminal of the ADAR2DD fragment, and the fusion protein sequentially comprises the first dCas13Rx fragment, the ADAR2DD fragment and the second dCas13Rx fragment from the N-terminal to the C-terminal.
In the fusion protein provided by the present invention, the amino acid sequence of the first dCas13Rx fragment may include: a) an amino acid sequence shown as SEQ ID NO. 1; or b) an amino acid sequence having a sequence similarity of 80% or more to SEQ ID NO.1 and having the function of the amino acid sequence defined in a). Specifically, the amino acid sequence in b) specifically refers to: the amino acid sequence shown as SEQ ID No.1 is obtained by substituting, deleting or adding one or more (specifically 1-50, 1-30, 1-20, 1-10, 1-5, 1-3, 1, 2 or 3) amino acids, or by adding one or more (specifically, 1 to 50, 1 to 30, 1 to 20, 1 to 10, 1 to 5, 1 to 3, 1, 2, or 3) amino acids to the N-terminus and/or C-terminus, and has the function of the polypeptide fragment with the amino acid shown as SEQ ID No.1, for example, it may be that the first dCas13Rx fragment still has the targeting activity of dCasRx after being complexed with the second dCas13Rx fragment, and more particularly may be capable of targeting RNA under the direction of an appropriate gRNA. The amino acid sequence in b) may have more than 80%, 85%, 90%, 93%, 95%, 97%, or 99% similarity to SEQ ID No. 1.
IEKKKSFAKGMGVKSTLVSGSKVYMTTFAEGSDARLEKIVEGDSIRSVNEGEAFSAEMADKNAGYKIGNAKFSHPKGYAVVANNPLYTGPVQQDMLGLKETLEKRYFGESADGNDNICIQVIHNILDIEKILAEYITNAAYAVNNISGLDKDIIGFGKFSTVYTYDEFKDPEHHRAAFNNNDKLINAIKAQYDEFDNFLDNPRLGYFGQAFFSKEGRNYIINYGNECYDILALLSGLAHWVVANNEEESRISRTWLYNLDKNLDNEYISTLNYLYDRITNELTNSFSKNSAANVNYIAETLGINPAEFAEQYFRFSIMKEQKNLGFNITKLREVMLDRKDMSEIRKNHKVFDSIRTKVYTMMDFVIYRYYIEEDAKVAAANKSLPDNEKSLSEKDIFVINLRGSFNDDQKDALYYDEANRIWRKLENIMHNIKEFRGNKTREYKKKDAPRLPRILPAGRDVSAFSKLMYALTMFLDGKEINDLLTTLINKFDNIQSFLKVMPLIGVNAKFVEEYAFFKDSAKIADELRLIKSFARMGEPIADARRAMYIDAIRILGTN(SEQ ID NO.1)
In the fusion protein provided by the present invention, the amino acid sequence of the second dCas13Rx fragment may include: e) an amino acid sequence shown as SEQ ID NO. 3; or, f) an amino acid sequence having a sequence similarity of 80% or more to SEQ ID NO.3 and having the function of the amino acid sequence defined in e). Specifically, the amino acid sequence in f) specifically refers to: the amino acid sequence shown as SEQ ID No.3 is obtained by substituting, deleting or adding one or more (specifically 1-50, 1-30, 1-20, 1-10, 1-5, 1-3, 1, 2 or 3) amino acids, or by adding one or more (specifically, 1 to 50, 1 to 30, 1 to 20, 1 to 10, 1 to 5, 1 to 3, 1, 2, or 3) amino acids to the N-terminus and/or C-terminus, and has the function of the polypeptide fragment having the amino acid shown in SEQ ID No.3, for example, it may be that the first dCas13Rx fragment still has the targeting activity of dCasRx after being complexed with the second dCas13Rx fragment, and more particularly may be capable of targeting RNA under the direction of an appropriate gRNA. The amino acid sequence in f) may have more than 80%, 85%, 90%, 93%, 95%, 97%, or 99% similarity to SEQ ID No. 3.
MRNFIINNVISNKRFHYLIRYGDPAHLHEIAKNEAVVKFVLGRIADIQKKQGQNGKNQIDRYYETCIGKDKGKSVSEKVDALTKIITGMNYDQFDKKRSVIEDTGRENAEREKFKKIISLYLTVIYHILKNIVNINARYVIGFHCVERDAQLYKEKGYDINLKKLEEKGFSSVTKLCAGIDETAPDKRKDVEKEMAERAKESIDSLESANPKLYANYIKYSDEKKAEEFTRQINREKAKTALNAYLRNTKWNVIIREDLLRIDNKTCTLFANKAVALEVARYVHAYINDIAEVNSYFQLYHYIMQRIIMNERYEKSSGKVSEYFDAVNDEKKYNDRLLKLLCVPFGYCIPRFKNLSIEALFDRNEAAKFDKEKKKVSGNS(SEQ ID NO.3)
In the fusion protein provided by the present invention, the ADAR2DD fragment generally refers to the deamidase domain of ADAR, and the amino acid sequence of the ADAR2DD fragment may include: c) an amino acid sequence shown as SEQ ID NO. 2; or d) an amino acid sequence having a sequence similarity of 80% or more to SEQ ID NO.2 and having the function of the amino acid sequence defined in c). Specifically, the amino acid sequence in d) specifically refers to: the amino acid sequence shown as SEQ ID No.2 is obtained by substituting, deleting or adding one or more (specifically 1-50, 1-30, 1-20, 1-10, 1-5, 1-3, 1, 2 or 3) amino acids, or by adding one or more (specifically, 1 to 50, 1 to 30, 1 to 20, 1 to 10, 1 to 5, or 1 to 3, 1, 2, or 3) amino acids to the N-terminus and/or C-terminus, and has the function of the polypeptide fragment with the amino acid shown as SEQ ID No.2, for example, may have adenosine deaminase activity, and more specifically may be a function of editing adenine (A) into hypoxanthine (I). The amino acid sequence in d) may have more than 80%, 85%, 90%, 93%, 95%, 97%, or 99% similarity to SEQ ID No. 2.
QLHLPQVLADAVSRLVLGKFGDLTDNFSSPHARRKVLAGVVMTTGTDVKDAKVISVSTGTKCINGEYMSDRGLALNDCHAEIISRRSLLRFLYTQLELYLNNKDDQKRSIFQKSERGGFRLKENVQFHLYISTSPCGDARIFSPHEPILEEPADRHPNRKARGQLRTKIESGQGTIPVRSNASIQTWDGVLQGERLLTMSCSDKIARWNVVGIQGSLLSIFVEPIYFSSIILGSLYHGDHLSRAMYQRISNIEDLPPLYTLNKPLLSGISNAEARQPGKAPNFSVNWTVGDSAIEVINATTGKDELGRASRLCKHALYCRWMRVHGKVPSHLLRSKITKPNVYHESKLAAKEYQAAKARLFTAFIKAGLGAWVEKPTEQDQFSLT(SEQ ID NO.2)
In the fusion protein provided by the invention, the substitution, deletion or addition can be conservative amino acid substitution. The "conservative amino acid substitution" may specifically refer to the case where an amino acid residue is substituted with another amino acid residue having a similar side chain. Families of amino acid residues with similar side chains should be known to those skilled in the art and may be, for example, families including, but not limited to, basic side chains (e.g., lysine, arginine, histidine), acidic side chains (e.g., aspartic acid, glutamic acid), uncharged polar side chains (e.g., glycine, asparagine, glutamine, serine, threonine, tyrosine, cysteine), nonpolar side chains (e.g., alanine, valine, leucine, isoleucine, proline, phenylalanine, methionine, tryptophan) isoleucine) and aromatic side chains (e.g., tyrosine, phenylalanine, tryptophan, histidine). More specifically, conservative amino acid substitutions may include, but are not limited to, the particulars listed in the following table, where the numbers in table 1 (amino acid similarity matrix) indicate the degree of similarity between two amino acids, and where the numbers are greater than or equal to 0, they are considered conservative amino acid substitutions, and table 2 is an exemplary scheme of conservative amino acid substitutions.
TABLE 1
C G P S A T D E N Q H K R V M I L F Y W
W -8 -7 -6 -2 -6 -5 -7 -7 -4 -5 -3 -3 2 -6 -4 -5 -2 0 0 17
Y 0 -5 -5 -3 -3 -3 -4 -4 -2 -4 0 -4 -5 -2 -2 -1 -1 7 10
F -4 -5 -5 -3 -4 -3 -6 -5 -4 -5 -2 -5 -4 -1 0 1 2 9
L -6 -4 -3 -3 -2 -2 -4 -3 -3 -2 -2 -3 -3 2 4 2 6
I -2 -3 -2 -1 -1 0 -2 -2 -2 -2 -2 -2 -2 4 2 5
M -5 -3 -2 -2 -1 -1 -3 -2 0 -1 -2 0 0 2 6
V -2 -1 -1 -1 0 0 -2 -2 -2 -2 -2 -2 -2 4
R -4 -3 0 0 -2 -1 -1 -1 0 1 2 3 6
K -5 -2 -1 0 -1 0 0 0 1 1 0 5
H -3 -2 0 -1 -1 -1 1 1 2 3 6
Q -5 -1 0 -1 0 -1 2 2 1 4
N -4 0 -1 1 0 0 2 1 2
E -5 0 -1 0 0 0 3 4
D -5 1 -1 0 0 0 4
T -2 0 0 1 1 3
A -2 1 1 1 2
S 0 1 1 1
P -3 -1 6
G -3 5
C 12
TABLE 2
Figure BDA0002184024730000071
Figure BDA0002184024730000081
In the fusion protein provided by the invention, the fusion protein can also comprise an NLS (nuclear localization sequence) fragment. The NLS fragment may be located N-terminal to the first dCas13Rx fragment, between the first dCas13Rx fragment and the ADAR2DD fragment, between the ADAR2DD fragment and the second dCas13Rx fragment, or C-terminal to the second dCas13Rx fragment. The NLS fragment can comprise an amino acid sequence shown as SEQ ID NO. 4.
KRTADGSEFESPKKKRKV(SEQ ID NO.4)
In a specific embodiment of the present invention, the amino acid sequence of the fusion protein comprises the amino acid sequence shown as SEQ ID NO. 5.
MKRTADGSEFESPKKKRKVGSIEKKKSFAKGMGVKSTLVSGSKVYMTTFAEGSDARLEKIVEGDSIRSVNEGEAFSAEMADKNAGYKIGNAKFSHPKGYAVVANNPLYTGPVQQDMLGLKETLEKRYFGESADGNDNICIQVIHNILDIEKILAEYITNAAYAVNNISGLDKDIIGFGKFSTVYTYDEFKDPEHHRAAFNNNDKLINAIKAQYDEFDNFLDNPRLGYFGQAFFSKEGRNYIINYGNECYDILALLSGLAHWVVANNEEESRISRTWLYNLDKNLDNEYISTLNYLYDRITNELTNSFSKNSAANVNYIAETLGINPAEFAEQYFRFSIMKEQKNLGFNITKLREVMLDRKDMSEIRKNHKVFDSIRTKVYTMMDFVIYRYYIEEDAKVAAANKSLPDNEKSLSEKDIFVINLRGSFNDDQKDALYYDEANRIWRKLENIMHNIKEFRGNKTREYKKKDAPRLPRILPAGRDVSAFSKLMYALTMFLDGKEINDLLTTLINKFDNIQSFLKVMPLIGVNAKFVEEYAFFKDSAKIADELRLIKSFARMGEPIADARRAMYIDAIRILGTNGSKRTADGSEFESPKKKRKVGSQLHLPQVLADAVSRLVLGKFGDLTDNFSSPHARRKVLAGVVMTTGTDVKDAKVISVSTGTKCINGEYMSDRGLALNDCHAEIISRRSLLRFLYTQLELYLNNKDDQKRSIFQKSERGGFRLKENVQFHLYISTSPCGDARIFSPHEPILEEPADRHPNRKARGQLRTKIESGQGTIPVRSNASIQTWDGVLQGERLLTMSCSDKIARWNVVGIQGSLLSIFVEPIYFSSIILGSLYHGDHLSRAMYQRISNIEDLPPLYTLNKPLLSGISNAEARQPGKAPNFSVNWTVGDSAIEVINATTGKDELGRASRLCKHALYCRWMRVHGKVPSHLLRSKITKPNVYHESKLAAKEYQAAKARLFTAFIKAGLGAWVEKPTEQDQFSLTGSKRTADGSEFESPKKKRKVGSMRNFIINNVISNKRFHYLIRYGDPAHLHEIAKNEAVVKFVLGRIADIQKKQGQNGKNQIDRYYETCIGKDKGKSVSEKVDALTKIITGMNYDQFDKKRSVIEDTGRENAEREKFKKIISLYLTVIYHILKNIVNINARYVIGFHCVERDAQLYKEKGYDINLKKLEEKGFSSVTKLCAGIDETAPDKRKDVEKEMAERAKESIDSLESANPKLYANYIKYSDEKKAEEFTRQINREKAKTALNAYLRNTKWNVIIREDLLRIDNKTCTLFANKAVALEVARYVHAYINDIAEVNSYFQLYHYIMQRIIMNERYEKSSGKVSEYFDAVNDEKKYNDRLLKLLCVPFGYCIPRFKNLSIEALFDRNEAAKFDKEKKKVSGNSGSKRTADGSEFESPKKKRKV(SEQ ID NO.5)
In a second aspect, the present invention provides an isolated polynucleotide encoding a fusion protein provided by the first aspect of the present invention.
In a third aspect, the invention provides a construct comprising an isolated polynucleotide provided in the second aspect of the invention. The construct can be generally constructed by inserting the isolated polynucleotide into a suitable expression vector, which can be selected by one of skill in the art, for example, including but not limited to bacterial expression vectors, fungal expression vectors, animal expression vectors (e.g., insect, drosophila, nematode, fish, zebrafish, mammalian, mouse, rat, rabbit, pig, monkey, human, etc.), plant expression vectors, and the like.
In a fourth aspect, the invention provides an expression system comprising a construct or genome provided by the third aspect of the invention and integrated therein an exogenous isolated polynucleotide provided by the second aspect of the invention. The expression system can be a host cell that can express the fusion protein as described above, which can cooperate with the sgRNA such that the fusion protein can be targeted to the target region, enabling base editing of the target region. In another embodiment of the present invention, the host cell may be a eukaryotic cell or a prokaryotic cell, more specifically a mouse cell, a human cell, etc., more specifically a mouse brain neuroma cell, a human kidney epithelial cell line, etc., more specifically N2a cell, 293T, etc.
In a fifth aspect, the present invention provides the use of the fusion protein provided in the first aspect of the present invention, or the isolated polynucleotide provided in the second aspect of the present invention, or the construct provided in the third aspect of the present invention, or the expression system provided in the fourth aspect of the present invention in gene editing, preferably in gene expression of eukaryotes, particularly metazoan, particularly, metazoan, including, but not limited to, mice, etc. The use may specifically be, but is not limited to, repair of a mutation in the gene from G to A, restoration of translation of an inactive protein resulting in a stop codon from a single base mutation, alteration of an RNA clip, and the like. In one embodiment of the present invention, the Gene to be edited may be PRKN (Gene ID: 5071), ADGRV1(Gene ID: 84059), AHI1(Gene ID: 54806), APC (Gene ID: 324), COL3A1(Gene ID: 1281), DNAH5(Gene ID: 7), MECP2(Gene ID: 4204), MYBPC3(Gene ID: 4607), BRCA1(Gene ID: BMPR 2659), BMPR2(Gene ID: BRCA 1672), or the like.
In a sixth aspect, the invention provides a base editing system, including the fusion protein provided in the first aspect, the base editing system further including sgRNA. One skilled in the art can select an appropriate sgRNA targeting the target region based on the target editing region of the gene. For example, the sequence of the sgRNA can be at least partially complementary to the target region, so that it can cooperate with the fusion protein to localize the fusion protein to the target region, and allow base editing of the target region, which can be in particular adenine deamination, i.e. the editing of adenine (a) to hypoxanthine (I). The base editing system provided by the invention can realize editing under a shorter sgRNA system, and still has excellent editing activity under the condition that the sgRNA has a certain mismatching distance, for example, under the condition that the length of a nucleotide sequence of the sgRNA is not more than 25nt, good editing activity is still realized at each mismatching distance (for example, 3-18 nt), and further, for example, under the condition that the length of the nucleotide sequence of the sgRNA is not more than 22nt, the mismatching distance below 18nt still has editing activity, and the editing efficiency can reach about 35% -40% at the mismatching distance of 7 nt-9 nt. In a specific embodiment of the invention, the sgRNA can target genes such as PRKN, ADGRV1, AHI1, APC 22, COL3a1, DNAH5, MECP2, MYBPC3, BRCA1, BMPR2, and the like.
The seventh aspect of the present invention provides a base editing method comprising: the gene editing is performed by the fusion protein provided by the first aspect of the present invention or the base editing system provided by the sixth aspect of the present invention. For example, the gene editing method may include: culturing the expression system provided by the fourth aspect of the present invention under appropriate conditions to express the fusion protein, which can base-edit the target region in the presence of the sgRNA targeting the target region to which it is mated. Methods for providing conditions under which the sgRNA exists should be known to those skilled in the art, and for example, an expression system capable of expressing the sgRNA, which may be a host cell including an expression vector containing a polynucleotide encoding the sgRNA or a host cell having the polynucleotide encoding the sgRNA integrated in a chromosome, may be cultured under appropriate conditions. In one embodiment of the invention, the gene editing is in vitro gene editing.
The fusion protein provided by the invention has the advantages that the CasRx in the CRISPR system based on the fusion protein can target RNA under the guide of RNA, and the CasRx has only 954 amino acids, is the smallest one of the types VI-A, VI-B and VI-C of the current CRISPR system, and has great value for realizing adult treatment by packaging AAV. In addition, the CasRx protein can still retain activity after deleting some amino acid fragments, so that the ADAR is inserted into the CasRx protein, and the chimeric expression dCasRx (1-558) -ADAR-dCasRx (587-966) protein still has the RNA targeting activity of CasRx and deamination of the ADAR mutation target site. Through the CasRx which is a CasRx protein capable of targeting RNA in a CRISPR system, ADAR is fused in the middle position of a dCas13Rx protein, the fusion protein is guided by a gRNA, the target site location is realized by utilizing the precise targeting function of dCas13Rx on the RNA, and the deamination mutation of bases A to I is carried out on the ADAR wrapped in the middle of the CasRx. In addition, the inventor finds that dCasRx wrapped at two ends of the ADAR protein can block the combination of the ADAR to non-target RNA, so that the non-target off-target effect is reduced, and the aim of not only targeting RNA but also reducing RNA base editing off-target is achieved by virtue of a CRISPR system.
Compared with a base editing method for directly over-expressing ADAR, the specificity of a new generation base editing system depending on CRISPR is higher; the gRNA is directly expressed by plasmid, does not need chemical synthesis, and has lower cost and more flexibility. Compared with the V1 version of dCas13b-ADAR system (Cox et al, 2017), the fusion protein provided by the invention (dCasRx-ADAR RNA (Vx) base editing system) is low off-target, the Vx system editing efficiency is higher compared to previous editing systems, and Vx is more dependent on sgRNA with DR sequence, suggesting that targeting is achieved by relying on dCasRx. In addition, V1 and V2 can be guided by sgrnas without DR, which indicates that the grnas mainly form a double-stranded structure with target RNA to recruit ADAR to perform editing, but not dCas13b, so that the fusion protein and the corresponding base editing system provided by the present invention can edit a target site under the guidance of shorter grnas (22 nt).
In conclusion, the invention realizes accurate RNA positioning capacity by utilizing the protein dCasRx capable of specifically targeting RNA in the CRISPR system, and embeds unbiased RNA double-strand deaminase ADAR into the dCasRx on the premise of not changing the targeting activity of dCasRx, thereby not only blocking the random off-target activity of the ADAR on double-strand RNA, but also realizing the purpose of RNA base editing of a specific site under the mediation of dCasRx, having higher base editing efficiency, being more dependent on the specificity of CasRx, and only needing shorter gRNA guide, so that the accuracy is higher, and the protein dCasRx has the advantage of adult treatment because the volume is small, and can be packaged into AAV. In addition, compared with a DNA base editing tool, the editing system provided by the invention is not limited by PAM, has wider editing sites, and does not cause off-target at the DNA level, thereby being safer.
The embodiments of the present invention are described below with reference to specific embodiments, and other advantages and effects of the present invention will be easily understood by those skilled in the art from the disclosure of the present specification. The invention is capable of other and different embodiments and of being practiced or of being carried out in various ways, and its several details are capable of modification in various respects, all without departing from the spirit and scope of the present invention.
It is to be understood that the processing equipment or apparatus not specifically identified in the following examples is conventional in the art.
Unless otherwise indicated, the experimental methods, detection methods, and preparation methods disclosed herein all employ techniques conventional in the art of molecular biology, biochemistry, chromatin structure and analysis, analytical chemistry, cell culture, recombinant DNA technology, and related arts. These techniques are well described in the literature, and may be found in particular in the study of the MOLECULAR CLONING, Sambrook et al: a LABORATORY MANUAL, Second edition, Cold Spring Harbor LABORATORY Press, 1989 and Third edition, 2001; ausubel et al, Current PROTOCOLS IN MOLECULAR BIOLOGY, John Wiley & Sons, New York, 1987 and periodic updates; the series METHODS IN ENZYMOLOGY, Academic Press, San Diego; wolffe, CHROMATIN STRUCTURE AND FUNCTION, Third edition, Academic Press, San Diego, 1998; (iii) METHODS IN ENZYMOLOGY, Vol.304, Chromatin (P.M.Wassarman and A.P.Wolffe, eds.), Academic Press, San Diego, 1999; and METHODS IN MOLECULAR BIOLOGY, Vol.119, chromatography Protocols (P.B.Becker, ed.) Humana Press, Totowa, 1999, etc.
Example 1
Construction of Vx System plasmid:
pC0053-CMV-dPspCas13b-GS-ADAR2DD(E488Q)-delta-984-109(Addgene plasmid # 103869; http:// n2 t.net/addge: 103869; RRID: Addgene _103869) was gifted to the kytoppeak, and plasmid dCas13Rx was codon-optimized for synthesis in genshrit (GenScript). 4184F (CCGATGGATCGAGTTCGAATCCCCTAAAAAGAAAAGAGGTGGGATCCCAGCTGCATTTACCG) (SEQ ID NO.6) and 4184R (TCTTCTTGGGGCTCTCAAATTCGCTGCCGTCAGCAGTCCGTTTCATGGTGGCAAGCTTAAGTTTAAACGCTA) (SEQ ID NO.7) primers were diluted to 10. mu.M and the ADAR2DD (E488Q) fragment was amplified from pC0053 template using the Novozae Hi-Fi kit (Vazyme, p501-d 2). 4183F (AGAGAGCCCCAAGAAGAGAGGAAAGTCGGATCCATCGAGAAGAAGCTTCGCCAA) (SEQ ID NO.8) and 4183R (GGGGATTCGAACTCGGATCCATCGGGCGGTGCGCTTAGAACCGGAGTTGCCGCTCACCT) (SEQ ID NO.9) primers were diluted to 10. mu.M and the dCas13Rx fragment was amplified from synthetic dCas13Rx plasmid template using the Novozae Hi-Fi enzyme kit (Vazyme, p501-d 2). After the PCR amplification product was purified and recovered by AxyPrep PCR Clean-up Kit (Axygen, AP-PCR-500G), the above-mentioned two fragments were recombined with Vazyme Clon express Ultra One Step Cloning Kit (C115-01). The recombinant product was incubated at 37 ℃ for 30min, then transformed and plated, and Sanger sequenced to obtain the correct plasmid, CMV BPNLS-dCasRx-BPNLS-ADAR2 DD (E488Q) sequence: gacggatcgggagatctcccgatcccctatggtgcactctcagtacaatctgctctgatgccgcatagttaagccagtatctgctccctgcttgtgtgttggaggtcgctgagtagtgcgcgagcaaaatttaagctacaacaaggcaaggcttgaccgacaattgcatgaagaatctgcttagggttaggcgttttgcgctgcttcgcgatgtacgggccagatatacgcgttgacattgattattgactagttattaatagtaatcaattacggggtcattagttcatagcccatatatggagttccgcgttacataacttacggtaaatggcccgcctggctgaccgcccaacgacccccgcccattgacgtcaataatgacgtatgttcccatagtaacgccaatagggactttccattgacgtcaatgggtggagtatttacggtaaactgcccacttggcagtacatcaagtgtatcatatgccaagtacgccccctattgacgtcaatgacggtaaatggcccgcctggcattatgcccagtacatgaccttatgggactttcctacttggcagtacatctacgtattagtcatcgctattaccatggtgatgcggttttggcagtacatcaatgggcgtggatagcggtttgactcacggggatttccaagtctccaccccattgacgtcaatgggagtttgttttggcaccaaaatcaacgggactttccaaaatgtcgtaacaactccgccccattgacgcaaatgggcggtaggcgtgtacggtgggaggtctatataagcagagctctctggctaactagagaacccactgcttactggcttatcgaaattaatacgactcactatagggagacccaagctggcTAGCGTTTAAACTTAAGCTTGCCACCATGAAACGGACTGCTGACGGCAGCGAATTTGAGAGCCCCAAGAAGAAGAGGAAAGTCGGATCCATCGAGAAGAAGAAGAGCTTCGCCAAGGGCATGGGAGTGAAGAGCACCCTGGTGTCCGGCTCTAAGGTGTACATGACCACATTTGCTGAGGGAAGCGACGCCAGGCTGGAGAAGATCGTGGAGGGCGATAGCATCAGATCCGTGAACGAGGGAGAGGCTTTCAGCGCCGAGATGGCTGACAAGAACGCTGGCTACAAGATCGGAAACGCCAAGTTTTCCCACCCAAAGGGCTACGCCGTGGTGGCTAACAACCCACTGTACACCGGACCAGTGCAGCAGGACATGCTGGGACTGAAGGAGACACTGGAGAAGAGGTACTTCGGCGAGTCCGCCGACGGAAACGATAACATCTGCATCCAGGTCATCCACAACATCCTGGATATCGAGAAGATCCTGGCTGAGTACATCACAAACGCCGCTTACGCCGTGAACAACATCTCCGGCCTGGACAAGGATATCATCGGCTTCGGAAAGTTTTCTACCGTGTACACATACGACGAGTTCAAGGATCCAGAGCACCACCGGGCCGCTTTTAACAACAACGACAAGCTGATCAACGCCATCAAGGCTCAGTACGACGAGTTCGATAACTTTCTGGATAACCCCAGGCTGGGCTACTTCGGACAGGCTTTCTTTTCTAAGGAGGGCAGAAACTACATCATCAACTACGGAAACGAGTGTTACGACATCCTGGCCCTGCTGAGCGGACTGGCCCACTGGGTGGTGGCCAACAACGAGGAGGAGTCTCGGATCAGCCGCACCTGGCTGTACAACCTGGACAAGAACCTGGATAACGAGTACATCTCCACACTGAACTACCTGTACGACAGGATCACCAACGAGCTGACAAACAGCTTCTCCAAGAACTCTGCCGCTAACGTGAACTACATCGCTGAGACCCTGGGCATCAACCCAGCTGAGTTCGCTGAGCAGTACTTCAGATTTTCCATCATGAAGGAGCAGAAGAACCTGGGCTTCAACATCACAAAGCTGAGAGAAGTGATGCTGGACAGAAAGGATATGTCCGAGATCAGGAAGAACCACAAGGTGTTCGATTCTATCAGAACCAAGGTGTACACAATGATGGACTTTGTGATCTACAGGTACTACATCGAGGAGGATGCCAAGGTGGCCGCTGCCAACAAGAGCCTGCCCGACAACGAGAAGTCTCTGAGCGAGAAGGATATCTTCGTGATCAACCTGAGAGGCTCCTTTAACGACGATCAGAAGGACGCTCTGTACTACGATGAGGCCAACAGGATCTGGAGAAAGCTGGAGAACATCATGCACAACATCAAGGAGTTCCGGGGAAACAAGACCCGCGAGTACAAGAAGAAGGACGCTCCAAGGCTGCCTAGGATCCTGCCTGCTGGAAGGGACGTGAGCGCCTTCAGCAAGCTGATGTACGCCCTGACAATGTTTCTGGACGGAAAGGAGATCAACGATCTGCTGACCACACTGATCAACAAGTTCGACAACATCCAGTCTTTTCTGAAAGTGATGCCTCTGATCGGCGTGAACGCTAAGTTCGTGGAGGAGTACGCCTTCTTTAAGGACAGCGCCAAGATCGCTGATGAGCTGCGGCTGATCAAGTCCTTTGCCAGGATGGGAGAGCCAATCGCTGACGCTAGGAGAGCTATGTACATCGATGCCATCCGGATCCTGGGAACCAACCTGTCTTACGACGAGCTGAAGGCTCTGGCCGACACCTTCAGCCTGGATGAGAACGGCAACAAGCTGAAGAAGGGCAAGCACGGAATGCGCAACTTCATCATCAACAACGTGATCAGCAACAAGCGGTTTCACTACCTGATCAGATACGGCGACCCAGCTCACCTGCACGAGATCGCTAAGAACGAGGCCGTGGTGAAGTTCGTGCTGGGACGGATCGCCGATATCCAGAAGAAGCAGGGCCAGAACGGAAAGAACCAGATCGACCGCTACTACGAGACCTGCATCGGCAAGGATAAGGGAAAGTCCGTGTCTGAGAAGGTGGACGCTCTGACCAAGATCATCACAGGCATGAACTACGACCAGTTCGATAAGAAGAGATCTGTGATCGAGGACACCGGAAGGGAGAACGCCGAGAGAGAGAAGTTTAAGAAGATCATCAGCCTGTACCTGACAGTGATCTACCACATCCTGAAGAACATCGTGAACATCAACGCTAGATACGTGATCGGCTTCCACTGCGTGGAGCGCGATGCCCAGCTGTACAAGGAGAAGGGATACGACATCAACCTGAAGAAGCTGGAGGAGAAGGGCTTTAGCTCCGTGACCAAGCTGTGCGCTGGAATCGACGAGACAGCCCCCGACAAGAGGAAGGATGTGGAGAAGGAGATGGCCGAGAGAGCTAAGGAGAGCATCGACTCCCTGGAGTCTGCTAACCCTAAGCTGTACGCCAACTACATCAAGTACTCCGATGAGAAGAAGGCCGAGGAGTTCACCAGGCAGATCAACAGAGAGAAGGCCAAGACCGCTCTGAACGCCTACCTGAGGAACACAAAGTGGAACGTGATCATCCGGGAGGACCTGCTGCGCATCGATAACAAGACCTGTACACTGTTCGCTAACAAGGCTGTGGCCCTGGAGGTGGCTCGCTACGTGCACGCCTACATCAACGACATCGCCGAGGTGAACTCCTACTTTCAGCTGTACCACTACATCATGCAGAGGATCATCATGAACGAGAGATACGAGAAGTCTAGCGGCAAGGTGTCTGAGTACTTCGACGCCGTGAACGATGAGAAGAAGTACAACGATAGACTGCTGAAGCTGCTGTGCGTGCCTTTCGGATACTGTATCCCACGGTTTAAGAACCTGAGCATCGAGGCCCTGTTCGACCGCAACGAGGCTGCCAAGTTTGATAAGGAGAAGAAGAAGGTGAGCGGCAACTCCGGTTCTAAGCGCACCGCCGATGGATCCGAGTTCGAATCCCCTAAAAAGAAAAGAAAGGTGGGATCCCAGCTGCATTTACCGcaggttttagctgacgctgtctcacgcctggtcctgggtaagtttggtgacctgaccgacaacttctcctcccctcacgctcgcagaaaagtgctggctggagtcgtcatgacaacaggcacagatgttaaagatgccaaggtgataagtgtttctacaggaacaaaatgtattaatggtgaatacatgagtgatcgtggccttgcattaaatgactgccatgcagaaataatatctcggagatccttgctcagatttctttatacacaacttgagctttacttaaataacaaagatgatcaaaaaagatccatctttcagaaatcagagcgaggggggtttaggctgaaggagaatgtccagtttcatctgtacatcagcacctctccctgtggagatgccagaatcttctcaccacatgagccaatcctggaagaaccagcagatagacacccaaatcgtaaagcaagaggacagctacggaccaaaatagagtctggtCaggggacgattccagtgcgctccaatgcgagcatccaaacgtgggacggggtgctgcaaggggagcggctgctcaccatgtcctgcagtgacaagattgcacgctggaacgtggtgggcatccagggatcActgctcagcattttcgtggagcccatttacttctcgagcatcatcctgggcagcctttaccacggggaccacctttccagggccatgtaccagcggatctccaacatagaggacctgccacctctctacaccctcaacaagcctttgctcagtggcatcagcaatgcagaagcacggcagccagggaaggcccccaacttcagtgtcaactggacggtaggcgactccgctattgaggtcatcaacgccacgactgggaaggatgagctgggccgcgcgtcccgcctgtgtaagcacgcgttgtactgtcgctggatgcgtgtgcacggcaaggttccctcccacttactacgctccaagattaccaagcccaacgtgtaccatgagtccaagctggcggcaaaggagtaccaggccgccaaggcgcgtctgttcacagccttcatcaaggcggggctgggggcctgggtggagaagcccaccgagcaggaccagttctcactcacgTAAgcggccgctcgagtctagagggcccgtttaaacccgctgatcagcctcgactgtgccttctagttgccagccatctgttgtttgcccctcccccgtgccttccttgaccctggaaggtgccactcccactgtcctttcctaataaaatgaggaaattgcatcgcattgtctgagtaggtgtcattctattctggggggtggggtggggcaggacagcaagggggaggattgggaagacaatagcaggcatgctggggatgcggtgggctctatggcttctgaggcggaaagaaccagctggggctctagggggtatccccacgcgccctgtagcggcgcattaagcgcggcgggtgtggtggttacgcgcagcgtgaccgctacacttgccagcgccctagcgcccgctcctttcgctttcttcccttcctttctcgccacgttcgccggctttccccgtcaagctctaaatcgggggctccctttagggttccgatttagtgctttacggcacctcgaccccaaaaaacttgattagggtgatggttcacgtagtgggccatcgccctgatagacggtttttcgccctttgacgttggagtccacgttctttaatagtggactcttgttccaaactggaacaacactcaaccctatctcggtctattcttttgatttataagggattttgccgatttcggcctattggttaaaaaatgagctgatttaacaaaaatttaacgcgaattaattctgtggaatgtgtgtcagttagggtgtggaaagtccccaggctccccagcaggcagaagtatgcaaagcatgcatctcaattagtcagcaaccaggtgtggaaagtccccaggctccccagcaggcagaagtatgcaaagcatgcatctcaattagtcagcaaccatagtcccgcccctaactccgcccatcccgcccctaactccgcccagttccgcccattctccgccccatggctgactaattttttttatttatgcagaggccgaggccgcctctgcctctgagctattccagaagtagtgaggaggcttttttggaggcctaggcttttgcaaaaagctcccgggagcttgtatatccattttcggatctgatcaagagacaggatgaggatcgtttcgcatgattgaacaagatggattgcacgcaggttctccggccgcttgggtggagaggctattcggctatgactgggcacaacagacaatcggctgctctgatgccgccgtgttccggctgtcagcgcaggggcgcccggttctttttgtcaagaccgacctgtccggtgccctgaatgaactgcaggacgaggcagcgcggctatcgtggctggccacgacgggcgttccttgcgcagctgtgctcgacgttgtcactgaagcgggaagggactggctgctattgggcgaagtgccggggcaggatctcctgtcatctcaccttgctcctgccgagaaagtatccatcatggctgatgcaatgcggcggctgcatacgcttgatccggctacctgcccattcgaccaccaagcgaaacatcgcatcgagcgagcacgtactcggatggaagccggtcttgtcgatcaggatgatctggacgaagagcatcaggggctcgcgccagccgaactgttcgccaggctcaaggcgcgcatgcccgacggcgaggatctcgtcgtgacccatggcgatgcctgcttgccgaatatcatggtggaaaatggccgcttttctggattcatcgactgtggccggctgggtgtggcggaccgctatcaggacatagcgttggctacccgtgatattgctgaagagcttggcggcgaatgggctgaccgcttcctcgtgctttacggtatcgccgctcccgattcgcagcgcatcgccttctatcgccttcttgacgagttcttctgagcgggactctggggttcgaaatgaccgaccaagcgacgcccaacctgccatcacgagatttcgattccaccgccgccttctatgaaaggttgggcttcggaatcgttttccgggacgccggctggatgatcctccagcgcggggatctcatgctggagttcttcgcccaccccaacttgtttattgcagcttataatggttacaaataaagcaatagcatcacaaatttcacaaataaagcatttttttcactgcattctagttgtggtttgtccaaactcatcaatgtatcttatcatgtctgtataccgtcgacctctagctagagcttggcgtaatcatggtcatagctgtttcctgtgtgaaattgttatccgctcacaattccacacaacatacgagccggaagcataaagtgtaaagcctggggtgcctaatgagtgagctaactcacattaattgcgttgcgctcactgcccgctttccagtcgggaaacctgtcgtgccagctgcattaatgaatcggccaacgcgcggggagaggcggtttgcgtattgggcgctcttccgcttcctcgctcactgactcgctgcgctcggtcgttcggctgcggcgagcggtatcagctcactcaaaggcggtaatacggttatccacagaatcaggggataacgcaggaaagaacatgtgagcaaaaggccagcaaaaggccaggaaccgtaaaaaggccgcgttgctggcgtttttccataggctccgcccccctgacgagcatcacaaaaatcgacgctcaagtcagaggtggcgaaacccgacaggactataaagataccaggcgtttccccctggaagctccctcgtgcgctctcctgttccgaccctgccgcttaccggatacctgtccgcctttctcccttcgggaagcgtggcgctttctcatagctcacgctgtaggtatctcagttcggtgtaggtcgttcgctccaagctgggctgtgtgcacgaaccccccgttcagcccgaccgctgcgccttatccggtaactatcgtcttgagtccaacccggtaagacacgacttatcgccactggcagcagccactggtaacaggattagcagagcgaggtatgtaggcggtgctacagagttcttgaagtggtggcctaactacggctacactagaagaacagtatttggtatctgcgctctgctgaagccagttaccttcggaaaaagagttggtagctcttgatccggcaaacaaaccaccgctggtagcggtttttttgtttgcaagcagcagattacgcgcagaaaaaaaggatctcaagaagatcctttgatcttttctacggggtctgacgctcagtggaacgaaaactcacgttaagggattttggtcatgagattatcaaaaaggatcttcacctagatccttttaaattaaaaatgaagttttaaatcaatctaaagtatatatgagtaaacttggtctgacagttaccaatgcttaatcagtgaggcacctatctcagcgatctgtctatttcgttcatccatagttgcctgactccccgtcgtgtagataactacgatacgggagggcttaccatctggccccagtgctgcaatgataccgcgagacccacgctcaccggctccagatttatcagcaataaaccagccagccggaagggccgagcgcagaagtggtcctgcaactttatccgcctccatccagtctattaattgttgccgggaagctagagtaagtagttcgccagttaatagtttgcgcaacgttgttgccattgctacaggcatcgtggtgtcacgctcgtcgtttggtatggcttcattcagctccggttcccaacgatcaaggcgagttacatgatcccccatgttgtgcaaaaaagcggttagctccttcggtcctccgatcgttgtcagaagtaagttggccgcagtgttatcactcatggttatggcagcactgcataattctcttactgtcatgccatccgtaagatgcttttctgtgactggtgagtactcaaccaagtcattctgagaatagtgtatgcggcgaccgagttgctcttgcccggcgtcaatacgggataataccgcgccacatagcagaactttaaaagtgctcatcattggaaaacgttcttcggggcgaaaactctcaaggatcttaccgctgttgagatccagttcgatgtaacccactcgtgcacccaactgatcttcagcatcttttactttcaccagcgtttctgggtgagcaaaaacaggaaggcaaaatgccgcaaaaaagggaataagggcgacacggaaatgttgaatactcatactcttcctttttcaatattattgaagcatttatcagggttattgtctcatgagcggatacatatttgaatgtatttagaaaaataaacaaataggggttccgcgcacatttccccgaaaagtgccacctgacgtc(9558bp)。(SEQ ID NO.10)
With CMV BPNLS-dCasRx-BPNLS-ADAR2 DD (E488Q) plasmid as template, 4366F (AGGATGACGATGACAAGTAAGCCGCTCGAGCCTA) (SEQ ID NO.11) and 4366R (AGAGCCCCCGCCGCCTCCGTTGGTTCCCAGGATCCGGATG) (SEQ ID NO.12) primer PCR vector fragment 1. With CMV BPNLS-dCasRx-BPNLS-ADAR2 DD (E488Q) plasmid as template, 4367F (GGAGGCGGGGGGGCTCTGGATCCCAGCTGCATTTACCGCAGGTTTT) (SEQ ID NO.13) and 4367R (GCTTCCGCCCCCCCTCCAGAGCCCGTGAGTGAACTGGTCCTGCTCG) (SEQ ID NO.14) primer PCR vector fragment 2. With CMV BPNLS-dCasRx-BPNLS-ADAR2 DD (E488Q) plasmid as template, 4368F (GGAGGGGGCGGAAGCATGCAGGCAACTTCATCATCATCAACAACGTGATCAGCAA) (SEQ ID NO.15) and 4368R (CTTGTCATCGTCATCTGTATCATGATCTTTATAATCACCGTCATGTCTT) (SEQ ID NO.16) primer PCR vector fragment 3. The three PCR amplification products were purified and recovered by AXYPREP PCRCLEAN-UP Kit (AXYGEN, AP-PCR-500G), and the two fragments were recombined with Vazyme Clon express Ultra One Step Cloning Kit (C115-01). The recombinant product was incubated at 37 ℃ for 30min before transformation and plating, and Sanger sequencing gave the correct plasmid CMV-BPNLS-dCasRx (1I-558G) -ADAR-dCasRx (587M-966S) -BPNLS with the following sequence: gacggatcgggagatctcccgatcccctatggtgcactctcagtacaatctgctctgatgccgcatagttaagccagtatctgctccctgcttgtgtgttggaggtcgctgagtagtgcgcgagcaaaatttaagctacaacaaggcaaggcttgaccgacaattgcatgaagaatctgcttagggttaggcgttttgcgctgcttcgcgatgtacgggccagatatacgcgttgacattgattattgactagttattaatagtaatcaattacggggtcattagttcatagcccatatatggagttccgcgttacataacttacggtaaatggcccgcctggctgaccgcccaacgacccccgcccattgacgtcaataatgacgtatgttcccatagtaacgccaatagggactttccattgacgtcaatgggtggagtatttacggtaaactgcccacttggcagtacatcaagtgtatcatatgccaagtacgccccctattgacgtcaatgacggtaaatggcccgcctggcattatgcccagtacatgaccttatgggactttcctacttggcagtacatctacgtattagtcatcgctattaccatggtgatgcggttttggcagtacatcaatgggcgtggatagcggtttgactcacggggatttccaagtctccaccccattgacgtcaatgggagtttgttttggcaccaaaatcaacgggactttccaaaatgtcgtaacaactccgccccattgacgcaaatgggcggtaggcgtgtacggtgggaggtctatataagcagagctctctggctaactagagaacccactgcttactggcttatcgaaattaatacgactcactatagggagacccaagctggcTAGCGTTTAAACTTAAGCTTGCCACCATGAAACGGACTGCTGACGGCAGCGAATTTGAGAGCCCCAAGAAGAAGAGGAAAGTCGGATCCATCGAGAAGAAGAAGAGCTTCGCCAAGGGCATGGGAGTGAAGAGCACCCTGGTGTCCGGCTCTAAGGTGTACATGACCACATTTGCTGAGGGAAGCGACGCCAGGCTGGAGAAGATCGTGGAGGGCGATAGCATCAGATCCGTGAACGAGGGAGAGGCTTTCAGCGCCGAGATGGCTGACAAGAACGCTGGCTACAAGATCGGAAACGCCAAGTTTTCCCACCCAAAGGGCTACGCCGTGGTGGCTAACAACCCACTGTACACCGGACCAGTGCAGCAGGACATGCTGGGACTGAAGGAGACACTGGAGAAGAGGTACTTCGGCGAGTCCGCCGACGGAAACGATAACATCTGCATCCAGGTCATCCACAACATCCTGGATATCGAGAAGATCCTGGCTGAGTACATCACAAACGCCGCTTACGCCGTGAACAACATCTCCGGCCTGGACAAGGATATCATCGGCTTCGGAAAGTTTTCTACCGTGTACACATACGACGAGTTCAAGGATCCAGAGCACCACCGGGCCGCTTTTAACAACAACGACAAGCTGATCAACGCCATCAAGGCTCAGTACGACGAGTTCGATAACTTTCTGGATAACCCCAGGCTGGGCTACTTCGGACAGGCTTTCTTTTCTAAGGAGGGCAGAAACTACATCATCAACTACGGAAACGAGTGTTACGACATCCTGGCCCTGCTGAGCGGACTGGCCCACTGGGTGGTGGCCAACAACGAGGAGGAGTCTCGGATCAGCCGCACCTGGCTGTACAACCTGGACAAGAACCTGGATAACGAGTACATCTCCACACTGAACTACCTGTACGACAGGATCACCAACGAGCTGACAAACAGCTTCTCCAAGAACTCTGCCGCTAACGTGAACTACATCGCTGAGACCCTGGGCATCAACCCAGCTGAGTTCGCTGAGCAGTACTTCAGATTTTCCATCATGAAGGAGCAGAAGAACCTGGGCTTCAACATCACAAAGCTGAGAGAAGTGATGCTGGACAGAAAGGATATGTCCGAGATCAGGAAGAACCACAAGGTGTTCGATTCTATCAGAACCAAGGTGTACACAATGATGGACTTTGTGATCTACAGGTACTACATCGAGGAGGATGCCAAGGTGGCCGCTGCCAACAAGAGCCTGCCCGACAACGAGAAGTCTCTGAGCGAGAAGGATATCTTCGTGATCAACCTGAGAGGCTCCTTTAACGACGATCAGAAGGACGCTCTGTACTACGATGAGGCCAACAGGATCTGGAGAAAGCTGGAGAACATCATGCACAACATCAAGGAGTTCCGGGGAAACAAGACCCGCGAGTACAAGAAGAAGGACGCTCCAAGGCTGCCTAGGATCCTGCCTGCTGGAAGGGACGTGAGCGCCTTCAGCAAGCTGATGTACGCCCTGACAATGTTTCTGGACGGAAAGGAGATCAACGATCTGCTGACCACACTGATCAACAAGTTCGACAACATCCAGTCTTTTCTGAAAGTGATGCCTCTGATCGGCGTGAACGCTAAGTTCGTGGAGGAGTACGCCTTCTTTAAGGACAGCGCCAAGATCGCTGATGAGCTGCGGCTGATCAAGTCCTTTGCCAGGATGGGAGAGCCAATCGCTGACGCTAGGAGAGCTATGTACATCGATGCCATCCGGATCCTGGGAACCAACGGAGGCGGGGGCTCTGGATCCCAGCTGCATTTACCGCAGGTTTtagctgacgctgtctcacgcctggtcctgggtaagtttggtgacctgaccgacaacttctcctcccctcacgctcgcagaaaagtgctggctggagtcgtcatgacaacaggcacagatgttaaagatgccaaggtgataagtgtttctacaggaacaaaatgtattaatggtgaatacatgagtgatcgtggccttgcattaaatgactgccatgcagaaataatatctcggagatccttgctcagatttctttatacacaacttgagctttacttaaataacaaagatgatcaaaaaagatccatctttcagaaatcagagcgaggggggtttaggctgaaggagaatgtccagtttcatctgtacatcagcacctctccctgtggagatgccagaatcttctcaccacatgagccaatcctggaagaaccagcagatagacacccaaatcgtaaagcaagaggacagctacggaccaaaatagagtctggtCaggggacgattccagtgcgctccaatgcgagcatccaaacgtgggacggggtgctgcaaggggagcggctgctcaccatgtcctgcagtgacaagattgcacgctggaacgtggtgggcatccagggatcActgctcagcattttcgtggagcccatttacttctcgagcatcatcctgggcagcctttaccacggggaccacctttccagggccatgtaccagcggatctccaacatagaggacctgccacctctctacaccctcaacaagcctttgctcagtggcatcagcaatgcagaagcacggcagccagggaaggcccccaacttcagtgtcaactggacggtaggcgactccgctattgaggtcatcaacgccacgactgggaaggatgagctgggccgcgcgtcccgcctgtgtaagcacgcgttgtactgtcgctggatgcgtgtgcacggcaaggttccctcccacttactacgctccaagattaccaagcccaacgtgtaccatgagtccaagctggcggcaaaggagtaccaggccgccaaggcgcgtctgttcacagccttcatcaaggcggggctgggggcctgggtggagaagcccaccgagcaggaccagttctcactcacgGGCTCTGGAGGGGGCGGAAGCATGCGCAACTTCATCATCAACAACGTGATCAGCAACAAGCGGTTTCACTACCTGATCAGATACGGCGACCCAGCTCACCTGCACGAGATCGCTAAGAACGAGGCCGTGGTGAAGTTCGTGCTGGGACGGATCGCCGATATCCAGAAGAAGCAGGGCCAGAACGGAAAGAACCAGATCGACCGCTACTACGAGACCTGCATCGGCAAGGATAAGGGAAAGTCCGTGTCTGAGAAGGTGGACGCTCTGACCAAGATCATCACAGGCATGAACTACGACCAGTTCGATAAGAAGAGATCTGTGATCGAGGACACCGGAAGGGAGAACGCCGAGAGAGAGAAGTTTAAGAAGATCATCAGCCTGTACCTGACAGTGATCTACCACATCCTGAAGAACATCGTGAACATCAACGCTAGATACGTGATCGGCTTCCACTGCGTGGAGCGCGATGCCCAGCTGTACAAGGAGAAGGGATACGACATCAACCTGAAGAAGCTGGAGGAGAAGGGCTTTAGCTCCGTGACCAAGCTGTGCGCTGGAATCGACGAGACAGCCCCCGACAAGAGGAAGGATGTGGAGAAGGAGATGGCCGAGAGAGCTAAGGAGAGCATCGACTCCCTGGAGTCTGCTAACCCTAAGCTGTACGCCAACTACATCAAGTACTCCGATGAGAAGAAGGCCGAGGAGTTCACCAGGCAGATCAACAGAGAGAAGGCCAAGACCGCTCTGAACGCCTACCTGAGGAACACAAAGTGGAACGTGATCATCCGGGAGGACCTGCTGCGCATCGATAACAAGACCTGTACACTGTTCGCTAACAAGGCTGTGGCCCTGGAGGTGGCTCGCTACGTGCACGCCTACATCAACGACATCGCCGAGGTGAACTCCTACTTTCAGCTGTACCACTACATCATGCAGAGGATCATCATGAACGAGAGATACGAGAAGTCTAGCGGCAAGGTGTCTGAGTACTTCGACGCCGTGAACGATGAGAAGAAGTACAACGATAGACTGCTGAAGCTGCTGTGCGTGCCTTTCGGATACTGTATCCCACGGTTTAAGAACCTGAGCATCGAGGCCCTGTTCGACCGCAACGAGGCTGCCAAGTTTGATAAGGAGAAGAAGAAGGTGAGCGGCAACTCCGGTTCTAAGCGCACCGCCGATGGATCCGAGTTCGAATCCCCTAAAAAGAAAAGAAAGGTGGGATCCGACTACAaagaccatgacggtgattataaagatcatgatatcgattacaAGGATGACGATGACAAGTAAGCGGCCGCTCGAGCCTAgagggcccgtttaaacccgctgatcagcctcgactgtgccttctagttgccagccatctgttgtttgcccctcccccgtgccttccttgaccctggaaggtgccactcccactgtcctttcctaataaaatgaggaaattgcatcgcattgtctgagtaggtgtcattctattctggggggtggggtggggcaggacagcaagggggaggattgggaagacaatagcaggcatgctggggatgcggtgggctctatggcttctgaggcggaaagaaccagctggggctctagggggtatccccacgcgccctgtagcggcgcattaagcgcggcgggtgtggtggttacgcgcagcgtgaccgctacacttgccagcgccctagcgcccgctcctttcgctttcttcccttcctttctcgccacgttcgccggctttccccgtcaagctctaaatcgggggctccctttagggttccgatttagtgctttacggcacctcgaccccaaaaaacttgattagggtgatggttcacgtagtgggccatcgccctgatagacggtttttcgccctttgacgttggagtccacgttctttaatagtggactcttgttccaaactggaacaacactcaaccctatctcggtctattcttttgatttataagggattttgccgatttcggcctattggttaaaaaatgagctgatttaacaaaaatttaacgcgaattaattctgtggaatgtgtgtcagttagggtgtggaaagtccccaggctccccagcaggcagaagtatgcaaagcatgcatctcaattagtcagcaaccaggtgtggaaagtccccaggctccccagcaggcagaagtatgcaaagcatgcatctcaattagtcagcaaccatagtcccgcccctaactccgcccatcccgcccctaactccgcccagttccgcccattctccgccccatggctgactaattttttttatttatgcagaggccgaggccgcctctgcctctgagctattccagaagtagtgaggaggcttttttggaggcctaggcttttgcaaaaagctcccgggagcttgtatatccattttcggatctgatcaagagacaggatgaggatcgtttcgcatgattgaacaagatggattgcacgcaggttctccggccgcttgggtggagaggctattcggctatgactgggcacaacagacaatcggctgctctgatgccgccgtgttccggctgtcagcgcaggggcgcccggttctttttgtcaagaccgacctgtccggtgccctgaatgaactgcaggacgaggcagcgcggctatcgtggctggccacgacgggcgttccttgcgcagctgtgctcgacgttgtcactgaagcgggaagggactggctgctattgggcgaagtgccggggcaggatctcctgtcatctcaccttgctcctgccgagaaagtatccatcatggctgatgcaatgcggcggctgcatacgcttgatccggctacctgcccattcgaccaccaagcgaaacatcgcatcgagcgagcacgtactcggatggaagccggtcttgtcgatcaggatgatctggacgaagagcatcaggggctcgcgccagccgaactgttcgccaggctcaaggcgcgcatgcccgacggcgaggatctcgtcgtgacccatggcgatgcctgcttgccgaatatcatggtggaaaatggccgcttttctggattcatcgactgtggccggctgggtgtggcggaccgctatcaggacatagcgttggctacccgtgatattgctgaagagcttggcggcgaatgggctgaccgcttcctcgtgctttacggtatcgccgctcccgattcgcagcgcatcgccttctatcgccttcttgacgagttcttctgagcgggactctggggttcgaaatgaccgaccaagcgacgcccaacctgccatcacgagatttcgattccaccgccgccttctatgaaaggttgggcttcggaatcgttttccgggacgccggctggatgatcctccagcgcggggatctcatgctggagttcttcgcccaccccaacttgtttattgcagcttataatggttacaaataaagcaatagcatcacaaatttcacaaataaagcatttttttcactgcattctagttgtggtttgtccaaactcatcaatgtatcttatcatgtctgtataccgtcgacctctagctagagcttggcgtaatcatggtcatagctgtttcctgtgtgaaattgttatccgctcacaattccacacaacatacgagccggaagcataaagtgtaaagcctggggtgcctaatgagtgagctaactcacattaattgcgttgcgctcactgcccgctttccagtcgggaaacctgtcgtgccagctgcattaatgaatcggccaacgcgcggggagaggcggtttgcgtattgggcgctcttccgcttcctcgctcactgactcgctgcgctcggtcgttcggctgcggcgagcggtatcagctcactcaaaggcggtaatacggttatccacagaatcaggggataacgcaggaaagaacatgtgagcaaaaggccagcaaaaggccaggaaccgtaaaaaggccgcgttgctggcgtttttccataggctccgcccccctgacgagcatcacaaaaatcgacgctcaagtcagaggtggcgaaacccgacaggactataaagataccaggcgtttccccctggaagctccctcgtgcgctctcctgttccgaccctgccgcttaccggatacctgtccgcctttctcccttcgggaagcgtggcgctttctcatagctcacgctgtaggtatctcagttcggtgtaggtcgttcgctccaagctgggctgtgtgcacgaaccccccgttcagcccgaccgctgcgccttatccggtaactatcgtcttgagtccaacccggtaagacacgacttatcgccactggcagcagccactggtaacaggattagcagagcgaggtatgtaggcggtgctacagagttcttgaagtggtggcctaactacggctacactagaagaacagtatttggtatctgcgctctgctgaagccagttaccttcggaaaaagagttggtagctcttgatccggcaaacaaaccaccgctggtagcggtttttttgtttgcaagcagcagattacgcgcagaaaaaaaggatctcaagaagatcctttgatcttttctacggggtctgacgctcagtggaacgaaaactcacgttaagggattttggtcatgagattatcaaaaaggatcttcacctagatccttttaaattaaaaatgaagttttaaatcaatctaaagtatatatgagtaaacttggtctgacagttaccaatgcttaatcagtgaggcacctatctcagcgatctgtctatttcgttcatccatagttgcctgactccccgtcgtgtagataactacgatacgggagggcttaccatctggccccagtgctgcaatgataccgcgagacccacgctcaccggctccagatttatcagcaataaaccagccagccggaagggccgagcgcagaagtggtcctgcaactttatccgcctccatccagtctattaattgttgccgggaagctagagtaagtagttcgccagttaatagtttgcgcaacgttgttgccattgctacaggcatcgtggtgtcacgctcgtcgtttggtatggcttcattcagctccggttcccaacgatcaaggcgagttacatgatcccccatgttgtgcaaaaaagcggttagctccttcggtcctccgatcgttgtcagaagtaagttggccgcagtgttatcactcatggttatggcagcactgcataattctcttactgtcatgccatccgtaagatgcttttctgtgactggtgagtactcaaccaagtcattctgagaatagtgtatgcggcgaccgagttgctcttgcccggcgtcaatacgggataataccgcgccacatagcagaactttaaaagtgctcatcattggaaaacgttcttcggggcgaaaactctcaaggatcttaccgctgttgagatccagttcgatgtaacccactcgtgcacccaactgatcttcagcatcttttactttcaccagcgtttctgggtgagcaaaaacaggaaggcaaaatgccgcaaaaaagggaataagggcgacacggaaatgttgaatactcatactcttcctttttcaatattattgaagcatttatcagggttattgtctcatgagcggatacatatttgaatgtatttagaaaaataaacaaataggggttccgcgcacatttccccgaaaagtgccacctgacgtc(9582bp)。(SEQ ID NO.17)
4369R (TTGGTTCCCAGGATCGGATGGCATCGATGTACAT) (SEQ ID NO.18) and 4369F (GACGATGACAAGTAAGCGGCCGCTCGAGCCTAGGGC) (SEQ ID NO.19) primers were diluted to 10. mu.M and fragment 4 was amplified from CMV-BPNLS-dCasRx (1I-558G) -ADAR-dCasRx (587M-966S) -BPNLS template using the Novozam Hi-Fi enzyme kit (Vazyme, p501-d 2). 4370F (GGATCCGAGTTTCGAATCCCCTAAAAAGAAAAGGTGGGATCCCAGCTGCATTTACCG) (SEQ ID NO.20) and 4370R (CTCTCAAACTCAGATCCATCCGCAGTTTTTTGGATCCGTGAGTGAACTGGTCCTGC) (SEQ ID NO.21) primers were diluted to 10. mu.M and fragment 5 was amplified from CMV-BPNLS-dCasRx (1I-558G) -ADAR-dCasRx (587M-966S) -BPNLS template using the Novozam high fidelity enzyme kit (Vazyme, p501-d 2). 4371F (CCGGATCCTGGGAACCAACGGTTTCTAAGCGCACCGCCGATGGATCCGAGTTCGAATCCCC) (SEQ ID NO.22) and 4371R (GGATGGATCTGATGAGTTTGAGGTCCAAAAAAGAGGAGGAAGGTCGGTTCTATGCGCAACTT) (SEQ ID NO.23) primers were diluted to 10. mu.M and fragment 6 was amplified using the Novozam high fidelity enzyme kit (Vazyme, p501-d2) using amplified fragment 5 as a template. 4372F (TTCTATGCGCAACTTCATCAACACGTGATCAGC) (SEQ ID NO.24) and 4372R (TAGGCTCGAGCGGCCGCTTACTTGTCATCGTCGTCAT) (SEQ ID NO.25) primers were diluted to 10. mu.M and fragment 7 was amplified from CMV-BPNLS-dCasRx (1I-558G) -ADAR-dCasRx (587M-966S) -BPS template using the Norrespect Hi-Fi enzyme kit (Vazyme, p501-d 2).
The three PCR amplification products 4, 6, and 7 were purified and recovered by AxyPrep PCR Clean-up Kit (Axygen, AP-PCR-500G), and then recombined with Vazyme Clonexpress Ultra One Step Cloning Kit (C115-01). The recombinant product was incubated at 37 ℃ for 30min before transformation and plating, and Sanger sequencing gave the correct Vx plasmid CMV-BPNLS-dCasRx (1I-558G) -BPNLS-ADAR-BPNLS-dCasRx (587M-966S) -BPNLS sequence: gacggatcgggagatctcccgatcccctatggtgcactctcagtacaatctgctctgatgccgcatagttaagccagtatctgctccctgcttgtgtgttggaggtcgctgagtagtgcgcgagcaaaatttaagctacaacaaggcaaggcttgaccgacaattgcatgaagaatctgcttagggttaggcgttttgcgctgcttcgcgatgtacgggccagatatacgcgttgacattgattattgactagttattaatagtaatcaattacggggtcattagttcatagcccatatatggagttccgcgttacataacttacggtaaatggcccgcctggctgaccgcccaacgacccccgcccattgacgtcaataatgacgtatgttcccatagtaacgccaatagggactttccattgacgtcaatgggtggagtatttacggtaaactgcccacttggcagtacatcaagtgtatcatatgccaagtacgccccctattgacgtcaatgacggtaaatggcccgcctggcattatgcccagtacatgaccttatgggactttcctacttggcagtacatctacgtattagtcatcgctattaccatggtgatgcggttttggcagtacatcaatgggcgtggatagcggtttgactcacggggatttccaagtctccaccccattgacgtcaatgggagtttgttttggcaccaaaatcaacgggactttccaaaatgtcgtaacaactccgccccattgacgcaaatgggcggtaggcgtgtacggtgggaggtctatataagcagagctctctggctaactagagaacccactgcttactggcttatcgaaattaatacgactcactatagggagacccaagctggcTAGCGTTTAAACTTAAGCTTGCCACCATGAAACGGACTGCTGACGGCAGCGAATTTGAGAGCCCCAAGAAGAAGAGGAAAGTCGGATCCATCGAGAAGAAGAAGAGCTTCGCCAAGGGCATGGGAGTGAAGAGCACCCTGGTGTCCGGCTCTAAGGTGTACATGACCACATTTGCTGAGGGAAGCGACGCCAGGCTGGAGAAGATCGTGGAGGGCGATAGCATCAGATCCGTGAACGAGGGAGAGGCTTTCAGCGCCGAGATGGCTGACAAGAACGCTGGCTACAAGATCGGAAACGCCAAGTTTTCCCACCCAAAGGGCTACGCCGTGGTGGCTAACAACCCACTGTACACCGGACCAGTGCAGCAGGACATGCTGGGACTGAAGGAGACACTGGAGAAGAGGTACTTCGGCGAGTCCGCCGACGGAAACGATAACATCTGCATCCAGGTCATCCACAACATCCTGGATATCGAGAAGATCCTGGCTGAGTACATCACAAACGCCGCTTACGCCGTGAACAACATCTCCGGCCTGGACAAGGATATCATCGGCTTCGGAAAGTTTTCTACCGTGTACACATACGACGAGTTCAAGGATCCAGAGCACCACCGGGCCGCTTTTAACAACAACGACAAGCTGATCAACGCCATCAAGGCTCAGTACGACGAGTTCGATAACTTTCTGGATAACCCCAGGCTGGGCTACTTCGGACAGGCTTTCTTTTCTAAGGAGGGCAGAAACTACATCATCAACTACGGAAACGAGTGTTACGACATCCTGGCCCTGCTGAGCGGACTGGCCCACTGGGTGGTGGCCAACAACGAGGAGGAGTCTCGGATCAGCCGCACCTGGCTGTACAACCTGGACAAGAACCTGGATAACGAGTACATCTCCACACTGAACTACCTGTACGACAGGATCACCAACGAGCTGACAAACAGCTTCTCCAAGAACTCTGCCGCTAACGTGAACTACATCGCTGAGACCCTGGGCATCAACCCAGCTGAGTTCGCTGAGCAGTACTTCAGATTTTCCATCATGAAGGAGCAGAAGAACCTGGGCTTCAACATCACAAAGCTGAGAGAAGTGATGCTGGACAGAAAGGATATGTCCGAGATCAGGAAGAACCACAAGGTGTTCGATTCTATCAGAACCAAGGTGTACACAATGATGGACTTTGTGATCTACAGGTACTACATCGAGGAGGATGCCAAGGTGGCCGCTGCCAACAAGAGCCTGCCCGACAACGAGAAGTCTCTGAGCGAGAAGGATATCTTCGTGATCAACCTGAGAGGCTCCTTTAACGACGATCAGAAGGACGCTCTGTACTACGATGAGGCCAACAGGATCTGGAGAAAGCTGGAGAACATCATGCACAACATCAAGGAGTTCCGGGGAAACAAGACCCGCGAGTACAAGAAGAAGGACGCTCCAAGGCTGCCTAGGATCCTGCCTGCTGGAAGGGACGTGAGCGCCTTCAGCAAGCTGATGTACGCCCTGACAATGTTTCTGGACGGAAAGGAGATCAACGATCTGCTGACCACACTGATCAACAAGTTCGACAACATCCAGTCTTTTCTGAAAGTGATGCCTCTGATCGGCGTGAACGCTAAGTTCGTGGAGGAGTACGCCTTCTTTAAGGACAGCGCCAAGATCGCTGATGAGCTGCGGCTGATCAAGTCCTTTGCCAGGATGGGAGAGCCAATCGCTGACGCTAGGAGAGCTATGTACATCGATGCCATCCGGATCCTGGGAACCAACGGTTCTAAGCGCACCGCCGATGGATCCGAGTTCGAATCCCCTAAAAAGAAAAGAAAGGTGGGATCCCAGCTGCATTTACCGcaggttttagctgacgctgtctcacgcctggtcctgggtaagtttggtgacctgaccgacaacttctcctcccctcacgctcgcagaaaagtgctggctggagtcgtcatgacaacaggcacagatgttaaagatgccaaggtgataagtgtttctacaggaacaaaatgtattaatggtgaatacatgagtgatcgtggccttgcattaaatgactgccatgcagaaataatatctcggagatccttgctcagatttctttatacacaacttgagctttacttaaataacaaagatgatcaaaaaagatccatctttcagaaatcagagcgaggggggtttaggctgaaggagaatgtccagtttcatctgtacatcagcacctctccctgtggagatgccagaatcttctcaccacatgagccaatcctggaagaaccagcagatagacacccaaatcgtaaagcaagaggacagctacggaccaaaatagagtctggtCaggggacgattccagtgcgctccaatgcgagcatccaaacgtgggacggggtgctgcaaggggagcggctgctcaccatgtcctgcagtgacaagattgcacgctggaacgtggtgggcatccagggatcActgctcagcattttcgtggagcccatttacttctcgagcatcatcctgggcagcctttaccacggggaccacctttccagggccatgtaccagcggatctccaacatagaggacctgccacctctctacaccctcaacaagcctttgctcagtggcatcagcaatgcagaagcacggcagccagggaaggcccccaacttcagtgtcaactggacggtaggcgactccgctattgaggtcatcaacgccacgactgggaaggatgagctgggccgcgcgtcccgcctgtgtaagcacgcgttgtactgtcgctggatgcgtgtgcacggcaaggttccctcccacttactacgctccaagattaccaagcccaacgtgtaccatgagtccaagctggcggcaaaggagtaccaggccgccaaggcgcgtctgttcacagccttcatcaaggcggggctgggggcctgggtggagaagcccaccgagcaggacCAGTTCTCACTCACGGGATCCAAAAGAACTGCGGATGGATCTGAGTTTGAGAGTCCAAAAAAGAAGAGGAAGGTCGGTTCTATGCGCAACTTCATCATCAACAACGTGATCAGCAACAAGCGGTTTCACTACCTGATCAGATACGGCGACCCAGCTCACCTGCACGAGATCGCTAAGAACGAGGCCGTGGTGAAGTTCGTGCTGGGACGGATCGCCGATATCCAGAAGAAGCAGGGCCAGAACGGAAAGAACCAGATCGACCGCTACTACGAGACCTGCATCGGCAAGGATAAGGGAAAGTCCGTGTCTGAGAAGGTGGACGCTCTGACCAAGATCATCACAGGCATGAACTACGACCAGTTCGATAAGAAGAGATCTGTGATCGAGGACACCGGAAGGGAGAACGCCGAGAGAGAGAAGTTTAAGAAGATCATCAGCCTGTACCTGACAGTGATCTACCACATCCTGAAGAACATCGTGAACATCAACGCTAGATACGTGATCGGCTTCCACTGCGTGGAGCGCGATGCCCAGCTGTACAAGGAGAAGGGATACGACATCAACCTGAAGAAGCTGGAGGAGAAGGGCTTTAGCTCCGTGACCAAGCTGTGCGCTGGAATCGACGAGACAGCCCCCGACAAGAGGAAGGATGTGGAGAAGGAGATGGCCGAGAGAGCTAAGGAGAGCATCGACTCCCTGGAGTCTGCTAACCCTAAGCTGTACGCCAACTACATCAAGTACTCCGATGAGAAGAAGGCCGAGGAGTTCACCAGGCAGATCAACAGAGAGAAGGCCAAGACCGCTCTGAACGCCTACCTGAGGAACACAAAGTGGAACGTGATCATCCGGGAGGACCTGCTGCGCATCGATAACAAGACCTGTACACTGTTCGCTAACAAGGCTGTGGCCCTGGAGGTGGCTCGCTACGTGCACGCCTACATCAACGACATCGCCGAGGTGAACTCCTACTTTCAGCTGTACCACTACATCATGCAGAGGATCATCATGAACGAGAGATACGAGAAGTCTAGCGGCAAGGTGTCTGAGTACTTCGACGCCGTGAACGATGAGAAGAAGTACAACGATAGACTGCTGAAGCTGCTGTGCGTGCCTTTCGGATACTGTATCCCACGGTTTAAGAACCTGAGCATCGAGGCCCTGTTCGACCGCAACGAGGCTGCCAAGTTTGATAAGGAGAAGAAGAAGGTGAGCGGCAACTCCGGTTCTAAGCGCACCGCCGATGGATCCGAGTTCGAATCCCCTAAAAAGAAAAGAAAGGTGGGATCCGACTACAaagaccatgacggtgattataaagatcatgatatcgattacaAGGATGACGATGACAAGTAAGCGGCCGCTCGAGCCTAGAGGGCCCgtttaaacccgctgatcagcctcgactgtgccttctagttgccagccatctgttgtttgcccctcccccgtgccttccttgaccctggaaggtgccactcccactgtcctttcctaataaaatgaggaaattgcatcgcattgtctgagtaggtgtcattctattctggggggtggggtggggcaggacagcaagggggaggattgggaagacaatagcaggcatgctggggatgcggtgggctctatggcttctgaggcggaaagaaccagctggggctctagggggtatccccacgcgccctgtagcggcgcattaagcgcggcgggtgtggtggttacgcgcagcgtgaccgctacacttgccagcgccctagcgcccgctcctttcgctttcttcccttcctttctcgccacgttcgccggctttccccgtcaagctctaaatcgggggctccctttagggttccgatttagtgctttacggcacctcgaccccaaaaaacttgattagggtgatggttcacgtagtgggccatcgccctgatagacggtttttcgccctttgacgttggagtccacgttctttaatagtggactcttgttccaaactggaacaacactcaaccctatctcggtctattcttttgatttataagggattttgccgatttcggcctattggttaaaaaatgagctgatttaacaaaaatttaacgcgaattaattctgtggaatgtgtgtcagttagggtgtggaaagtccccaggctccccagcaggcagaagtatgcaaagcatgcatctcaattagtcagcaaccaggtgtggaaagtccccaggctccccagcaggcagaagtatgcaaagcatgcatctcaattagtcagcaaccatagtcccgcccctaactccgcccatcccgcccctaactccgcccagttccgcccattctccgccccatggctgactaattttttttatttatgcagaggccgaggccgcctctgcctctgagctattccagaagtagtgaggaggcttttttggaggcctaggcttttgcaaaaagctcccgggagcttgtatatccattttcggatctgatcaagagacaggatgaggatcgtttcgcatgattgaacaagatggattgcacgcaggttctccggccgcttgggtggagaggctattcggctatgactgggcacaacagacaatcggctgctctgatgccgccgtgttccggctgtcagcgcaggggcgcccggttctttttgtcaagaccgacctgtccggtgccctgaatgaactgcaggacgaggcagcgcggctatcgtggctggccacgacgggcgttccttgcgcagctgtgctcgacgttgtcactgaagcgggaagggactggctgctattgggcgaagtgccggggcaggatctcctgtcatctcaccttgctcctgccgagaaagtatccatcatggctgatgcaatgcggcggctgcatacgcttgatccggctacctgcccattcgaccaccaagcgaaacatcgcatcgagcgagcacgtactcggatggaagccggtcttgtcgatcaggatgatctggacgaagagcatcaggggctcgcgccagccgaactgttcgccaggctcaaggcgcgcatgcccgacggcgaggatctcgtcgtgacccatggcgatgcctgcttgccgaatatcatggtggaaaatggccgcttttctggattcatcgactgtggccggctgggtgtggcggaccgctatcaggacatagcgttggctacccgtgatattgctgaagagcttggcggcgaatgggctgaccgcttcctcgtgctttacggtatcgccgctcccgattcgcagcgcatcgccttctatcgccttcttgacgagttcttctgagcgggactctggggttcgaaatgaccgaccaagcgacgcccaacctgccatcacgagatttcgattccaccgccgccttctatgaaaggttgggcttcggaatcgttttccgggacgccggctggatgatcctccagcgcggggatctcatgctggagttcttcgcccaccccaacttgtttattgcagcttataatggttacaaataaagcaatagcatcacaaatttcacaaataaagcatttttttcactgcattctagttgtggtttgtccaaactcatcaatgtatcttatcatgtctgtataccgtcgacctctagctagagcttggcgtaatcatggtcatagctgtttcctgtgtgaaattgttatccgctcacaattccacacaacatacgagccggaagcataaagtgtaaagcctggggtgcctaatgagtgagctaactcacattaattgcgttgcgctcactgcccgctttccagtcgggaaacctgtcgtgccagctgcattaatgaatcggccaacgcgcggggagaggcggtttgcgtattgggcgctcttccgcttcctcgctcactgactcgctgcgctcggtcgttcggctgcggcgagcggtatcagctcactcaaaggcggtaatacggttatccacagaatcaggggataacgcaggaaagaacatgtgagcaaaaggccagcaaaaggccaggaaccgtaaaaaggccgcgttgctggcgtttttccataggctccgcccccctgacgagcatcacaaaaatcgacgctcaagtcagaggtggcgaaacccgacaggactataaagataccaggcgtttccccctggaagctccctcgtgcgctctcctgttccgaccctgccgcttaccggatacctgtccgcctttctcccttcgggaagcgtggcgctttctcatagctcacgctgtaggtatctcagttcggtgtaggtcgttcgctccaagctgggctgtgtgcacgaaccccccgttcagcccgaccgctgcgccttatccggtaactatcgtcttgagtccaacccggtaagacacgacttatcgccactggcagcagccactggtaacaggattagcagagcgaggtatgtaggcggtgctacagagttcttgaagtggtggcctaactacggctacactagaagaacagtatttggtatctgcgctctgctgaagccagttaccttcggaaaaagagttggtagctcttgatccggcaaacaaaccaccgctggtagcggtttttttgtttgcaagcagcagattacgcgcagaaaaaaaggatctcaagaagatcctttgatcttttctacggggtctgacgctcagtggaacgaaaactcacgttaagggattttggtcatgagattatcaaaaaggatcttcacctagatccttttaaattaaaaatgaagttttaaatcaatctaaagtatatatgagtaaacttggtctgacagttaccaatgcttaatcagtgaggcacctatctcagcgatctgtctatttcgttcatccatagttgcctgactccccgtcgtgtagataactacgatacgggagggcttaccatctggccccagtgctgcaatgataccgcgagacccacgctcaccggctccagatttatcagcaataaaccagccagccggaagggccgagcgcagaagtggtcctgcaactttatccgcctccatccagtctattaattgttgccgggaagctagagtaagtagttcgccagttaatagtttgcgcaacgttgttgccattgctacaggcatcgtggtgtcacgctcgtcgtttggtatggcttcattcagctccggttcccaacgatcaaggcgagttacatgatcccccatgttgtgcaaaaaagcggttagctccttcggtcctccgatcgttgtcagaagtaagttggccgcagtgttatcactcatggttatggcagcactgcataattctcttactgtcatgccatccgtaagatgcttttctgtgactggtgagtactcaaccaagtcattctgagaatagtgtatgcggcgaccgagttgctcttgcccggcgtcaatacgggataataccgcgccacatagcagaactttaaaagtgctcatcattggaaaacgttcttcggggcgaaaactctcaaggatcttaccgctgttgagatccagttcgatgtaacccactcgtgcacccaactgatcttcagcatcttttactttcaccagcgtttctgggtgagcaaaaacaggaaggcaaaatgccgcaaaaaagggaataagggcgacacggaaatgttgaatactcatactcttcctttttcaatattattgaagcatttatcagggttattgtctcatgagcggatacatatttgaatgtatttagaaaaataaacaaataggggttccgcgcacatttccccgaaaagtgccacctgacgtc (9672 bp). (SEQ ID NO.26)
The U6-CasRx crRNA-BspQI-BspQI-CasRx crRNA plasmid was synthesized in Kinsley with the sequence: tgagcaaaaggccagcaaaaggccaggaaccgtaaaaaggccgcgttgctggcgtttttccataggctccgcccccctgacgagcatcacaaaaatcgacgctcaagtcagaggtggcgaaacccgacaggactataaagataccaggcgtttccccctggaagctccctcgtgcgctctcctgttccgaccctgccgcttaccggatacctgtccgcctttctcccttcgggaagcgtggcgctttctcaatgctcacgctgtaggtatctcagttcggtgtaggtcgttcgctccaagctgggctgtgtgcacgaaccccccgttcagcccgaccgctgcgccttatccggtaactatcgtcttgagtccaacccggtaagacacgacttatcgccactggcagcagccactggtaacaggattagcagagcgaggtatgtaggcggtgctacagagttcttgaagtggtggcctaactacggctacactagaaggacagtatttggtatctgcgctctgctgaagccagttaccttcggaaaaagagttggtagctcttgatccggcaaacaaaccaccgctggtagcggtggtttttttgtttgcaagcagcagattacgcgcagaaaaaaaggatctcaagaagatcctttgatcttttctacggggtctgacgctcagtggaacgaaaactcacgttaagggattttggtcatgagattatcaaaaaggatcttcacctagatccttttaaattaaaaatgaagttttaaatcaatctaaagtatatatgagtaaacttggtctgacagttaccaatgcttaatcagtgaggcacctatctcagcgatctgtctatttcgttcatccatagttgcctgactccccgtcgtgtagataactacgatacgggagggcttaccatctggccccagtgCTGCAATGATACCGCGAGATCCACGCTCACCGGCTCCAGATTTATCAGCAAtaaaccagccagccggaagggccgagcgcagaagtggtcctgcaactttatccgcctccatccagtctattaattgttgccgggaagctagagtaagtagttcgccagttaatagtttgcgcaacgttgttgccattgctacaggcatcgtggtgtcacgctcgtcgtttggtatggcttcattcagctccggttcccaacgatcaaggcgagttacatgatcccccatgttgtgcaaaaaagcggttagctccttcggtcctccgatcgttgtcagaagtaagttggccgcagtgttatcactcatggttatggcagcactgcataattctcttactgtcatgccatccgtaagatgcttttctgtgactggtgagtactcaaccaagtcattctgagaatagtgtatgcggcgaccgagttgctcttgcccggcgtcaatacgggataataccgcgccacatagcagaactttaaaagtgctcatcattggaaaacgttcttcggggcgaaaactctcaaggatcttaccgctgttgagatccagttcgatgtaacccactcgtgcacccaactgatcttcagcatcttttactttcaccagcgtttctgggtgagcaaaaacaggaaggcaaaatgccgcaaaaaagggaataagggcgacacggaaatgttgaatactcatactcttcctttttcaatattattgaagcatttatcagggttattgtctcatgagcggatacatatttgaatgtatttagaaaaataaacaaataggggttccgcgcacatttccccgaaaagtgccacctgacgcgccctgtagcggcgcattaagcgcggcgggtgtggtggttacgcgcagcgtgaccgctacacttgccagcgccctagcgcccgctcctttcgctttcttcccttcctttctcgccacgttcgccggctttccccgtcaagctctaaatcgggggctccctttagggttccgatttagtgctttacggcacctcgaccccaaaaaacttgattagggtgatggttcacgtagtgggccatcgccctgatagacggtttttcgccctttgacgttggagtccacgttctttaatagtggactcttgttccaaactggaacaacactcaaccctatctcggtctattcttttgatttataagggattttgccgatttcggcctattggttaaaaaatgagctgatttaacaaaaatttaacgcgaattttaacaaaatattaacgcttacaatttgccattcgccattcaggctgcgcaactgttgggaagggcgatcggtgcgggcctcttcgctattacgccagcccaagctaccatgataagtaagtaatattaaggtacgggaggtacttggagcggccgcaataaaatatctttattttcattacatctgtgtgttggttttttgtgtgaatcgatagtactaacatacgctctccatcaaaacaaaacgaaacaaaacaaactagcaaaataggctgtccccagtgcaagtgcaggtgccagaacatttctctatcgataggtaccgattagtgaacggatctcgacggtatcgatcacgagactagcctcgagcggccgcccccttcaccgagggcctatttcccatgattccttcatatttgcatatacgatacaaggctgttagagagataattggaattaatttgactgtaaacacaaagatattagtacaaaatacgtgacgtagaaagtaataatttcttgggtagtttgcagttttaaaattatgttttaaaatggactatcatatgcttaccgtaacttgaaagtatttcgatttcttggCTTTATATATCTTGTGGAAAGGACgaaacaccGCAAGTAAACCCCTACCAACTGGTCGGGGTTTGAAACAGAAGAGCCTCGAGGCTCTTCTCAAGTAAACCCCTACCAACTGGTCGGGGTTTGAAACGAAGACTTTTTTTTTCGCTTCCTCGCTCACTgactcgctgcgctcggtcgttcggctgcggcgagcggtatcagctcactcAAAGGCGGTAATACGGTCCTCGAGACAAATGGCAGTAttcatccacaattttaaaagaaaaggggggattggggggtacagtgcaggggaaagaatagtagacataatagcaacagacatacaaactaaagaattacaaaaacaaattacaaaaattcaaaattttcgggtttattacagggacagcagagatccactttggccgcggctcgagggggttggggttgcgccttttccaaggcagccctgggtttgcgcagggacgcggctgctctgggcgtggttccgggaaacgcagcggcgccgaccctgggactcgcacattcttcacgtccgttcgcagcgtcacccggatcttcgccgctacccttgtgggccccccggcgacgcttcctgctccgcccctaagtcgggaaggttccttgcggttcgcggcgtgccggacgtgacaaacggaagccgcacgtctcactagtaccctcgcagacggacagcgccagggagcaatggcagcgcgccgaccgcgatgggctgtggccaatagcggctgctcagcagggcgcgccgagagcagcggccgggaaggggcggtgcgggaggcggggtgtggggcggtagtgtgggccctgttcctgcccgcgcggtgttccgcattctgcaagcctccggagcgcacgtcggcagtcggctccctcgttgaccgaatcaccgacctctctccccagggggatccaccGGAGCTTACCatgaccgagtacaagcccacggtgcgcctcgccacccgcgacgacgtccccagggccgtacgcaccctcgccgccgcgttcgccgactaccccgccacgcgccacaccgtcgatccggaccgccacatcgagcgggtcaccgagctgcaagaactcttcctcacgcgcgtcgggctcgacatcggcaaggtgtgggtcgcggacgacggcgccgcggtggcggtctggaccacgccggagagcgtcgaagcgggggcggtgttcgccgagatcggcccgcgcatggccgagttgagcggttcccggctggccgcgcagcaacagatggaaggcctcctggcgccgcaccggcccaaggagcccgcgtggttcctggccaccgtcggcgtctcgcccgaccaccagggcaagggtctgggcagcgccgtcgtgctccccggagtggaggcggccgagcgcgccggggtgcccgccttcctggaAacctccgcgccccgcaacctccccttctacgagcggctcggcttcaccgtcaccgccgacgtcgaggtgcccgaaggaccgcgcacctggtgcatgacccgcaagcccggtgcctgaCGCCCGCCCCACGACCCGCAGCGCCCGACCGAAAGGAGCGCACGACCCCATGCATCGgtacctttaagaccaatgacttacaaggcagctgtagatcttagccactttctagagtcggggcggccggccgcttcgagcagacatgataagatacattgatgagtttggacaaaccacaactagaatgcagtgaaaaaaatgctttatttgtgaaatttgtgatgctattgctttatttgtaaccattataagctgcaataaacaagttaacaacaacaattgcattcattttatgtttcaggttcagggggaggtgtgggaggttttttaaAGCAAGTAAAACCTCTACAAATGTGGTCGCTTCCTCGCTCACTgactcgctgcgctcggtcgttcggctgcggcgagcggtatcagctcactcaaaggcggtaatacggttatccacagaatcaggggataacgcaggaaagaacatg (4875bp), (SEQ ID NO.27) respectively designs 18-60 base complementary paired upstream and downstream primers according to the target site sequence, and dissolves to 100 μ M with sterilized water. After annealing, the recombinant plasmid was ligated to a U6-CasRx crRNA-BspQI-BspQI-CasRx crRNA vector to construct a target-specific sgRNA. The primer sequences of sgrnas are as follows:
4582B_ADGRV1 TTGctgagggtccccagtgtttctggatgacatcatGgatcagcccagctgtc(SEQ ID NO.28)
4582T_ADGRV1 AACgacagctgggctgatcCatgatgtcatccagaaacactggggaccctcag(SEQ ID NO.29)
4583B_AHI1 TTGttacaggatgctatgattccatgatacggatatGgaaagttgagatgaga(SEQ ID NO.30)
4583T_AHI1 AACtctcatctcaactttcCatatccgtatcatggaatcatagcatcctgtaa(SEQ ID NO.31)
4584B_APC TTGtggaacagatacgcgcttactgtgaaacctgttGggagtggcaggaagct(SEQ ID NO.32)
4584T_APC AACagcttcctgccactccCaacaggtttcacagtaagcgcgtatctgttcca(SEQ ID NO.33)
4585B_BMPR2 TTGtatgcaagtatttaagtctccacacaagtgactGggtaagctcttgccgt(SEQ ID NO.34)
4585T_BMPR2 AACacggcaagagcttaccCagtcacttgtgtggagacttaaatacttgcata(SEQ ID NO.35)
4586B_BRCA1 TTGgatgtgtgaggcacctgtggtgacccgagagtgGgtgttggacagtgtag(SEQ ID NO.36)
4586T_BRCA1 AACctacactgtccaacacCcactctcgggtcaccacaggtgcctcacacatc(SEQ ID NO.37)
4587B_COL3A1 TTGtctgccatcctgaactcaagagtggagaatactGggttgaccctaaccaa(SEQ ID NO.38)
4587T_COL3A1 AACttggttagggtcaaccCagtattctccactcttgagttcaggatggcaga(SEQ ID NO.39)
4588B_DNAH5 TTGtcatcaaggaaccaaatgatctgttaaagctgtGgaagcatgagtgtaaa(SEQ ID NO.40)
4588T_DNAH5 AACtttacactcatgcttcCacagctttaacagatcatttggttccttgatga(SEQ ID NO.41)
4589B_MECP2 TTGccatgtatgatgaccccaccctgcctgaaggctGgacacggaagcttaag(SEQ ID NO.42)
4589T_MECP2 AACcttaagcttccgtgtcCagccttcaggcagggtggggtcatcatacatgg(SEQ ID NO.43)
4590B_MYBPC3 TTGagccaccccaggatgtcggcaacacggagctctGggggtacacagtgcag(SEQ ID NO.44)
4590T_MYBPC3 AACctgcactgtgtaccccCagagctccgtgttgccgacatcctggggtggct(SEQ ID NO.45)
4591B_PRKN TTGggctcgagtggtgctggaactgtggctgcgagtGgaaccgcgtctgcatg(SEQ ID NO.46)
4591T_PRKN AACcatgcagacgcggttcCactcgcagccacagttccagcaccactcgagcc(SEQ ID NO.47)
4591B_PRKN_60 TTGccccagtgcaggctcgagtggtgctggaactgtggctgcgagtGgaaccgcgtctgcatg(SEQ ID NO.48)
4591T_PRKN_60 AACcatgcagacgcggttcCactcgcagccacagttccagcaccactcgagcctgcactgggg(SEQ ID NO.49)
4591B_PRKN_40 TTGgtgctggaactgtggctgcgagtGgaaccgcgtctgcatg(SEQ ID NO.50)
4591T_PRKN_40 AACcatgcagacgcggttcCactcgcagccacagttccagcac(SEQ ID NO.51)
4591B_PRKN_30 TTGtgtggctgcgagtGgaaccgcgtctgcatg(SEQ ID NO.52)
4591T_PRKN_30 AACcatgcagacgcggttcCactcgcagccaca(SEQ ID NO.53)
4591B_PRKN_25 TTGgtggctgcgagtGgaaccgcgtctg(SEQ ID NO.54)
4591T_PRKN_25 AACcagacgcggttcCactcgcagccac(SEQ ID NO.55)
4591B_PRKN_22 TTGgctgcgagtGgaaccgcgtctg(SEQ ID NO.56)
4591T_PRKN_22 AACcagacgcggttcCactcgcagc(SEQ ID NO.57)
4591B_PRKN_18 TTGcgagtGgaaccgcgtctg(SEQ ID NO.58)
4591T_PRKN_18 AACcagacgcggttcCactcg(SEQ ID NO.59)
the U6-CasRx crRNA-BspQI-CasRx crRNA plasmid was cleaved with BspQI (NEB, R0712L) to give a linearized sgRNA vector. And (3) recovering the enzyme digestion product by using an AxyPrep DNA gel recovery kit (Axygen, AP-GX-250G) as a tapping gel to obtain a linear carrier. 20ng of the linearized vector and 1 μ l of the annealed product were ligated by Solution I (Takara, 6022), incubated at 16 ℃ for 1 hour, and then transformed into a plate, and subjected to Sanger sequencing to obtain the correct target-specific sgRNA.
Example 2
Base editing efficiency comparison of Vx system on reporter system:
n2a cells were transfected using the Vx system described above as follows:
1) n2a cells (from ATCC) were recovered and cultured in 10cm dishes (Corning,430167) in DMEM (HyClone, SH30243.01) mixed with 10% fetal bovine serum (HyClone, SV 30087). The culture temperature was 37 ℃ and the carbon dioxide concentration was 5%. After multiple passages when the cell density was 80%, cells were plated into 24-well plates.
2) When the cell concentration is 80%, the cell state is recovered to the optimum state by changing the culture medium with 10% serum DMEM and culturing for 2 hours. The amount of plasmid transfected per well was 300ng Vx plasmid, 200ng sgRNA plasmid, 20ng reporter plasmid, respectively. The plasmid was mixed in 50. mu.l of Opti-MEM (Gibco,11058021) medium. Systems V1 and V2 were used as positive control groups, the preparation methods of the systems V1 and V2 were the same as the Vx system, and the references to plasmid information: d.b.t.cox et al, Science 10.1126/science.aaq0180(2017).
3) Mu.l of Lipofectamine 2000 transfection reagent (Thermo,11668019) was mixed into 50. mu.l of Opti-MEM medium and allowed to stand for 5 minutes.
4) The plasmid-mixed Opti-MEM was added to the plasmid-mixed Opti-MEM mixed with Lipofectamine 2000, gently whipped, mixed well, and allowed to stand for 20 minutes.
5) Opti-MEM mixed with plasmid and Lipofectamine 2000 was added to 24-well plates, respectively.
6) 6 hours after transfection, the cells were replaced with 10% FBS in DMEM.
7) 12 hours after transfection, a drug kill treatment was performed with Puromycin (Invivogen, nt-pr-1) at a final concentration of 2 ng/ml.
8) Cells were harvested 48 hours after transfection, and RNA was extracted by TRIzol-chloroform method. 500ng of Total RNA was reverse transcribed using the Novozan reverse transcription kit HiScript II Q RT SuperMix kit (Vazyme, R223-01).
9) PCR primers (CGCCGAGGGCCGCCACTCCAC (SEQ ID NO.60) and ACGCTGAACTTGTGGCCGTTT) (SEQ ID NO.61) were designed and synthesized, and diluted to 10. mu.M with water. The target site fragment was PCR amplified using Novozam high fidelity enzyme kit (Vazyme, p501-d 2). Recovering PCR product sample by using AxyPrep DNA gel recovery kit (Axygen, AP-GX-250G) as tapping gel to remove non-specific band; sending to deep-seq sequencing analysis.
The Vx system has higher editing efficiency and accuracy under sgRNA with the length of 30 nt:
cas13d family member CasRx is known to have several loops on the outer protein surface that can be removed without affecting the protein function. We found that insertion of ADAR2DD (E488Q) into such a loop results in a base editing tool capable of targeting RNA, abbreviated repair (Vx, fig. 1), as detailed below.
To compare Vx, V1, and V2, we used a target sequence known to be editable by V1. A specific target sequence is G with clinical relevance>A mutated human PRKN mRNA fragment (GAGCAGGCTCGTTGGGAAGCAGCCTCCAAAGAAACCATCAAGAAAACCACCAAGCCCTGTCCCCGCTGCCATGTACCAGTGGAAAAAAATGGAGGCTGCATGCACATGAAGTGTCCGCAGCCCCAGTGCAGGCTCGAGTGGTGCTGGAACTGTGGCTGCGAGTAGAACCGCGTCTGCATGGGGGACCACTGGTTCGACGTG) (SEQ ID NO.62) which generates a premature stop codon (UAG, W55X; FIG. 2), additionally targeting the mutation status of the remaining A on the mRNA may reflect the accuracy of the editing tool (FIG. 3). To more intuitively examine the editing efficiency of target sites A to I, we constructed a GFP-based reporterA particle carrying a mutated fragment inserted upstream of GFP, wherein the stop codon prevents GFP expression until a is mutated to I. On the other hand, the reporter plasmid constitutively expresses mCherry, which serves as a standardized control for the recovery of GFP expression. The grnas for all three REPAIR versions share a 30nt complementary region, but the positions and sequences of the crrnas differ. Finally, control grnas lacking Direct Region (DR) were used to analyze the role of dCas in editing; this control is critical because the ADAR2 DD Has the potential ability to recognize and edit any double-stranded RNA independently of dCas. This control was not set in previous studies with V1 and V2. Therefore our data can more closely compare and describe the performance of the three systems V1, V2 and Vx.
To evaluate the editing activity of REPAIR, we co-transfected the reporter plasmid and V1/V2/Vx and the respective gRNA plasmids into N2a cells (the corresponding primers used are shown below in 30nt-mismatch17C up and 30nt-mismatch17C down), and analyzed the cells for fluorescent expression after 48 hours. Consistent with the expectation, V1 induced GFP expression more efficiently than V2, but Vx was more efficient than V1 (fig. 5). sgRNA lacking DR affected induction of GFP from Vx groups, but GFP signal from V1 and V2 was largely independent of dCas13b (fig. 5).
We next quantified GFP induction efficiency using FACS (fig. 4). We transfected cells with a plasmid that had repaired W55X as a positive control. GFP was constitutively co-expressed with mCherry in transfected cells, and the Mean Fluorescence Intensity (MFI) of the two proteins was similar (3222 vs 2551, ratio approximately equal to 1; FIG. 4, line 1, middle). GFP could not be detected in cells transfected with the plasmid of the W55X reporter system alone (fig. 4, line 1, right), but three editing systems, V1, V2 and Vx, were all able to induce GFP expression, and we used the GFP/mCherry ratio for evaluation of editing efficiency (fig. 5). In the presence of grnas with DR at 30nt length, the efficiency of editing was Vx > V1> V2, whereas DR-independent GFP induction was similar for the three editing systems (fig. 5).
We then used deep-seq to directly quantify the editing efficiency of the targeted adenosine (A45) and the flanking non-targeted A within the 224-bp PRKN mRNA fragment (53 in total). The efficiencies of all 54 a's are shown in a heat map (fig. 6), and the efficiencies of a45 and the other 53 wings off target are bar chart and violin chart, respectively (fig. 7). For a45, Vx was indeed the most effective in the presence of DR (efficiency 67%, whereas V1 and V2 were 40% and 5%, respectively), whereas DR independent editing was comparable in three-bit editing (V1, V2 and Vx 14%, 7%, 10%, respectively), consistent with FACS analysis results. Of the 53 non-target a, the editing efficiency of all three editing systems differed greatly (fig. 7). For V1, these efficiencies ranged from 0.01% to 20% (median 0.4%) in the presence of DR. Importantly, Vx is more specific with a median of 0.08%, which is the same as V2 (median of 0.08%). DR deletion did not affect off-target effects (fig. 7).
Overall, the data for the reporting system indicates that Vx is superior to both V1 and V2 in efficiency and accuracy.
Effect of sgRNA length and mismatch distance on Vx editing:
the above-described reporter system uses sgrnas of 30 nt. Next, the sgRNA length was changed from 18 to 60nt, and primers used for constructing the sgRNA were as follows:
18nt-mismatch17C up:AACcatgcagacgcggttcCa;(SEQ ID NO.63)
18nt-mismatch17C down:TTGtGgaaccgcgtctgcatg;(SEQ ID NO.64)
22nt-mismatch17C up:AACcatgcagacgcggttcCactcg;(SEQ ID NO.65)
22nt-mismatch17C down:TTGcgagtGgaaccgcgtctgcatg;(SEQ ID NO.66)
25nt-mismatch17C up:AACcatgcagacgcggttcCactcgcag;(SEQ ID NO.67)
25nt-mismatch17C down:TTGctgcgagtGgaaccgcgtctgcatg;(SEQ ID NO.68)
30nt-mismatch17C up:AACcatgcagacgcggttcCactcgcagccaca;(SEQ ID NO.69)
30nt-mismatch17C down:TTGtgtggctgcgagtGgaaccgcgtctgcatg;(SEQ ID NO.70)
40nt-mismatch17C up:AACcatgcagacgcggttcCactcgcagccacagttccagcac;(SEQ ID NO.71)
40nt-mismatch17C down:TTGgtgctggaactgtggctgcgagtGgaaccgcgtctgcatg;(SEQ ID NO.72)
50nt-mismatch17C up:AACcatgcagacgcggttcCactcgcagccacagttccagcaccactcgagcc;(SEQ ID NO.73)
50nt-mismatch17C down:TTGggctcgagtggtgctggaactgtggctgcgagtGgaaccgcgtctgcatg。(SEQ ID NO.74)
and determining the influence on the efficiencies of V1, V2 and Vx (FIG. 8a, FIG. 8 b).
The editing efficiency of a45 was first examined using FACS and deep-seq, with reference to the above examination method of editing efficiency for sgrnas of 30nt length. First, V1 and V2 required sgrnas of 40nt in length to obtain optimal activity, but sgrnas as short as 25nt were sufficient to support maximum editing activity of Vx, consistent with Cas13b and CasRx attributes, respectively. But shorter sgRNA lengths can reduce off-target of ADAR (fig. 8a, fig. 8 b). Second, Vx is more efficient than V1 (especially at 22nt and 25nt, where Vx is about 3 times more active than V1) at each length tested in the presence of grnas carrying DR. Third, DR deletion significantly reduced the editing efficiency of sgrnas of all lengths of Vx, demonstrating the key role of dCasRx in editing. DR deletion also compromised the editing efficiency of V2 at sgrnas of 40nt length, but the editing efficiency of sgrnas of 50nt length was independent of the presence or absence of DR, where long RNA duplexes were known to be sufficient to recruit ADAR directly (fig. 8a, fig. 8 b).
Further described here is the off-target editing of a45 flanking a, with Vx off-target effect much weaker than V1 but comparable to V2 regardless of DR status and all sgRNA lengths tested (fig. 9).
Finally, it was determined how the mismatch C distance affected Vx (fig. 10a, fig. 10 b). Primers used for construction of sgrnas were as follows:
22nt-mismatch3C up:AACtcCactcgcagccacagttcca;(SEQ ID NO.75)
22nt-mismatch3C down:TTGtggaactgtggctgcgagtGga;(SEQ ID NO.76)
22nt-mismatch5C up:AACgttcCactcgcagccacagttcc;(SEQ ID NO.77)
22nt-mismatch5C down:TTGggaactgtggctgcgagtGgaac;(SEQ ID NO.78)
22nt-mismatch6C up:AACggttcCactcgcagccacagtt;(SEQ ID NO.79)
22nt-mismatch6C down:TTGaactgtggctgcgagtGgaacc;(SEQ ID NO.80)
22nt-mismatch7C up:AACcggttcCactcgcagccacagt;(SEQ ID NO.81)
22nt-mismatch7C down:TTGactgtggctgcgagtGgaaccg;(SEQ ID NO.82)
22nt-mismatch8C up:AACgcggttcCactcgcagccacag;(SEQ ID NO.83)
22nt-mismatch8C down:TTGctgtggctgcgagtGgaaccgc;(SEQ ID NO.84)
22nt-mismatch9C up:AACcgcggttcCactcgcagccaca;(SEQ ID NO.85)
22nt-mismatch9C down:TTGtgtggctgcgagtGgaaccgcg;(SEQ ID NO.86)
22nt-mismatch10C up:AACacgcggttcCactcgcagccac;(SEQ ID NO.87)
22nt-mismatch10C down:TTGgtggctgcgagtGgaaccgcgt;(SEQ ID NO.88)
22nt-mismatch11C up:AACgacgcggttcCactcgcagcca;(SEQ ID NO.89)
22nt-mismatch11C down:TTGtggctgcgagtGgaaccgcgtc;(SEQ ID NO.90)
22nt-mismatch12C up:AACagacgcggttcCactcgcagcc;(SEQ ID NO.91)
22nt-mismatch12C down:TTGggctgcgagtGgaaccgcgtct;(SEQ ID NO.92)
22nt-mismatch13C up:AACcagacgcggttcCactcgcagc;(SEQ ID NO.93)
22nt-mismatch13C down:TTGgctgcgagtGgaaccgcgtctg;(SEQ ID NO.94)
22nt-mismatch14C up:AACgcagacgcggttcCactcgcag;(SEQ ID NO.95)
22nt-mismatch14C down:TTGctgcgagtGgaaccgcgtctgc;(SEQ ID NO.96)
22nt-mismatch15C up:AACtgcagacgcggttcCactcgca;(SEQ ID NO.97)
22nt-mismatch15C down:TTGtgcgagtGgaaccgcgtctgca;(SEQ ID NO.98)
22nt-mismatch18C up:AACccatgcagacgcggttcCactc;(SEQ ID NO.99)
22nt-mismatch18C down:TTGgagtGgaaccgcgtctgcatgg;(SEQ ID NO.100)
in the case of sgrnas of 22nt length, mismatches of 6-15nt were efficiently edited by > 40% with the exception of 8nt and 11nt (20% and 30%, respectively; fig. 10 b). The sgRNA of 18nt still had editing activity, although the efficiency at only a few mismatch distances, i.e. at 7nt and 9nt, was close to 40% (fig. 10 b).
It can be seen that Vx can achieve optimal editing activity even with various mismatch distances in short 25 nt-length sgrnas.
Reflection of ADAR2 using sgRNA of 22nt length DD Base bias properties on both sides of edit a:
codon bias for Vx was explored by testing all possible combinations of 5 'and 3' nucleotides targeting the a flank. The sgRNA length is 22nt, and sgRNA primers were constructed as follows:
22nt-TAT mismatch12C up:AACagacgcggttaCactcgcagcc;(SEQ ID NO.101)
22nt-TAT mismatch12C down:TTGggctgcgagtGtaaccgcgtct;(SEQ ID NO.102)
22nt-AAT mismatch12C up:AACagacgcggtttCactcgcagcc;(SEQ ID NO.103)
22nt-AAT mismatch12C down:TTGggctgcgagtGaaaccgcgtct;(SEQ ID NO.104)
22nt-CAT mismatch12C up:AACagacgcggttgCactcgcagcc;(SEQ ID NO.105)
22nt-CAT mismatch12C down:TTGggctgcgagtGcaaccgcgtct;(SEQ ID NO.106)
22nt-AAA mismatch12C up:AACagacgcggtttCtctcgcagcc;(SEQ ID NO.107)
22nt-AAA mismatch12C down:TTGggctgcgagaGaaaccgcgtct;(SEQ ID NO.108)
22nt-AAT mismatch12C up:AACagacgcggttaCtctcgcagcc;(SEQ ID NO.109)
22nt-AAT mismatch12C down:TTGggctgcgagtGaaaccgcgtct;(SEQ ID NO.110)
22nt-CAA mismatch12C up:AACagacgcggttgCtctcgcagc;(SEQ ID NO.111)
22nt-CAA mismatch12C down:TTGggctgcgagaGcaaccgcgtct;(SEQ ID NO.112)
22nt-GAA mismatch12C up:AACagacgcggttcCtctcgcagc;(SEQ ID NO.113)
22nt-GAA mismatch12C down:TTGggctgcgagaGgaaccgcgtct;(SEQ ID NO.114)
22nt-AAC mismatch12C up:AACagacgcggtttCgctcgcagc;(SEQ ID NO.115)
22nt-AAC mismatch12C down:TTGggctgcgagcGaaaccgcgtct;(SEQ ID NO.116)
22nt-TAC mismatch12C up:AACagacgcggttaCgctcgcagc;(SEQ ID NO.117)
22nt-TAC mismatch12C down:TTGggctgcgagcGtaaccgcgtct;(SEQ ID NO.118)
22nt-CAC mismatch12C up:AACagacgcggttgCgctcgcagc;(SEQ ID NO.119)
22nt-CAC mismatch12C down:TTGggctgcgagcGcaaccgcgtct;(SEQ ID NO.120)
22nt-GAC mismatch12C up:AACagacgcggttcCgctcgcagc;(SEQ ID NO.121)
22nt-GAC mismatch12C down:TTGggctgcgagcGgaaccgcgtct;(SEQ ID NO.122)
22nt-AAG mismatch12C up:AACagacgcggtttCcctcgcagc;(SEQ ID NO.123)
22nt-AAG mismatch12C down:TTGggctgcgaggGaaaccgcgtct;(SEQ ID NO.124)
22nt-TAG mismatch12C up:AACagacgcggttaCcctcgcagc;(SEQ ID NO.125)
22nt-TAG mismatch12C down:TTGggctgcgaggGtaaccgcgtct;(SEQ ID NO.126)
22nt-CAG mismatch12C up:AACagacgcggttgCcctcgcagc;(SEQ ID NO.127)
22nt-CAG mismatch12C down:TTGggctgcgaggGcaaccgcgtct;(SEQ ID NO.128)
22nt-GAG mismatch12C up:AACagacgcggttcCcctcgcagc;(SEQ ID NO.129)
22nt-GAG mismatch12C down:TTGggctgcgaggGgaaccgcgtct;(SEQ ID NO.130)
even in the case of grnas only 22nt long, Vx can edit all 16 triplets (9-40% efficiency), except for 4 codons beginning with G, which are slightly less efficient (< 8%; fig. 11), consistent with the known ADAR2DD properties.
Other disease-associated G > a mutations were corrected using sgrnas of 22nt length:
it has been demonstrated that Vx can repair PRKN mutations with high efficiency and precision, further extending this analysis to 7 more disease-associated G > a mutations. The sgRNA length is 22nt, and sgRNA primers were constructed as follows:
ADGRV1 22-mismatch12C up:AACctgggctgatcCatgatgtcat(SEQ ID NO.131)
ADGRV1 22-mismatch12C down:TTGatgacatcatGgatcagcccag(SEQ ID NO.132)
AHI1 22-mismatch12 up:AACtctcaactttcCatatccgtat(SEQ ID NO.133)
AHI1 22-mismatch12 down:TTGatacggatatGgaaagttgaga(SEQ ID NO.134)
APC 22-mismatch12 up:AACcctgccactccCaacaggtttc(SEQ ID NO.135)
APC 22-mismatch12 down:TTGgaaacctgttGggagtggcagg(SEQ ID NO.136)
COL3A1 22-mismatch12 up:AACtagggtcaaccCagtattctcc(SEQ ID NO.137)
COL3A1 22-mismatch12 down:TTGggagaatactGggttgacccta(SEQ ID NO.138)
DNAH5 22-mismatch12 up:AACactcatgcttcCacagctttaa(SEQ ID NO.139)
DNAH5 22-mismatch12 down:TTGttaaagctgtGgaagcatgagt(SEQ ID NO.140)
MECP2 22-mismatch12 up:AACgcttccgtgtcCagccttcagg(SEQ ID NO.141)
MECP2 22-mismatch12 down:TTGcctgaaggctGgacacggaagc(SEQ ID NO.142)
MYBPC3 22-mismatch12 up:AACctgtgtaccccCagagctccgt(SEQ ID NO.143)
MYBPC3 22-mismatch12 down:TTGacggagctctGggggtacacag(SEQ ID NO.144)
vx can edit all 7 genes even with a suboptimal gRNA of 22nt length with an efficiency of 12-53% (fig. 12a, fig. 12b), better than the editing efficiency of V1 at sgrnas of 50nt length (20-28%) (fig. 12a, fig. 12 b).
Editing and off-target effects on endogenous transcripts:
to test the efficiency of Vx editing on endogenous transcripts, transcripts that targeted successful editing of previous V1 and V2 (KRAS and PPIB) were selected. However, Kras mRNA was very low expressed in N2a cells, and Ppib expression level was relatively high. V1 is known to edit two sites on human PPIB mRNA with an efficiency of about 40% and 8%, respectively, compared to 10% -15% and 5% for V2. The exact editing site on the human transcript is missing from the mouse transcript, so the targeting sequences for sgrnas for the two nearby sites are as follows:
ppib1 up:AACtttgtaaatcaaagtaCaccttgactgtga;(SEQ ID NO.145)
ppib1 down:TTGtcacagtcaaggtGtactttgatttacaaa;(SEQ ID NO.146)
ppib2 up:AACcaaagacgactcgtccCacagattcatctc;(SEQ ID NO.147)
ppib2 down:TTGgagatgaatctgtGggacgagtcgtctttg;(SEQ ID NO.148)
the PCR primers were as follows:
Ppib forward:TCTTCCTTTTGCTGCCCGGACCCTC(SEQ ID NO.149)
Ppib reverse:ACATCCATGCCCTCTAGAACTTTGCCGAA(SEQ ID NO.150)
sanger sequencing primers:
Ppib sequencing:GCCGAAAACCACATGCTTGCC(SEQ ID NO.151)
as shown by Sanger sequencing (fig. 13), V1 achieved 33% -39% editing at two sites, compared to about 22% for V2. Importantly, Vx editing site 1 is more efficient (51% versus 39%) than V1 (31% versus 33%) and 2.
Three systems were further tested on GusB transcripts, the targeting sequences of sgrnas were as follows:
gusb1 up:AACtcccaagtagaaatacCagtgtcaggaagt;(SEQ ID NO.152)
gusb1 down:TTGacttcctgacactGgtatttctacttggga;(SEQ ID NO.153)
gusb2 up:AACgctttgatgtcacttcCaaagtccccttgt;(SEQ ID NO.154)
gusb2 down:TTG acaaggggactttGgaagtgacatcaaagc;(SEQ ID NO.155)
the PCR primers were as follows:
gusb forward:AGCTCATCTGGAATTTCGCCGACT(SEQ ID NO.156)
gusb reverse:AAGGCACTGTAAGTTATTATCCCCACGGAA(SEQ ID NO.157)
sanger sequencing primers:
gusb sequencing:GAATTTCGCCGACTTCATGACGA(SEQ ID NO.158)
its human counterpart can be edited by SNAP-ADAR. At both test sites, the efficiency of Vx (37% and 35%) was comparable to V1 (35% and 41%), but significantly higher than V2 (17% and 18%). Notably, at position 1, Vx edits an adenosine near a weak target (14%, whereas V1 is 22%). Finally, Vx was also effective (60%) for Actb mRNA. The results were reproducible in three independent experiments (fig. 13). sgRNA target sequences are as follows:
actb up:AACtctcctgctcgaagtcCagagcaacatag;(SEQ ID NO.159)
actb down:TTGctatgttgctctGgacttcgagcaggaga;(SEQ ID NO.160)
the PCR primers were as follows:
actb forward:ACATCCGTAAAGACCTCTATGCCAACAC;(SEQ ID NO.161)
actb reverse:CCAGGGAGACCAAAGCCTTCATACATCA;(SEQ ID NO.162)
sanger sequencing primers:
actb sequencing:CCGACAGGATGCAGAAGGAGA;(SEQ ID NO.163)
whole transcriptome random off-target conditions:
whole transcriptome random off-target events are important for occasional weak off-target effects near the target RNA as described above. V1 showed high off-target rates, 24606 off-target sites, whereas V2 was only 144 (fig. 14). Notably, Vx is close to the V2 off-target site (205 sites). As expected, DR deletion did not significantly affect off-target editing (V1, V2 and Vx 18292,182 and 132, respectively; FIG. 14).
It can be seen that Vx has similar RNA targeting activity to V1 and has the advantage of low off-target as V2, demonstrating that the Vx version is currently the best RNA base editing system based on CRISPR systems.
In conclusion, the present invention effectively overcomes various disadvantages of the prior art and has high industrial utilization value.
The foregoing embodiments are merely illustrative of the principles and utilities of the present invention and are not intended to limit the invention. Any person skilled in the art can modify or change the above-mentioned embodiments without departing from the spirit and scope of the present invention. Accordingly, it is intended that all equivalent modifications or changes which can be made by those skilled in the art without departing from the spirit and technical spirit of the present invention be covered by the claims of the present invention.
Sequence listing
<110> Shanghai science and technology university
<120> an RNA base-editing molecule
<160> 163
<170> SIPOSequenceListing 1.0
<210> 1
<211> 558
<212> PRT
<213> Artificial Sequence (Artificial Sequence)
<400> 1
Ile Glu Lys Lys Lys Ser Phe Ala Lys Gly Met Gly Val Lys Ser Thr
1 5 10 15
Leu Val Ser Gly Ser Lys Val Tyr Met Thr Thr Phe Ala Glu Gly Ser
20 25 30
Asp Ala Arg Leu Glu Lys Ile Val Glu Gly Asp Ser Ile Arg Ser Val
35 40 45
Asn Glu Gly Glu Ala Phe Ser Ala Glu Met Ala Asp Lys Asn Ala Gly
50 55 60
Tyr Lys Ile Gly Asn Ala Lys Phe Ser His Pro Lys Gly Tyr Ala Val
65 70 75 80
Val Ala Asn Asn Pro Leu Tyr Thr Gly Pro Val Gln Gln Asp Met Leu
85 90 95
Gly Leu Lys Glu Thr Leu Glu Lys Arg Tyr Phe Gly Glu Ser Ala Asp
100 105 110
Gly Asn Asp Asn Ile Cys Ile Gln Val Ile His Asn Ile Leu Asp Ile
115 120 125
Glu Lys Ile Leu Ala Glu Tyr Ile Thr Asn Ala Ala Tyr Ala Val Asn
130 135 140
Asn Ile Ser Gly Leu Asp Lys Asp Ile Ile Gly Phe Gly Lys Phe Ser
145 150 155 160
Thr Val Tyr Thr Tyr Asp Glu Phe Lys Asp Pro Glu His His Arg Ala
165 170 175
Ala Phe Asn Asn Asn Asp Lys Leu Ile Asn Ala Ile Lys Ala Gln Tyr
180 185 190
Asp Glu Phe Asp Asn Phe Leu Asp Asn Pro Arg Leu Gly Tyr Phe Gly
195 200 205
Gln Ala Phe Phe Ser Lys Glu Gly Arg Asn Tyr Ile Ile Asn Tyr Gly
210 215 220
Asn Glu Cys Tyr Asp Ile Leu Ala Leu Leu Ser Gly Leu Ala His Trp
225 230 235 240
Val Val Ala Asn Asn Glu Glu Glu Ser Arg Ile Ser Arg Thr Trp Leu
245 250 255
Tyr Asn Leu Asp Lys Asn Leu Asp Asn Glu Tyr Ile Ser Thr Leu Asn
260 265 270
Tyr Leu Tyr Asp Arg Ile Thr Asn Glu Leu Thr Asn Ser Phe Ser Lys
275 280 285
Asn Ser Ala Ala Asn Val Asn Tyr Ile Ala Glu Thr Leu Gly Ile Asn
290 295 300
Pro Ala Glu Phe Ala Glu Gln Tyr Phe Arg Phe Ser Ile Met Lys Glu
305 310 315 320
Gln Lys Asn Leu Gly Phe Asn Ile Thr Lys Leu Arg Glu Val Met Leu
325 330 335
Asp Arg Lys Asp Met Ser Glu Ile Arg Lys Asn His Lys Val Phe Asp
340 345 350
Ser Ile Arg Thr Lys Val Tyr Thr Met Met Asp Phe Val Ile Tyr Arg
355 360 365
Tyr Tyr Ile Glu Glu Asp Ala Lys Val Ala Ala Ala Asn Lys Ser Leu
370 375 380
Pro Asp Asn Glu Lys Ser Leu Ser Glu Lys Asp Ile Phe Val Ile Asn
385 390 395 400
Leu Arg Gly Ser Phe Asn Asp Asp Gln Lys Asp Ala Leu Tyr Tyr Asp
405 410 415
Glu Ala Asn Arg Ile Trp Arg Lys Leu Glu Asn Ile Met His Asn Ile
420 425 430
Lys Glu Phe Arg Gly Asn Lys Thr Arg Glu Tyr Lys Lys Lys Asp Ala
435 440 445
Pro Arg Leu Pro Arg Ile Leu Pro Ala Gly Arg Asp Val Ser Ala Phe
450 455 460
Ser Lys Leu Met Tyr Ala Leu Thr Met Phe Leu Asp Gly Lys Glu Ile
465 470 475 480
Asn Asp Leu Leu Thr Thr Leu Ile Asn Lys Phe Asp Asn Ile Gln Ser
485 490 495
Phe Leu Lys Val Met Pro Leu Ile Gly Val Asn Ala Lys Phe Val Glu
500 505 510
Glu Tyr Ala Phe Phe Lys Asp Ser Ala Lys Ile Ala Asp Glu Leu Arg
515 520 525
Leu Ile Lys Ser Phe Ala Arg Met Gly Glu Pro Ile Ala Asp Ala Arg
530 535 540
Arg Ala Met Tyr Ile Asp Ala Ile Arg Ile Leu Gly Thr Asn
545 550 555
<210> 2
<211> 385
<212> PRT
<213> Artificial Sequence (Artificial Sequence)
<400> 2
Gln Leu His Leu Pro Gln Val Leu Ala Asp Ala Val Ser Arg Leu Val
1 5 10 15
Leu Gly Lys Phe Gly Asp Leu Thr Asp Asn Phe Ser Ser Pro His Ala
20 25 30
Arg Arg Lys Val Leu Ala Gly Val Val Met Thr Thr Gly Thr Asp Val
35 40 45
Lys Asp Ala Lys Val Ile Ser Val Ser Thr Gly Thr Lys Cys Ile Asn
50 55 60
Gly Glu Tyr Met Ser Asp Arg Gly Leu Ala Leu Asn Asp Cys His Ala
65 70 75 80
Glu Ile Ile Ser Arg Arg Ser Leu Leu Arg Phe Leu Tyr Thr Gln Leu
85 90 95
Glu Leu Tyr Leu Asn Asn Lys Asp Asp Gln Lys Arg Ser Ile Phe Gln
100 105 110
Lys Ser Glu Arg Gly Gly Phe Arg Leu Lys Glu Asn Val Gln Phe His
115 120 125
Leu Tyr Ile Ser Thr Ser Pro Cys Gly Asp Ala Arg Ile Phe Ser Pro
130 135 140
His Glu Pro Ile Leu Glu Glu Pro Ala Asp Arg His Pro Asn Arg Lys
145 150 155 160
Ala Arg Gly Gln Leu Arg Thr Lys Ile Glu Ser Gly Gln Gly Thr Ile
165 170 175
Pro Val Arg Ser Asn Ala Ser Ile Gln Thr Trp Asp Gly Val Leu Gln
180 185 190
Gly Glu Arg Leu Leu Thr Met Ser Cys Ser Asp Lys Ile Ala Arg Trp
195 200 205
Asn Val Val Gly Ile Gln Gly Ser Leu Leu Ser Ile Phe Val Glu Pro
210 215 220
Ile Tyr Phe Ser Ser Ile Ile Leu Gly Ser Leu Tyr His Gly Asp His
225 230 235 240
Leu Ser Arg Ala Met Tyr Gln Arg Ile Ser Asn Ile Glu Asp Leu Pro
245 250 255
Pro Leu Tyr Thr Leu Asn Lys Pro Leu Leu Ser Gly Ile Ser Asn Ala
260 265 270
Glu Ala Arg Gln Pro Gly Lys Ala Pro Asn Phe Ser Val Asn Trp Thr
275 280 285
Val Gly Asp Ser Ala Ile Glu Val Ile Asn Ala Thr Thr Gly Lys Asp
290 295 300
Glu Leu Gly Arg Ala Ser Arg Leu Cys Lys His Ala Leu Tyr Cys Arg
305 310 315 320
Trp Met Arg Val His Gly Lys Val Pro Ser His Leu Leu Arg Ser Lys
325 330 335
Ile Thr Lys Pro Asn Val Tyr His Glu Ser Lys Leu Ala Ala Lys Glu
340 345 350
Tyr Gln Ala Ala Lys Ala Arg Leu Phe Thr Ala Phe Ile Lys Ala Gly
355 360 365
Leu Gly Ala Trp Val Glu Lys Pro Thr Glu Gln Asp Gln Phe Ser Leu
370 375 380
Thr
385
<210> 3
<211> 380
<212> PRT
<213> Artificial Sequence (Artificial Sequence)
<400> 3
Met Arg Asn Phe Ile Ile Asn Asn Val Ile Ser Asn Lys Arg Phe His
1 5 10 15
Tyr Leu Ile Arg Tyr Gly Asp Pro Ala His Leu His Glu Ile Ala Lys
20 25 30
Asn Glu Ala Val Val Lys Phe Val Leu Gly Arg Ile Ala Asp Ile Gln
35 40 45
Lys Lys Gln Gly Gln Asn Gly Lys Asn Gln Ile Asp Arg Tyr Tyr Glu
50 55 60
Thr Cys Ile Gly Lys Asp Lys Gly Lys Ser Val Ser Glu Lys Val Asp
65 70 75 80
Ala Leu Thr Lys Ile Ile Thr Gly Met Asn Tyr Asp Gln Phe Asp Lys
85 90 95
Lys Arg Ser Val Ile Glu Asp Thr Gly Arg Glu Asn Ala Glu Arg Glu
100 105 110
Lys Phe Lys Lys Ile Ile Ser Leu Tyr Leu Thr Val Ile Tyr His Ile
115 120 125
Leu Lys Asn Ile Val Asn Ile Asn Ala Arg Tyr Val Ile Gly Phe His
130 135 140
Cys Val Glu Arg Asp Ala Gln Leu Tyr Lys Glu Lys Gly Tyr Asp Ile
145 150 155 160
Asn Leu Lys Lys Leu Glu Glu Lys Gly Phe Ser Ser Val Thr Lys Leu
165 170 175
Cys Ala Gly Ile Asp Glu Thr Ala Pro Asp Lys Arg Lys Asp Val Glu
180 185 190
Lys Glu Met Ala Glu Arg Ala Lys Glu Ser Ile Asp Ser Leu Glu Ser
195 200 205
Ala Asn Pro Lys Leu Tyr Ala Asn Tyr Ile Lys Tyr Ser Asp Glu Lys
210 215 220
Lys Ala Glu Glu Phe Thr Arg Gln Ile Asn Arg Glu Lys Ala Lys Thr
225 230 235 240
Ala Leu Asn Ala Tyr Leu Arg Asn Thr Lys Trp Asn Val Ile Ile Arg
245 250 255
Glu Asp Leu Leu Arg Ile Asp Asn Lys Thr Cys Thr Leu Phe Ala Asn
260 265 270
Lys Ala Val Ala Leu Glu Val Ala Arg Tyr Val His Ala Tyr Ile Asn
275 280 285
Asp Ile Ala Glu Val Asn Ser Tyr Phe Gln Leu Tyr His Tyr Ile Met
290 295 300
Gln Arg Ile Ile Met Asn Glu Arg Tyr Glu Lys Ser Ser Gly Lys Val
305 310 315 320
Ser Glu Tyr Phe Asp Ala Val Asn Asp Glu Lys Lys Tyr Asn Asp Arg
325 330 335
Leu Leu Lys Leu Leu Cys Val Pro Phe Gly Tyr Cys Ile Pro Arg Phe
340 345 350
Lys Asn Leu Ser Ile Glu Ala Leu Phe Asp Arg Asn Glu Ala Ala Lys
355 360 365
Phe Asp Lys Glu Lys Lys Lys Val Ser Gly Asn Ser
370 375 380
<210> 4
<211> 18
<212> PRT
<213> Artificial Sequence (Artificial Sequence)
<400> 4
Lys Arg Thr Ala Asp Gly Ser Glu Phe Glu Ser Pro Lys Lys Lys Arg
1 5 10 15
Lys Val
<210> 5
<211> 1408
<212> PRT
<213> Artificial Sequence (Artificial Sequence)
<400> 5
Met Lys Arg Thr Ala Asp Gly Ser Glu Phe Glu Ser Pro Lys Lys Lys
1 5 10 15
Arg Lys Val Gly Ser Ile Glu Lys Lys Lys Ser Phe Ala Lys Gly Met
20 25 30
Gly Val Lys Ser Thr Leu Val Ser Gly Ser Lys Val Tyr Met Thr Thr
35 40 45
Phe Ala Glu Gly Ser Asp Ala Arg Leu Glu Lys Ile Val Glu Gly Asp
50 55 60
Ser Ile Arg Ser Val Asn Glu Gly Glu Ala Phe Ser Ala Glu Met Ala
65 70 75 80
Asp Lys Asn Ala Gly Tyr Lys Ile Gly Asn Ala Lys Phe Ser His Pro
85 90 95
Lys Gly Tyr Ala Val Val Ala Asn Asn Pro Leu Tyr Thr Gly Pro Val
100 105 110
Gln Gln Asp Met Leu Gly Leu Lys Glu Thr Leu Glu Lys Arg Tyr Phe
115 120 125
Gly Glu Ser Ala Asp Gly Asn Asp Asn Ile Cys Ile Gln Val Ile His
130 135 140
Asn Ile Leu Asp Ile Glu Lys Ile Leu Ala Glu Tyr Ile Thr Asn Ala
145 150 155 160
Ala Tyr Ala Val Asn Asn Ile Ser Gly Leu Asp Lys Asp Ile Ile Gly
165 170 175
Phe Gly Lys Phe Ser Thr Val Tyr Thr Tyr Asp Glu Phe Lys Asp Pro
180 185 190
Glu His His Arg Ala Ala Phe Asn Asn Asn Asp Lys Leu Ile Asn Ala
195 200 205
Ile Lys Ala Gln Tyr Asp Glu Phe Asp Asn Phe Leu Asp Asn Pro Arg
210 215 220
Leu Gly Tyr Phe Gly Gln Ala Phe Phe Ser Lys Glu Gly Arg Asn Tyr
225 230 235 240
Ile Ile Asn Tyr Gly Asn Glu Cys Tyr Asp Ile Leu Ala Leu Leu Ser
245 250 255
Gly Leu Ala His Trp Val Val Ala Asn Asn Glu Glu Glu Ser Arg Ile
260 265 270
Ser Arg Thr Trp Leu Tyr Asn Leu Asp Lys Asn Leu Asp Asn Glu Tyr
275 280 285
Ile Ser Thr Leu Asn Tyr Leu Tyr Asp Arg Ile Thr Asn Glu Leu Thr
290 295 300
Asn Ser Phe Ser Lys Asn Ser Ala Ala Asn Val Asn Tyr Ile Ala Glu
305 310 315 320
Thr Leu Gly Ile Asn Pro Ala Glu Phe Ala Glu Gln Tyr Phe Arg Phe
325 330 335
Ser Ile Met Lys Glu Gln Lys Asn Leu Gly Phe Asn Ile Thr Lys Leu
340 345 350
Arg Glu Val Met Leu Asp Arg Lys Asp Met Ser Glu Ile Arg Lys Asn
355 360 365
His Lys Val Phe Asp Ser Ile Arg Thr Lys Val Tyr Thr Met Met Asp
370 375 380
Phe Val Ile Tyr Arg Tyr Tyr Ile Glu Glu Asp Ala Lys Val Ala Ala
385 390 395 400
Ala Asn Lys Ser Leu Pro Asp Asn Glu Lys Ser Leu Ser Glu Lys Asp
405 410 415
Ile Phe Val Ile Asn Leu Arg Gly Ser Phe Asn Asp Asp Gln Lys Asp
420 425 430
Ala Leu Tyr Tyr Asp Glu Ala Asn Arg Ile Trp Arg Lys Leu Glu Asn
435 440 445
Ile Met His Asn Ile Lys Glu Phe Arg Gly Asn Lys Thr Arg Glu Tyr
450 455 460
Lys Lys Lys Asp Ala Pro Arg Leu Pro Arg Ile Leu Pro Ala Gly Arg
465 470 475 480
Asp Val Ser Ala Phe Ser Lys Leu Met Tyr Ala Leu Thr Met Phe Leu
485 490 495
Asp Gly Lys Glu Ile Asn Asp Leu Leu Thr Thr Leu Ile Asn Lys Phe
500 505 510
Asp Asn Ile Gln Ser Phe Leu Lys Val Met Pro Leu Ile Gly Val Asn
515 520 525
Ala Lys Phe Val Glu Glu Tyr Ala Phe Phe Lys Asp Ser Ala Lys Ile
530 535 540
Ala Asp Glu Leu Arg Leu Ile Lys Ser Phe Ala Arg Met Gly Glu Pro
545 550 555 560
Ile Ala Asp Ala Arg Arg Ala Met Tyr Ile Asp Ala Ile Arg Ile Leu
565 570 575
Gly Thr Asn Gly Ser Lys Arg Thr Ala Asp Gly Ser Glu Phe Glu Ser
580 585 590
Pro Lys Lys Lys Arg Lys Val Gly Ser Gln Leu His Leu Pro Gln Val
595 600 605
Leu Ala Asp Ala Val Ser Arg Leu Val Leu Gly Lys Phe Gly Asp Leu
610 615 620
Thr Asp Asn Phe Ser Ser Pro His Ala Arg Arg Lys Val Leu Ala Gly
625 630 635 640
Val Val Met Thr Thr Gly Thr Asp Val Lys Asp Ala Lys Val Ile Ser
645 650 655
Val Ser Thr Gly Thr Lys Cys Ile Asn Gly Glu Tyr Met Ser Asp Arg
660 665 670
Gly Leu Ala Leu Asn Asp Cys His Ala Glu Ile Ile Ser Arg Arg Ser
675 680 685
Leu Leu Arg Phe Leu Tyr Thr Gln Leu Glu Leu Tyr Leu Asn Asn Lys
690 695 700
Asp Asp Gln Lys Arg Ser Ile Phe Gln Lys Ser Glu Arg Gly Gly Phe
705 710 715 720
Arg Leu Lys Glu Asn Val Gln Phe His Leu Tyr Ile Ser Thr Ser Pro
725 730 735
Cys Gly Asp Ala Arg Ile Phe Ser Pro His Glu Pro Ile Leu Glu Glu
740 745 750
Pro Ala Asp Arg His Pro Asn Arg Lys Ala Arg Gly Gln Leu Arg Thr
755 760 765
Lys Ile Glu Ser Gly Gln Gly Thr Ile Pro Val Arg Ser Asn Ala Ser
770 775 780
Ile Gln Thr Trp Asp Gly Val Leu Gln Gly Glu Arg Leu Leu Thr Met
785 790 795 800
Ser Cys Ser Asp Lys Ile Ala Arg Trp Asn Val Val Gly Ile Gln Gly
805 810 815
Ser Leu Leu Ser Ile Phe Val Glu Pro Ile Tyr Phe Ser Ser Ile Ile
820 825 830
Leu Gly Ser Leu Tyr His Gly Asp His Leu Ser Arg Ala Met Tyr Gln
835 840 845
Arg Ile Ser Asn Ile Glu Asp Leu Pro Pro Leu Tyr Thr Leu Asn Lys
850 855 860
Pro Leu Leu Ser Gly Ile Ser Asn Ala Glu Ala Arg Gln Pro Gly Lys
865 870 875 880
Ala Pro Asn Phe Ser Val Asn Trp Thr Val Gly Asp Ser Ala Ile Glu
885 890 895
Val Ile Asn Ala Thr Thr Gly Lys Asp Glu Leu Gly Arg Ala Ser Arg
900 905 910
Leu Cys Lys His Ala Leu Tyr Cys Arg Trp Met Arg Val His Gly Lys
915 920 925
Val Pro Ser His Leu Leu Arg Ser Lys Ile Thr Lys Pro Asn Val Tyr
930 935 940
His Glu Ser Lys Leu Ala Ala Lys Glu Tyr Gln Ala Ala Lys Ala Arg
945 950 955 960
Leu Phe Thr Ala Phe Ile Lys Ala Gly Leu Gly Ala Trp Val Glu Lys
965 970 975
Pro Thr Glu Gln Asp Gln Phe Ser Leu Thr Gly Ser Lys Arg Thr Ala
980 985 990
Asp Gly Ser Glu Phe Glu Ser Pro Lys Lys Lys Arg Lys Val Gly Ser
995 1000 1005
Met Arg Asn Phe Ile Ile Asn Asn Val Ile Ser Asn Lys Arg Phe His
1010 1015 1020
Tyr Leu Ile Arg Tyr Gly Asp Pro Ala His Leu His Glu Ile Ala Lys
1025 1030 1035 1040
Asn Glu Ala Val Val Lys Phe Val Leu Gly Arg Ile Ala Asp Ile Gln
1045 1050 1055
Lys Lys Gln Gly Gln Asn Gly Lys Asn Gln Ile Asp Arg Tyr Tyr Glu
1060 1065 1070
Thr Cys Ile Gly Lys Asp Lys Gly Lys Ser Val Ser Glu Lys Val Asp
1075 1080 1085
Ala Leu Thr Lys Ile Ile Thr Gly Met Asn Tyr Asp Gln Phe Asp Lys
1090 1095 1100
Lys Arg Ser Val Ile Glu Asp Thr Gly Arg Glu Asn Ala Glu Arg Glu
1105 1110 1115 1120
Lys Phe Lys Lys Ile Ile Ser Leu Tyr Leu Thr Val Ile Tyr His Ile
1125 1130 1135
Leu Lys Asn Ile Val Asn Ile Asn Ala Arg Tyr Val Ile Gly Phe His
1140 1145 1150
Cys Val Glu Arg Asp Ala Gln Leu Tyr Lys Glu Lys Gly Tyr Asp Ile
1155 1160 1165
Asn Leu Lys Lys Leu Glu Glu Lys Gly Phe Ser Ser Val Thr Lys Leu
1170 1175 1180
Cys Ala Gly Ile Asp Glu Thr Ala Pro Asp Lys Arg Lys Asp Val Glu
1185 1190 1195 1200
Lys Glu Met Ala Glu Arg Ala Lys Glu Ser Ile Asp Ser Leu Glu Ser
1205 1210 1215
Ala Asn Pro Lys Leu Tyr Ala Asn Tyr Ile Lys Tyr Ser Asp Glu Lys
1220 1225 1230
Lys Ala Glu Glu Phe Thr Arg Gln Ile Asn Arg Glu Lys Ala Lys Thr
1235 1240 1245
Ala Leu Asn Ala Tyr Leu Arg Asn Thr Lys Trp Asn Val Ile Ile Arg
1250 1255 1260
Glu Asp Leu Leu Arg Ile Asp Asn Lys Thr Cys Thr Leu Phe Ala Asn
1265 1270 1275 1280
Lys Ala Val Ala Leu Glu Val Ala Arg Tyr Val His Ala Tyr Ile Asn
1285 1290 1295
Asp Ile Ala Glu Val Asn Ser Tyr Phe Gln Leu Tyr His Tyr Ile Met
1300 1305 1310
Gln Arg Ile Ile Met Asn Glu Arg Tyr Glu Lys Ser Ser Gly Lys Val
1315 1320 1325
Ser Glu Tyr Phe Asp Ala Val Asn Asp Glu Lys Lys Tyr Asn Asp Arg
1330 1335 1340
Leu Leu Lys Leu Leu Cys Val Pro Phe Gly Tyr Cys Ile Pro Arg Phe
1345 1350 1355 1360
Lys Asn Leu Ser Ile Glu Ala Leu Phe Asp Arg Asn Glu Ala Ala Lys
1365 1370 1375
Phe Asp Lys Glu Lys Lys Lys Val Ser Gly Asn Ser Gly Ser Lys Arg
1380 1385 1390
Thr Ala Asp Gly Ser Glu Phe Glu Ser Pro Lys Lys Lys Arg Lys Val
1395 1400 1405
<210> 6
<211> 65
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 6
ccgatggatc cgagttcgaa tcccctaaaa agaaaagaaa ggtgggatcc cagctgcatt 60
taccg 65
<210> 7
<211> 72
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 7
tcttcttggg gctctcaaat tcgctgccgt cagcagtccg tttcatggtg gcaagcttaa 60
gtttaaacgc ta 72
<210> 8
<211> 58
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 8
agagccccaa gaagaagagg aaagtcggat ccatcgagaa gaagaagagc ttcgccaa 58
<210> 9
<211> 58
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 9
ggggattcga actcggatcc atcggcggtg cgcttagaac cggagttgcc gctcacct 58
<210> 10
<211> 9558
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 10
gacggatcgg gagatctccc gatcccctat ggtgcactct cagtacaatc tgctctgatg 60
ccgcatagtt aagccagtat ctgctccctg cttgtgtgtt ggaggtcgct gagtagtgcg 120
cgagcaaaat ttaagctaca acaaggcaag gcttgaccga caattgcatg aagaatctgc 180
ttagggttag gcgttttgcg ctgcttcgcg atgtacgggc cagatatacg cgttgacatt 240
gattattgac tagttattaa tagtaatcaa ttacggggtc attagttcat agcccatata 300
tggagttccg cgttacataa cttacggtaa atggcccgcc tggctgaccg cccaacgacc 360
cccgcccatt gacgtcaata atgacgtatg ttcccatagt aacgccaata gggactttcc 420
attgacgtca atgggtggag tatttacggt aaactgccca cttggcagta catcaagtgt 480
atcatatgcc aagtacgccc cctattgacg tcaatgacgg taaatggccc gcctggcatt 540
atgcccagta catgacctta tgggactttc ctacttggca gtacatctac gtattagtca 600
tcgctattac catggtgatg cggttttggc agtacatcaa tgggcgtgga tagcggtttg 660
actcacgggg atttccaagt ctccacccca ttgacgtcaa tgggagtttg ttttggcacc 720
aaaatcaacg ggactttcca aaatgtcgta acaactccgc cccattgacg caaatgggcg 780
gtaggcgtgt acggtgggag gtctatataa gcagagctct ctggctaact agagaaccca 840
ctgcttactg gcttatcgaa attaatacga ctcactatag ggagacccaa gctggctagc 900
gtttaaactt aagcttgcca ccatgaaacg gactgctgac ggcagcgaat ttgagagccc 960
caagaagaag aggaaagtcg gatccatcga gaagaagaag agcttcgcca agggcatggg 1020
agtgaagagc accctggtgt ccggctctaa ggtgtacatg accacatttg ctgagggaag 1080
cgacgccagg ctggagaaga tcgtggaggg cgatagcatc agatccgtga acgagggaga 1140
ggctttcagc gccgagatgg ctgacaagaa cgctggctac aagatcggaa acgccaagtt 1200
ttcccaccca aagggctacg ccgtggtggc taacaaccca ctgtacaccg gaccagtgca 1260
gcaggacatg ctgggactga aggagacact ggagaagagg tacttcggcg agtccgccga 1320
cggaaacgat aacatctgca tccaggtcat ccacaacatc ctggatatcg agaagatcct 1380
ggctgagtac atcacaaacg ccgcttacgc cgtgaacaac atctccggcc tggacaagga 1440
tatcatcggc ttcggaaagt tttctaccgt gtacacatac gacgagttca aggatccaga 1500
gcaccaccgg gccgctttta acaacaacga caagctgatc aacgccatca aggctcagta 1560
cgacgagttc gataactttc tggataaccc caggctgggc tacttcggac aggctttctt 1620
ttctaaggag ggcagaaact acatcatcaa ctacggaaac gagtgttacg acatcctggc 1680
cctgctgagc ggactggccc actgggtggt ggccaacaac gaggaggagt ctcggatcag 1740
ccgcacctgg ctgtacaacc tggacaagaa cctggataac gagtacatct ccacactgaa 1800
ctacctgtac gacaggatca ccaacgagct gacaaacagc ttctccaaga actctgccgc 1860
taacgtgaac tacatcgctg agaccctggg catcaaccca gctgagttcg ctgagcagta 1920
cttcagattt tccatcatga aggagcagaa gaacctgggc ttcaacatca caaagctgag 1980
agaagtgatg ctggacagaa aggatatgtc cgagatcagg aagaaccaca aggtgttcga 2040
ttctatcaga accaaggtgt acacaatgat ggactttgtg atctacaggt actacatcga 2100
ggaggatgcc aaggtggccg ctgccaacaa gagcctgccc gacaacgaga agtctctgag 2160
cgagaaggat atcttcgtga tcaacctgag aggctccttt aacgacgatc agaaggacgc 2220
tctgtactac gatgaggcca acaggatctg gagaaagctg gagaacatca tgcacaacat 2280
caaggagttc cggggaaaca agacccgcga gtacaagaag aaggacgctc caaggctgcc 2340
taggatcctg cctgctggaa gggacgtgag cgccttcagc aagctgatgt acgccctgac 2400
aatgtttctg gacggaaagg agatcaacga tctgctgacc acactgatca acaagttcga 2460
caacatccag tcttttctga aagtgatgcc tctgatcggc gtgaacgcta agttcgtgga 2520
ggagtacgcc ttctttaagg acagcgccaa gatcgctgat gagctgcggc tgatcaagtc 2580
ctttgccagg atgggagagc caatcgctga cgctaggaga gctatgtaca tcgatgccat 2640
ccggatcctg ggaaccaacc tgtcttacga cgagctgaag gctctggccg acaccttcag 2700
cctggatgag aacggcaaca agctgaagaa gggcaagcac ggaatgcgca acttcatcat 2760
caacaacgtg atcagcaaca agcggtttca ctacctgatc agatacggcg acccagctca 2820
cctgcacgag atcgctaaga acgaggccgt ggtgaagttc gtgctgggac ggatcgccga 2880
tatccagaag aagcagggcc agaacggaaa gaaccagatc gaccgctact acgagacctg 2940
catcggcaag gataagggaa agtccgtgtc tgagaaggtg gacgctctga ccaagatcat 3000
cacaggcatg aactacgacc agttcgataa gaagagatct gtgatcgagg acaccggaag 3060
ggagaacgcc gagagagaga agtttaagaa gatcatcagc ctgtacctga cagtgatcta 3120
ccacatcctg aagaacatcg tgaacatcaa cgctagatac gtgatcggct tccactgcgt 3180
ggagcgcgat gcccagctgt acaaggagaa gggatacgac atcaacctga agaagctgga 3240
ggagaagggc tttagctccg tgaccaagct gtgcgctgga atcgacgaga cagcccccga 3300
caagaggaag gatgtggaga aggagatggc cgagagagct aaggagagca tcgactccct 3360
ggagtctgct aaccctaagc tgtacgccaa ctacatcaag tactccgatg agaagaaggc 3420
cgaggagttc accaggcaga tcaacagaga gaaggccaag accgctctga acgcctacct 3480
gaggaacaca aagtggaacg tgatcatccg ggaggacctg ctgcgcatcg ataacaagac 3540
ctgtacactg ttcgctaaca aggctgtggc cctggaggtg gctcgctacg tgcacgccta 3600
catcaacgac atcgccgagg tgaactccta ctttcagctg taccactaca tcatgcagag 3660
gatcatcatg aacgagagat acgagaagtc tagcggcaag gtgtctgagt acttcgacgc 3720
cgtgaacgat gagaagaagt acaacgatag actgctgaag ctgctgtgcg tgcctttcgg 3780
atactgtatc ccacggttta agaacctgag catcgaggcc ctgttcgacc gcaacgaggc 3840
tgccaagttt gataaggaga agaagaaggt gagcggcaac tccggttcta agcgcaccgc 3900
cgatggatcc gagttcgaat cccctaaaaa gaaaagaaag gtgggatccc agctgcattt 3960
accgcaggtt ttagctgacg ctgtctcacg cctggtcctg ggtaagtttg gtgacctgac 4020
cgacaacttc tcctcccctc acgctcgcag aaaagtgctg gctggagtcg tcatgacaac 4080
aggcacagat gttaaagatg ccaaggtgat aagtgtttct acaggaacaa aatgtattaa 4140
tggtgaatac atgagtgatc gtggccttgc attaaatgac tgccatgcag aaataatatc 4200
tcggagatcc ttgctcagat ttctttatac acaacttgag ctttacttaa ataacaaaga 4260
tgatcaaaaa agatccatct ttcagaaatc agagcgaggg gggtttaggc tgaaggagaa 4320
tgtccagttt catctgtaca tcagcacctc tccctgtgga gatgccagaa tcttctcacc 4380
acatgagcca atcctggaag aaccagcaga tagacaccca aatcgtaaag caagaggaca 4440
gctacggacc aaaatagagt ctggtcaggg gacgattcca gtgcgctcca atgcgagcat 4500
ccaaacgtgg gacggggtgc tgcaagggga gcggctgctc accatgtcct gcagtgacaa 4560
gattgcacgc tggaacgtgg tgggcatcca gggatcactg ctcagcattt tcgtggagcc 4620
catttacttc tcgagcatca tcctgggcag cctttaccac ggggaccacc tttccagggc 4680
catgtaccag cggatctcca acatagagga cctgccacct ctctacaccc tcaacaagcc 4740
tttgctcagt ggcatcagca atgcagaagc acggcagcca gggaaggccc ccaacttcag 4800
tgtcaactgg acggtaggcg actccgctat tgaggtcatc aacgccacga ctgggaagga 4860
tgagctgggc cgcgcgtccc gcctgtgtaa gcacgcgttg tactgtcgct ggatgcgtgt 4920
gcacggcaag gttccctccc acttactacg ctccaagatt accaagccca acgtgtacca 4980
tgagtccaag ctggcggcaa aggagtacca ggccgccaag gcgcgtctgt tcacagcctt 5040
catcaaggcg gggctggggg cctgggtgga gaagcccacc gagcaggacc agttctcact 5100
cacgtaagcg gccgctcgag tctagagggc ccgtttaaac ccgctgatca gcctcgactg 5160
tgccttctag ttgccagcca tctgttgttt gcccctcccc cgtgccttcc ttgaccctgg 5220
aaggtgccac tcccactgtc ctttcctaat aaaatgagga aattgcatcg cattgtctga 5280
gtaggtgtca ttctattctg gggggtgggg tggggcagga cagcaagggg gaggattggg 5340
aagacaatag caggcatgct ggggatgcgg tgggctctat ggcttctgag gcggaaagaa 5400
ccagctgggg ctctaggggg tatccccacg cgccctgtag cggcgcatta agcgcggcgg 5460
gtgtggtggt tacgcgcagc gtgaccgcta cacttgccag cgccctagcg cccgctcctt 5520
tcgctttctt cccttccttt ctcgccacgt tcgccggctt tccccgtcaa gctctaaatc 5580
gggggctccc tttagggttc cgatttagtg ctttacggca cctcgacccc aaaaaacttg 5640
attagggtga tggttcacgt agtgggccat cgccctgata gacggttttt cgccctttga 5700
cgttggagtc cacgttcttt aatagtggac tcttgttcca aactggaaca acactcaacc 5760
ctatctcggt ctattctttt gatttataag ggattttgcc gatttcggcc tattggttaa 5820
aaaatgagct gatttaacaa aaatttaacg cgaattaatt ctgtggaatg tgtgtcagtt 5880
agggtgtgga aagtccccag gctccccagc aggcagaagt atgcaaagca tgcatctcaa 5940
ttagtcagca accaggtgtg gaaagtcccc aggctcccca gcaggcagaa gtatgcaaag 6000
catgcatctc aattagtcag caaccatagt cccgccccta actccgccca tcccgcccct 6060
aactccgccc agttccgccc attctccgcc ccatggctga ctaatttttt ttatttatgc 6120
agaggccgag gccgcctctg cctctgagct attccagaag tagtgaggag gcttttttgg 6180
aggcctaggc ttttgcaaaa agctcccggg agcttgtata tccattttcg gatctgatca 6240
agagacagga tgaggatcgt ttcgcatgat tgaacaagat ggattgcacg caggttctcc 6300
ggccgcttgg gtggagaggc tattcggcta tgactgggca caacagacaa tcggctgctc 6360
tgatgccgcc gtgttccggc tgtcagcgca ggggcgcccg gttctttttg tcaagaccga 6420
cctgtccggt gccctgaatg aactgcagga cgaggcagcg cggctatcgt ggctggccac 6480
gacgggcgtt ccttgcgcag ctgtgctcga cgttgtcact gaagcgggaa gggactggct 6540
gctattgggc gaagtgccgg ggcaggatct cctgtcatct caccttgctc ctgccgagaa 6600
agtatccatc atggctgatg caatgcggcg gctgcatacg cttgatccgg ctacctgccc 6660
attcgaccac caagcgaaac atcgcatcga gcgagcacgt actcggatgg aagccggtct 6720
tgtcgatcag gatgatctgg acgaagagca tcaggggctc gcgccagccg aactgttcgc 6780
caggctcaag gcgcgcatgc ccgacggcga ggatctcgtc gtgacccatg gcgatgcctg 6840
cttgccgaat atcatggtgg aaaatggccg cttttctgga ttcatcgact gtggccggct 6900
gggtgtggcg gaccgctatc aggacatagc gttggctacc cgtgatattg ctgaagagct 6960
tggcggcgaa tgggctgacc gcttcctcgt gctttacggt atcgccgctc ccgattcgca 7020
gcgcatcgcc ttctatcgcc ttcttgacga gttcttctga gcgggactct ggggttcgaa 7080
atgaccgacc aagcgacgcc caacctgcca tcacgagatt tcgattccac cgccgccttc 7140
tatgaaaggt tgggcttcgg aatcgttttc cgggacgccg gctggatgat cctccagcgc 7200
ggggatctca tgctggagtt cttcgcccac cccaacttgt ttattgcagc ttataatggt 7260
tacaaataaa gcaatagcat cacaaatttc acaaataaag catttttttc actgcattct 7320
agttgtggtt tgtccaaact catcaatgta tcttatcatg tctgtatacc gtcgacctct 7380
agctagagct tggcgtaatc atggtcatag ctgtttcctg tgtgaaattg ttatccgctc 7440
acaattccac acaacatacg agccggaagc ataaagtgta aagcctgggg tgcctaatga 7500
gtgagctaac tcacattaat tgcgttgcgc tcactgcccg ctttccagtc gggaaacctg 7560
tcgtgccagc tgcattaatg aatcggccaa cgcgcgggga gaggcggttt gcgtattggg 7620
cgctcttccg cttcctcgct cactgactcg ctgcgctcgg tcgttcggct gcggcgagcg 7680
gtatcagctc actcaaaggc ggtaatacgg ttatccacag aatcagggga taacgcagga 7740
aagaacatgt gagcaaaagg ccagcaaaag gccaggaacc gtaaaaaggc cgcgttgctg 7800
gcgtttttcc ataggctccg cccccctgac gagcatcaca aaaatcgacg ctcaagtcag 7860
aggtggcgaa acccgacagg actataaaga taccaggcgt ttccccctgg aagctccctc 7920
gtgcgctctc ctgttccgac cctgccgctt accggatacc tgtccgcctt tctcccttcg 7980
ggaagcgtgg cgctttctca tagctcacgc tgtaggtatc tcagttcggt gtaggtcgtt 8040
cgctccaagc tgggctgtgt gcacgaaccc cccgttcagc ccgaccgctg cgccttatcc 8100
ggtaactatc gtcttgagtc caacccggta agacacgact tatcgccact ggcagcagcc 8160
actggtaaca ggattagcag agcgaggtat gtaggcggtg ctacagagtt cttgaagtgg 8220
tggcctaact acggctacac tagaagaaca gtatttggta tctgcgctct gctgaagcca 8280
gttaccttcg gaaaaagagt tggtagctct tgatccggca aacaaaccac cgctggtagc 8340
ggtttttttg tttgcaagca gcagattacg cgcagaaaaa aaggatctca agaagatcct 8400
ttgatctttt ctacggggtc tgacgctcag tggaacgaaa actcacgtta agggattttg 8460
gtcatgagat tatcaaaaag gatcttcacc tagatccttt taaattaaaa atgaagtttt 8520
aaatcaatct aaagtatata tgagtaaact tggtctgaca gttaccaatg cttaatcagt 8580
gaggcaccta tctcagcgat ctgtctattt cgttcatcca tagttgcctg actccccgtc 8640
gtgtagataa ctacgatacg ggagggctta ccatctggcc ccagtgctgc aatgataccg 8700
cgagacccac gctcaccggc tccagattta tcagcaataa accagccagc cggaagggcc 8760
gagcgcagaa gtggtcctgc aactttatcc gcctccatcc agtctattaa ttgttgccgg 8820
gaagctagag taagtagttc gccagttaat agtttgcgca acgttgttgc cattgctaca 8880
ggcatcgtgg tgtcacgctc gtcgtttggt atggcttcat tcagctccgg ttcccaacga 8940
tcaaggcgag ttacatgatc ccccatgttg tgcaaaaaag cggttagctc cttcggtcct 9000
ccgatcgttg tcagaagtaa gttggccgca gtgttatcac tcatggttat ggcagcactg 9060
cataattctc ttactgtcat gccatccgta agatgctttt ctgtgactgg tgagtactca 9120
accaagtcat tctgagaata gtgtatgcgg cgaccgagtt gctcttgccc ggcgtcaata 9180
cgggataata ccgcgccaca tagcagaact ttaaaagtgc tcatcattgg aaaacgttct 9240
tcggggcgaa aactctcaag gatcttaccg ctgttgagat ccagttcgat gtaacccact 9300
cgtgcaccca actgatcttc agcatctttt actttcacca gcgtttctgg gtgagcaaaa 9360
acaggaaggc aaaatgccgc aaaaaaggga ataagggcga cacggaaatg ttgaatactc 9420
atactcttcc tttttcaata ttattgaagc atttatcagg gttattgtct catgagcgga 9480
tacatatttg aatgtattta gaaaaataaa caaatagggg ttccgcgcac atttccccga 9540
aaagtgccac ctgacgtc 9558
<210> 11
<211> 37
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 11
aggatgacga tgacaagtaa gcggccgctc gagccta 37
<210> 12
<211> 37
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 12
agagcccccg cctccgttgg ttcccaggat ccggatg 37
<210> 13
<211> 43
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 13
ggaggcgggg gctctggatc ccagctgcat ttaccgcagg ttt 43
<210> 14
<211> 46
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 14
gcttccgccc cctccagagc ccgtgagtga gaactggtcc tgctcg 46
<210> 15
<211> 50
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 15
ggagggggcg gaagcatgcg caacttcatc atcaacaacg tgatcagcaa 50
<210> 16
<211> 59
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 16
cttgtcatcg tcatccttgt aatcgatatc atgatcttta taatcaccgt catggtctt 59
<210> 17
<211> 9582
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 17
gacggatcgg gagatctccc gatcccctat ggtgcactct cagtacaatc tgctctgatg 60
ccgcatagtt aagccagtat ctgctccctg cttgtgtgtt ggaggtcgct gagtagtgcg 120
cgagcaaaat ttaagctaca acaaggcaag gcttgaccga caattgcatg aagaatctgc 180
ttagggttag gcgttttgcg ctgcttcgcg atgtacgggc cagatatacg cgttgacatt 240
gattattgac tagttattaa tagtaatcaa ttacggggtc attagttcat agcccatata 300
tggagttccg cgttacataa cttacggtaa atggcccgcc tggctgaccg cccaacgacc 360
cccgcccatt gacgtcaata atgacgtatg ttcccatagt aacgccaata gggactttcc 420
attgacgtca atgggtggag tatttacggt aaactgccca cttggcagta catcaagtgt 480
atcatatgcc aagtacgccc cctattgacg tcaatgacgg taaatggccc gcctggcatt 540
atgcccagta catgacctta tgggactttc ctacttggca gtacatctac gtattagtca 600
tcgctattac catggtgatg cggttttggc agtacatcaa tgggcgtgga tagcggtttg 660
actcacgggg atttccaagt ctccacccca ttgacgtcaa tgggagtttg ttttggcacc 720
aaaatcaacg ggactttcca aaatgtcgta acaactccgc cccattgacg caaatgggcg 780
gtaggcgtgt acggtgggag gtctatataa gcagagctct ctggctaact agagaaccca 840
ctgcttactg gcttatcgaa attaatacga ctcactatag ggagacccaa gctggctagc 900
gtttaaactt aagcttgcca ccatgaaacg gactgctgac ggcagcgaat ttgagagccc 960
caagaagaag aggaaagtcg gatccatcga gaagaagaag agcttcgcca agggcatggg 1020
agtgaagagc accctggtgt ccggctctaa ggtgtacatg accacatttg ctgagggaag 1080
cgacgccagg ctggagaaga tcgtggaggg cgatagcatc agatccgtga acgagggaga 1140
ggctttcagc gccgagatgg ctgacaagaa cgctggctac aagatcggaa acgccaagtt 1200
ttcccaccca aagggctacg ccgtggtggc taacaaccca ctgtacaccg gaccagtgca 1260
gcaggacatg ctgggactga aggagacact ggagaagagg tacttcggcg agtccgccga 1320
cggaaacgat aacatctgca tccaggtcat ccacaacatc ctggatatcg agaagatcct 1380
ggctgagtac atcacaaacg ccgcttacgc cgtgaacaac atctccggcc tggacaagga 1440
tatcatcggc ttcggaaagt tttctaccgt gtacacatac gacgagttca aggatccaga 1500
gcaccaccgg gccgctttta acaacaacga caagctgatc aacgccatca aggctcagta 1560
cgacgagttc gataactttc tggataaccc caggctgggc tacttcggac aggctttctt 1620
ttctaaggag ggcagaaact acatcatcaa ctacggaaac gagtgttacg acatcctggc 1680
cctgctgagc ggactggccc actgggtggt ggccaacaac gaggaggagt ctcggatcag 1740
ccgcacctgg ctgtacaacc tggacaagaa cctggataac gagtacatct ccacactgaa 1800
ctacctgtac gacaggatca ccaacgagct gacaaacagc ttctccaaga actctgccgc 1860
taacgtgaac tacatcgctg agaccctggg catcaaccca gctgagttcg ctgagcagta 1920
cttcagattt tccatcatga aggagcagaa gaacctgggc ttcaacatca caaagctgag 1980
agaagtgatg ctggacagaa aggatatgtc cgagatcagg aagaaccaca aggtgttcga 2040
ttctatcaga accaaggtgt acacaatgat ggactttgtg atctacaggt actacatcga 2100
ggaggatgcc aaggtggccg ctgccaacaa gagcctgccc gacaacgaga agtctctgag 2160
cgagaaggat atcttcgtga tcaacctgag aggctccttt aacgacgatc agaaggacgc 2220
tctgtactac gatgaggcca acaggatctg gagaaagctg gagaacatca tgcacaacat 2280
caaggagttc cggggaaaca agacccgcga gtacaagaag aaggacgctc caaggctgcc 2340
taggatcctg cctgctggaa gggacgtgag cgccttcagc aagctgatgt acgccctgac 2400
aatgtttctg gacggaaagg agatcaacga tctgctgacc acactgatca acaagttcga 2460
caacatccag tcttttctga aagtgatgcc tctgatcggc gtgaacgcta agttcgtgga 2520
ggagtacgcc ttctttaagg acagcgccaa gatcgctgat gagctgcggc tgatcaagtc 2580
ctttgccagg atgggagagc caatcgctga cgctaggaga gctatgtaca tcgatgccat 2640
ccggatcctg ggaaccaacg gaggcggggg ctctggatcc cagctgcatt taccgcaggt 2700
tttagctgac gctgtctcac gcctggtcct gggtaagttt ggtgacctga ccgacaactt 2760
ctcctcccct cacgctcgca gaaaagtgct ggctggagtc gtcatgacaa caggcacaga 2820
tgttaaagat gccaaggtga taagtgtttc tacaggaaca aaatgtatta atggtgaata 2880
catgagtgat cgtggccttg cattaaatga ctgccatgca gaaataatat ctcggagatc 2940
cttgctcaga tttctttata cacaacttga gctttactta aataacaaag atgatcaaaa 3000
aagatccatc tttcagaaat cagagcgagg ggggtttagg ctgaaggaga atgtccagtt 3060
tcatctgtac atcagcacct ctccctgtgg agatgccaga atcttctcac cacatgagcc 3120
aatcctggaa gaaccagcag atagacaccc aaatcgtaaa gcaagaggac agctacggac 3180
caaaatagag tctggtcagg ggacgattcc agtgcgctcc aatgcgagca tccaaacgtg 3240
ggacggggtg ctgcaagggg agcggctgct caccatgtcc tgcagtgaca agattgcacg 3300
ctggaacgtg gtgggcatcc agggatcact gctcagcatt ttcgtggagc ccatttactt 3360
ctcgagcatc atcctgggca gcctttacca cggggaccac ctttccaggg ccatgtacca 3420
gcggatctcc aacatagagg acctgccacc tctctacacc ctcaacaagc ctttgctcag 3480
tggcatcagc aatgcagaag cacggcagcc agggaaggcc cccaacttca gtgtcaactg 3540
gacggtaggc gactccgcta ttgaggtcat caacgccacg actgggaagg atgagctggg 3600
ccgcgcgtcc cgcctgtgta agcacgcgtt gtactgtcgc tggatgcgtg tgcacggcaa 3660
ggttccctcc cacttactac gctccaagat taccaagccc aacgtgtacc atgagtccaa 3720
gctggcggca aaggagtacc aggccgccaa ggcgcgtctg ttcacagcct tcatcaaggc 3780
ggggctgggg gcctgggtgg agaagcccac cgagcaggac cagttctcac tcacgggctc 3840
tggagggggc ggaagcatgc gcaacttcat catcaacaac gtgatcagca acaagcggtt 3900
tcactacctg atcagatacg gcgacccagc tcacctgcac gagatcgcta agaacgaggc 3960
cgtggtgaag ttcgtgctgg gacggatcgc cgatatccag aagaagcagg gccagaacgg 4020
aaagaaccag atcgaccgct actacgagac ctgcatcggc aaggataagg gaaagtccgt 4080
gtctgagaag gtggacgctc tgaccaagat catcacaggc atgaactacg accagttcga 4140
taagaagaga tctgtgatcg aggacaccgg aagggagaac gccgagagag agaagtttaa 4200
gaagatcatc agcctgtacc tgacagtgat ctaccacatc ctgaagaaca tcgtgaacat 4260
caacgctaga tacgtgatcg gcttccactg cgtggagcgc gatgcccagc tgtacaagga 4320
gaagggatac gacatcaacc tgaagaagct ggaggagaag ggctttagct ccgtgaccaa 4380
gctgtgcgct ggaatcgacg agacagcccc cgacaagagg aaggatgtgg agaaggagat 4440
ggccgagaga gctaaggaga gcatcgactc cctggagtct gctaacccta agctgtacgc 4500
caactacatc aagtactccg atgagaagaa ggccgaggag ttcaccaggc agatcaacag 4560
agagaaggcc aagaccgctc tgaacgccta cctgaggaac acaaagtgga acgtgatcat 4620
ccgggaggac ctgctgcgca tcgataacaa gacctgtaca ctgttcgcta acaaggctgt 4680
ggccctggag gtggctcgct acgtgcacgc ctacatcaac gacatcgccg aggtgaactc 4740
ctactttcag ctgtaccact acatcatgca gaggatcatc atgaacgaga gatacgagaa 4800
gtctagcggc aaggtgtctg agtacttcga cgccgtgaac gatgagaaga agtacaacga 4860
tagactgctg aagctgctgt gcgtgccttt cggatactgt atcccacggt ttaagaacct 4920
gagcatcgag gccctgttcg accgcaacga ggctgccaag tttgataagg agaagaagaa 4980
ggtgagcggc aactccggtt ctaagcgcac cgccgatgga tccgagttcg aatcccctaa 5040
aaagaaaaga aaggtgggat ccgactacaa agaccatgac ggtgattata aagatcatga 5100
tatcgattac aaggatgacg atgacaagta agcggccgct cgagcctaga gggcccgttt 5160
aaacccgctg atcagcctcg actgtgcctt ctagttgcca gccatctgtt gtttgcccct 5220
cccccgtgcc ttccttgacc ctggaaggtg ccactcccac tgtcctttcc taataaaatg 5280
aggaaattgc atcgcattgt ctgagtaggt gtcattctat tctggggggt ggggtggggc 5340
aggacagcaa gggggaggat tgggaagaca atagcaggca tgctggggat gcggtgggct 5400
ctatggcttc tgaggcggaa agaaccagct ggggctctag ggggtatccc cacgcgccct 5460
gtagcggcgc attaagcgcg gcgggtgtgg tggttacgcg cagcgtgacc gctacacttg 5520
ccagcgccct agcgcccgct cctttcgctt tcttcccttc ctttctcgcc acgttcgccg 5580
gctttccccg tcaagctcta aatcgggggc tccctttagg gttccgattt agtgctttac 5640
ggcacctcga ccccaaaaaa cttgattagg gtgatggttc acgtagtggg ccatcgccct 5700
gatagacggt ttttcgccct ttgacgttgg agtccacgtt ctttaatagt ggactcttgt 5760
tccaaactgg aacaacactc aaccctatct cggtctattc ttttgattta taagggattt 5820
tgccgatttc ggcctattgg ttaaaaaatg agctgattta acaaaaattt aacgcgaatt 5880
aattctgtgg aatgtgtgtc agttagggtg tggaaagtcc ccaggctccc cagcaggcag 5940
aagtatgcaa agcatgcatc tcaattagtc agcaaccagg tgtggaaagt ccccaggctc 6000
cccagcaggc agaagtatgc aaagcatgca tctcaattag tcagcaacca tagtcccgcc 6060
cctaactccg cccatcccgc ccctaactcc gcccagttcc gcccattctc cgccccatgg 6120
ctgactaatt ttttttattt atgcagaggc cgaggccgcc tctgcctctg agctattcca 6180
gaagtagtga ggaggctttt ttggaggcct aggcttttgc aaaaagctcc cgggagcttg 6240
tatatccatt ttcggatctg atcaagagac aggatgagga tcgtttcgca tgattgaaca 6300
agatggattg cacgcaggtt ctccggccgc ttgggtggag aggctattcg gctatgactg 6360
ggcacaacag acaatcggct gctctgatgc cgccgtgttc cggctgtcag cgcaggggcg 6420
cccggttctt tttgtcaaga ccgacctgtc cggtgccctg aatgaactgc aggacgaggc 6480
agcgcggcta tcgtggctgg ccacgacggg cgttccttgc gcagctgtgc tcgacgttgt 6540
cactgaagcg ggaagggact ggctgctatt gggcgaagtg ccggggcagg atctcctgtc 6600
atctcacctt gctcctgccg agaaagtatc catcatggct gatgcaatgc ggcggctgca 6660
tacgcttgat ccggctacct gcccattcga ccaccaagcg aaacatcgca tcgagcgagc 6720
acgtactcgg atggaagccg gtcttgtcga tcaggatgat ctggacgaag agcatcaggg 6780
gctcgcgcca gccgaactgt tcgccaggct caaggcgcgc atgcccgacg gcgaggatct 6840
cgtcgtgacc catggcgatg cctgcttgcc gaatatcatg gtggaaaatg gccgcttttc 6900
tggattcatc gactgtggcc ggctgggtgt ggcggaccgc tatcaggaca tagcgttggc 6960
tacccgtgat attgctgaag agcttggcgg cgaatgggct gaccgcttcc tcgtgcttta 7020
cggtatcgcc gctcccgatt cgcagcgcat cgccttctat cgccttcttg acgagttctt 7080
ctgagcggga ctctggggtt cgaaatgacc gaccaagcga cgcccaacct gccatcacga 7140
gatttcgatt ccaccgccgc cttctatgaa aggttgggct tcggaatcgt tttccgggac 7200
gccggctgga tgatcctcca gcgcggggat ctcatgctgg agttcttcgc ccaccccaac 7260
ttgtttattg cagcttataa tggttacaaa taaagcaata gcatcacaaa tttcacaaat 7320
aaagcatttt tttcactgca ttctagttgt ggtttgtcca aactcatcaa tgtatcttat 7380
catgtctgta taccgtcgac ctctagctag agcttggcgt aatcatggtc atagctgttt 7440
cctgtgtgaa attgttatcc gctcacaatt ccacacaaca tacgagccgg aagcataaag 7500
tgtaaagcct ggggtgccta atgagtgagc taactcacat taattgcgtt gcgctcactg 7560
cccgctttcc agtcgggaaa cctgtcgtgc cagctgcatt aatgaatcgg ccaacgcgcg 7620
gggagaggcg gtttgcgtat tgggcgctct tccgcttcct cgctcactga ctcgctgcgc 7680
tcggtcgttc ggctgcggcg agcggtatca gctcactcaa aggcggtaat acggttatcc 7740
acagaatcag gggataacgc aggaaagaac atgtgagcaa aaggccagca aaaggccagg 7800
aaccgtaaaa aggccgcgtt gctggcgttt ttccataggc tccgcccccc tgacgagcat 7860
cacaaaaatc gacgctcaag tcagaggtgg cgaaacccga caggactata aagataccag 7920
gcgtttcccc ctggaagctc cctcgtgcgc tctcctgttc cgaccctgcc gcttaccgga 7980
tacctgtccg cctttctccc ttcgggaagc gtggcgcttt ctcatagctc acgctgtagg 8040
tatctcagtt cggtgtaggt cgttcgctcc aagctgggct gtgtgcacga accccccgtt 8100
cagcccgacc gctgcgcctt atccggtaac tatcgtcttg agtccaaccc ggtaagacac 8160
gacttatcgc cactggcagc agccactggt aacaggatta gcagagcgag gtatgtaggc 8220
ggtgctacag agttcttgaa gtggtggcct aactacggct acactagaag aacagtattt 8280
ggtatctgcg ctctgctgaa gccagttacc ttcggaaaaa gagttggtag ctcttgatcc 8340
ggcaaacaaa ccaccgctgg tagcggtttt tttgtttgca agcagcagat tacgcgcaga 8400
aaaaaaggat ctcaagaaga tcctttgatc ttttctacgg ggtctgacgc tcagtggaac 8460
gaaaactcac gttaagggat tttggtcatg agattatcaa aaaggatctt cacctagatc 8520
cttttaaatt aaaaatgaag ttttaaatca atctaaagta tatatgagta aacttggtct 8580
gacagttacc aatgcttaat cagtgaggca cctatctcag cgatctgtct atttcgttca 8640
tccatagttg cctgactccc cgtcgtgtag ataactacga tacgggaggg cttaccatct 8700
ggccccagtg ctgcaatgat accgcgagac ccacgctcac cggctccaga tttatcagca 8760
ataaaccagc cagccggaag ggccgagcgc agaagtggtc ctgcaacttt atccgcctcc 8820
atccagtcta ttaattgttg ccgggaagct agagtaagta gttcgccagt taatagtttg 8880
cgcaacgttg ttgccattgc tacaggcatc gtggtgtcac gctcgtcgtt tggtatggct 8940
tcattcagct ccggttccca acgatcaagg cgagttacat gatcccccat gttgtgcaaa 9000
aaagcggtta gctccttcgg tcctccgatc gttgtcagaa gtaagttggc cgcagtgtta 9060
tcactcatgg ttatggcagc actgcataat tctcttactg tcatgccatc cgtaagatgc 9120
ttttctgtga ctggtgagta ctcaaccaag tcattctgag aatagtgtat gcggcgaccg 9180
agttgctctt gcccggcgtc aatacgggat aataccgcgc cacatagcag aactttaaaa 9240
gtgctcatca ttggaaaacg ttcttcgggg cgaaaactct caaggatctt accgctgttg 9300
agatccagtt cgatgtaacc cactcgtgca cccaactgat cttcagcatc ttttactttc 9360
accagcgttt ctgggtgagc aaaaacagga aggcaaaatg ccgcaaaaaa gggaataagg 9420
gcgacacgga aatgttgaat actcatactc ttcctttttc aatattattg aagcatttat 9480
cagggttatt gtctcatgag cggatacata tttgaatgta tttagaaaaa taaacaaata 9540
ggggttccgc gcacatttcc ccgaaaagtg ccacctgacg tc 9582
<210> 18
<211> 35
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 18
ttggttccca ggatccggat ggcatcgatg tacat 35
<210> 19
<211> 38
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 19
gacgatgaca agtaagcggc cgctcgagcc tagagggc 38
<210> 20
<211> 60
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 20
ggatccgagt tcgaatcccc taaaaagaaa agaaaggtgg gatcccagct gcatttaccg 60
<210> 21
<211> 60
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 21
ctctcaaact cagatccatc cgcagttctt ttggatcccg tgagtgagaa ctggtcctgc 60
<210> 22
<211> 60
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 22
ccggatcctg ggaaccaacg gttctaagcg caccgccgat ggatccgagt tcgaatcccc 60
<210> 23
<211> 60
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 23
ggatggatct gagtttgaga gtccaaaaaa gaagaggaag gtcggttcta tgcgcaactt 60
<210> 24
<211> 37
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 24
ttctatgcgc aacttcatca tcaacaacgt gatcagc 37
<210> 25
<211> 34
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 25
taggctcgag cggccgctta cttgtcatcg tcat 34
<210> 26
<211> 9672
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 26
gacggatcgg gagatctccc gatcccctat ggtgcactct cagtacaatc tgctctgatg 60
ccgcatagtt aagccagtat ctgctccctg cttgtgtgtt ggaggtcgct gagtagtgcg 120
cgagcaaaat ttaagctaca acaaggcaag gcttgaccga caattgcatg aagaatctgc 180
ttagggttag gcgttttgcg ctgcttcgcg atgtacgggc cagatatacg cgttgacatt 240
gattattgac tagttattaa tagtaatcaa ttacggggtc attagttcat agcccatata 300
tggagttccg cgttacataa cttacggtaa atggcccgcc tggctgaccg cccaacgacc 360
cccgcccatt gacgtcaata atgacgtatg ttcccatagt aacgccaata gggactttcc 420
attgacgtca atgggtggag tatttacggt aaactgccca cttggcagta catcaagtgt 480
atcatatgcc aagtacgccc cctattgacg tcaatgacgg taaatggccc gcctggcatt 540
atgcccagta catgacctta tgggactttc ctacttggca gtacatctac gtattagtca 600
tcgctattac catggtgatg cggttttggc agtacatcaa tgggcgtgga tagcggtttg 660
actcacgggg atttccaagt ctccacccca ttgacgtcaa tgggagtttg ttttggcacc 720
aaaatcaacg ggactttcca aaatgtcgta acaactccgc cccattgacg caaatgggcg 780
gtaggcgtgt acggtgggag gtctatataa gcagagctct ctggctaact agagaaccca 840
ctgcttactg gcttatcgaa attaatacga ctcactatag ggagacccaa gctggctagc 900
gtttaaactt aagcttgcca ccatgaaacg gactgctgac ggcagcgaat ttgagagccc 960
caagaagaag aggaaagtcg gatccatcga gaagaagaag agcttcgcca agggcatggg 1020
agtgaagagc accctggtgt ccggctctaa ggtgtacatg accacatttg ctgagggaag 1080
cgacgccagg ctggagaaga tcgtggaggg cgatagcatc agatccgtga acgagggaga 1140
ggctttcagc gccgagatgg ctgacaagaa cgctggctac aagatcggaa acgccaagtt 1200
ttcccaccca aagggctacg ccgtggtggc taacaaccca ctgtacaccg gaccagtgca 1260
gcaggacatg ctgggactga aggagacact ggagaagagg tacttcggcg agtccgccga 1320
cggaaacgat aacatctgca tccaggtcat ccacaacatc ctggatatcg agaagatcct 1380
ggctgagtac atcacaaacg ccgcttacgc cgtgaacaac atctccggcc tggacaagga 1440
tatcatcggc ttcggaaagt tttctaccgt gtacacatac gacgagttca aggatccaga 1500
gcaccaccgg gccgctttta acaacaacga caagctgatc aacgccatca aggctcagta 1560
cgacgagttc gataactttc tggataaccc caggctgggc tacttcggac aggctttctt 1620
ttctaaggag ggcagaaact acatcatcaa ctacggaaac gagtgttacg acatcctggc 1680
cctgctgagc ggactggccc actgggtggt ggccaacaac gaggaggagt ctcggatcag 1740
ccgcacctgg ctgtacaacc tggacaagaa cctggataac gagtacatct ccacactgaa 1800
ctacctgtac gacaggatca ccaacgagct gacaaacagc ttctccaaga actctgccgc 1860
taacgtgaac tacatcgctg agaccctggg catcaaccca gctgagttcg ctgagcagta 1920
cttcagattt tccatcatga aggagcagaa gaacctgggc ttcaacatca caaagctgag 1980
agaagtgatg ctggacagaa aggatatgtc cgagatcagg aagaaccaca aggtgttcga 2040
ttctatcaga accaaggtgt acacaatgat ggactttgtg atctacaggt actacatcga 2100
ggaggatgcc aaggtggccg ctgccaacaa gagcctgccc gacaacgaga agtctctgag 2160
cgagaaggat atcttcgtga tcaacctgag aggctccttt aacgacgatc agaaggacgc 2220
tctgtactac gatgaggcca acaggatctg gagaaagctg gagaacatca tgcacaacat 2280
caaggagttc cggggaaaca agacccgcga gtacaagaag aaggacgctc caaggctgcc 2340
taggatcctg cctgctggaa gggacgtgag cgccttcagc aagctgatgt acgccctgac 2400
aatgtttctg gacggaaagg agatcaacga tctgctgacc acactgatca acaagttcga 2460
caacatccag tcttttctga aagtgatgcc tctgatcggc gtgaacgcta agttcgtgga 2520
ggagtacgcc ttctttaagg acagcgccaa gatcgctgat gagctgcggc tgatcaagtc 2580
ctttgccagg atgggagagc caatcgctga cgctaggaga gctatgtaca tcgatgccat 2640
ccggatcctg ggaaccaacg gttctaagcg caccgccgat ggatccgagt tcgaatcccc 2700
taaaaagaaa agaaaggtgg gatcccagct gcatttaccg caggttttag ctgacgctgt 2760
ctcacgcctg gtcctgggta agtttggtga cctgaccgac aacttctcct cccctcacgc 2820
tcgcagaaaa gtgctggctg gagtcgtcat gacaacaggc acagatgtta aagatgccaa 2880
ggtgataagt gtttctacag gaacaaaatg tattaatggt gaatacatga gtgatcgtgg 2940
ccttgcatta aatgactgcc atgcagaaat aatatctcgg agatccttgc tcagatttct 3000
ttatacacaa cttgagcttt acttaaataa caaagatgat caaaaaagat ccatctttca 3060
gaaatcagag cgaggggggt ttaggctgaa ggagaatgtc cagtttcatc tgtacatcag 3120
cacctctccc tgtggagatg ccagaatctt ctcaccacat gagccaatcc tggaagaacc 3180
agcagataga cacccaaatc gtaaagcaag aggacagcta cggaccaaaa tagagtctgg 3240
tcaggggacg attccagtgc gctccaatgc gagcatccaa acgtgggacg gggtgctgca 3300
aggggagcgg ctgctcacca tgtcctgcag tgacaagatt gcacgctgga acgtggtggg 3360
catccaggga tcactgctca gcattttcgt ggagcccatt tacttctcga gcatcatcct 3420
gggcagcctt taccacgggg accacctttc cagggccatg taccagcgga tctccaacat 3480
agaggacctg ccacctctct acaccctcaa caagcctttg ctcagtggca tcagcaatgc 3540
agaagcacgg cagccaggga aggcccccaa cttcagtgtc aactggacgg taggcgactc 3600
cgctattgag gtcatcaacg ccacgactgg gaaggatgag ctgggccgcg cgtcccgcct 3660
gtgtaagcac gcgttgtact gtcgctggat gcgtgtgcac ggcaaggttc cctcccactt 3720
actacgctcc aagattacca agcccaacgt gtaccatgag tccaagctgg cggcaaagga 3780
gtaccaggcc gccaaggcgc gtctgttcac agccttcatc aaggcggggc tgggggcctg 3840
ggtggagaag cccaccgagc aggaccagtt ctcactcacg ggatccaaaa gaactgcgga 3900
tggatctgag tttgagagtc caaaaaagaa gaggaaggtc ggttctatgc gcaacttcat 3960
catcaacaac gtgatcagca acaagcggtt tcactacctg atcagatacg gcgacccagc 4020
tcacctgcac gagatcgcta agaacgaggc cgtggtgaag ttcgtgctgg gacggatcgc 4080
cgatatccag aagaagcagg gccagaacgg aaagaaccag atcgaccgct actacgagac 4140
ctgcatcggc aaggataagg gaaagtccgt gtctgagaag gtggacgctc tgaccaagat 4200
catcacaggc atgaactacg accagttcga taagaagaga tctgtgatcg aggacaccgg 4260
aagggagaac gccgagagag agaagtttaa gaagatcatc agcctgtacc tgacagtgat 4320
ctaccacatc ctgaagaaca tcgtgaacat caacgctaga tacgtgatcg gcttccactg 4380
cgtggagcgc gatgcccagc tgtacaagga gaagggatac gacatcaacc tgaagaagct 4440
ggaggagaag ggctttagct ccgtgaccaa gctgtgcgct ggaatcgacg agacagcccc 4500
cgacaagagg aaggatgtgg agaaggagat ggccgagaga gctaaggaga gcatcgactc 4560
cctggagtct gctaacccta agctgtacgc caactacatc aagtactccg atgagaagaa 4620
ggccgaggag ttcaccaggc agatcaacag agagaaggcc aagaccgctc tgaacgccta 4680
cctgaggaac acaaagtgga acgtgatcat ccgggaggac ctgctgcgca tcgataacaa 4740
gacctgtaca ctgttcgcta acaaggctgt ggccctggag gtggctcgct acgtgcacgc 4800
ctacatcaac gacatcgccg aggtgaactc ctactttcag ctgtaccact acatcatgca 4860
gaggatcatc atgaacgaga gatacgagaa gtctagcggc aaggtgtctg agtacttcga 4920
cgccgtgaac gatgagaaga agtacaacga tagactgctg aagctgctgt gcgtgccttt 4980
cggatactgt atcccacggt ttaagaacct gagcatcgag gccctgttcg accgcaacga 5040
ggctgccaag tttgataagg agaagaagaa ggtgagcggc aactccggtt ctaagcgcac 5100
cgccgatgga tccgagttcg aatcccctaa aaagaaaaga aaggtgggat ccgactacaa 5160
agaccatgac ggtgattata aagatcatga tatcgattac aaggatgacg atgacaagta 5220
agcggccgct cgagcctaga gggcccgttt aaacccgctg atcagcctcg actgtgcctt 5280
ctagttgcca gccatctgtt gtttgcccct cccccgtgcc ttccttgacc ctggaaggtg 5340
ccactcccac tgtcctttcc taataaaatg aggaaattgc atcgcattgt ctgagtaggt 5400
gtcattctat tctggggggt ggggtggggc aggacagcaa gggggaggat tgggaagaca 5460
atagcaggca tgctggggat gcggtgggct ctatggcttc tgaggcggaa agaaccagct 5520
ggggctctag ggggtatccc cacgcgccct gtagcggcgc attaagcgcg gcgggtgtgg 5580
tggttacgcg cagcgtgacc gctacacttg ccagcgccct agcgcccgct cctttcgctt 5640
tcttcccttc ctttctcgcc acgttcgccg gctttccccg tcaagctcta aatcgggggc 5700
tccctttagg gttccgattt agtgctttac ggcacctcga ccccaaaaaa cttgattagg 5760
gtgatggttc acgtagtggg ccatcgccct gatagacggt ttttcgccct ttgacgttgg 5820
agtccacgtt ctttaatagt ggactcttgt tccaaactgg aacaacactc aaccctatct 5880
cggtctattc ttttgattta taagggattt tgccgatttc ggcctattgg ttaaaaaatg 5940
agctgattta acaaaaattt aacgcgaatt aattctgtgg aatgtgtgtc agttagggtg 6000
tggaaagtcc ccaggctccc cagcaggcag aagtatgcaa agcatgcatc tcaattagtc 6060
agcaaccagg tgtggaaagt ccccaggctc cccagcaggc agaagtatgc aaagcatgca 6120
tctcaattag tcagcaacca tagtcccgcc cctaactccg cccatcccgc ccctaactcc 6180
gcccagttcc gcccattctc cgccccatgg ctgactaatt ttttttattt atgcagaggc 6240
cgaggccgcc tctgcctctg agctattcca gaagtagtga ggaggctttt ttggaggcct 6300
aggcttttgc aaaaagctcc cgggagcttg tatatccatt ttcggatctg atcaagagac 6360
aggatgagga tcgtttcgca tgattgaaca agatggattg cacgcaggtt ctccggccgc 6420
ttgggtggag aggctattcg gctatgactg ggcacaacag acaatcggct gctctgatgc 6480
cgccgtgttc cggctgtcag cgcaggggcg cccggttctt tttgtcaaga ccgacctgtc 6540
cggtgccctg aatgaactgc aggacgaggc agcgcggcta tcgtggctgg ccacgacggg 6600
cgttccttgc gcagctgtgc tcgacgttgt cactgaagcg ggaagggact ggctgctatt 6660
gggcgaagtg ccggggcagg atctcctgtc atctcacctt gctcctgccg agaaagtatc 6720
catcatggct gatgcaatgc ggcggctgca tacgcttgat ccggctacct gcccattcga 6780
ccaccaagcg aaacatcgca tcgagcgagc acgtactcgg atggaagccg gtcttgtcga 6840
tcaggatgat ctggacgaag agcatcaggg gctcgcgcca gccgaactgt tcgccaggct 6900
caaggcgcgc atgcccgacg gcgaggatct cgtcgtgacc catggcgatg cctgcttgcc 6960
gaatatcatg gtggaaaatg gccgcttttc tggattcatc gactgtggcc ggctgggtgt 7020
ggcggaccgc tatcaggaca tagcgttggc tacccgtgat attgctgaag agcttggcgg 7080
cgaatgggct gaccgcttcc tcgtgcttta cggtatcgcc gctcccgatt cgcagcgcat 7140
cgccttctat cgccttcttg acgagttctt ctgagcggga ctctggggtt cgaaatgacc 7200
gaccaagcga cgcccaacct gccatcacga gatttcgatt ccaccgccgc cttctatgaa 7260
aggttgggct tcggaatcgt tttccgggac gccggctgga tgatcctcca gcgcggggat 7320
ctcatgctgg agttcttcgc ccaccccaac ttgtttattg cagcttataa tggttacaaa 7380
taaagcaata gcatcacaaa tttcacaaat aaagcatttt tttcactgca ttctagttgt 7440
ggtttgtcca aactcatcaa tgtatcttat catgtctgta taccgtcgac ctctagctag 7500
agcttggcgt aatcatggtc atagctgttt cctgtgtgaa attgttatcc gctcacaatt 7560
ccacacaaca tacgagccgg aagcataaag tgtaaagcct ggggtgccta atgagtgagc 7620
taactcacat taattgcgtt gcgctcactg cccgctttcc agtcgggaaa cctgtcgtgc 7680
cagctgcatt aatgaatcgg ccaacgcgcg gggagaggcg gtttgcgtat tgggcgctct 7740
tccgcttcct cgctcactga ctcgctgcgc tcggtcgttc ggctgcggcg agcggtatca 7800
gctcactcaa aggcggtaat acggttatcc acagaatcag gggataacgc aggaaagaac 7860
atgtgagcaa aaggccagca aaaggccagg aaccgtaaaa aggccgcgtt gctggcgttt 7920
ttccataggc tccgcccccc tgacgagcat cacaaaaatc gacgctcaag tcagaggtgg 7980
cgaaacccga caggactata aagataccag gcgtttcccc ctggaagctc cctcgtgcgc 8040
tctcctgttc cgaccctgcc gcttaccgga tacctgtccg cctttctccc ttcgggaagc 8100
gtggcgcttt ctcatagctc acgctgtagg tatctcagtt cggtgtaggt cgttcgctcc 8160
aagctgggct gtgtgcacga accccccgtt cagcccgacc gctgcgcctt atccggtaac 8220
tatcgtcttg agtccaaccc ggtaagacac gacttatcgc cactggcagc agccactggt 8280
aacaggatta gcagagcgag gtatgtaggc ggtgctacag agttcttgaa gtggtggcct 8340
aactacggct acactagaag aacagtattt ggtatctgcg ctctgctgaa gccagttacc 8400
ttcggaaaaa gagttggtag ctcttgatcc ggcaaacaaa ccaccgctgg tagcggtttt 8460
tttgtttgca agcagcagat tacgcgcaga aaaaaaggat ctcaagaaga tcctttgatc 8520
ttttctacgg ggtctgacgc tcagtggaac gaaaactcac gttaagggat tttggtcatg 8580
agattatcaa aaaggatctt cacctagatc cttttaaatt aaaaatgaag ttttaaatca 8640
atctaaagta tatatgagta aacttggtct gacagttacc aatgcttaat cagtgaggca 8700
cctatctcag cgatctgtct atttcgttca tccatagttg cctgactccc cgtcgtgtag 8760
ataactacga tacgggaggg cttaccatct ggccccagtg ctgcaatgat accgcgagac 8820
ccacgctcac cggctccaga tttatcagca ataaaccagc cagccggaag ggccgagcgc 8880
agaagtggtc ctgcaacttt atccgcctcc atccagtcta ttaattgttg ccgggaagct 8940
agagtaagta gttcgccagt taatagtttg cgcaacgttg ttgccattgc tacaggcatc 9000
gtggtgtcac gctcgtcgtt tggtatggct tcattcagct ccggttccca acgatcaagg 9060
cgagttacat gatcccccat gttgtgcaaa aaagcggtta gctccttcgg tcctccgatc 9120
gttgtcagaa gtaagttggc cgcagtgtta tcactcatgg ttatggcagc actgcataat 9180
tctcttactg tcatgccatc cgtaagatgc ttttctgtga ctggtgagta ctcaaccaag 9240
tcattctgag aatagtgtat gcggcgaccg agttgctctt gcccggcgtc aatacgggat 9300
aataccgcgc cacatagcag aactttaaaa gtgctcatca ttggaaaacg ttcttcgggg 9360
cgaaaactct caaggatctt accgctgttg agatccagtt cgatgtaacc cactcgtgca 9420
cccaactgat cttcagcatc ttttactttc accagcgttt ctgggtgagc aaaaacagga 9480
aggcaaaatg ccgcaaaaaa gggaataagg gcgacacgga aatgttgaat actcatactc 9540
ttcctttttc aatattattg aagcatttat cagggttatt gtctcatgag cggatacata 9600
tttgaatgta tttagaaaaa taaacaaata ggggttccgc gcacatttcc ccgaaaagtg 9660
ccacctgacg tc 9672
<210> 27
<211> 4875
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 27
tgagcaaaag gccagcaaaa ggccaggaac cgtaaaaagg ccgcgttgct ggcgtttttc 60
cataggctcc gcccccctga cgagcatcac aaaaatcgac gctcaagtca gaggtggcga 120
aacccgacag gactataaag ataccaggcg tttccccctg gaagctccct cgtgcgctct 180
cctgttccga ccctgccgct taccggatac ctgtccgcct ttctcccttc gggaagcgtg 240
gcgctttctc aatgctcacg ctgtaggtat ctcagttcgg tgtaggtcgt tcgctccaag 300
ctgggctgtg tgcacgaacc ccccgttcag cccgaccgct gcgccttatc cggtaactat 360
cgtcttgagt ccaacccggt aagacacgac ttatcgccac tggcagcagc cactggtaac 420
aggattagca gagcgaggta tgtaggcggt gctacagagt tcttgaagtg gtggcctaac 480
tacggctaca ctagaaggac agtatttggt atctgcgctc tgctgaagcc agttaccttc 540
ggaaaaagag ttggtagctc ttgatccggc aaacaaacca ccgctggtag cggtggtttt 600
tttgtttgca agcagcagat tacgcgcaga aaaaaaggat ctcaagaaga tcctttgatc 660
ttttctacgg ggtctgacgc tcagtggaac gaaaactcac gttaagggat tttggtcatg 720
agattatcaa aaaggatctt cacctagatc cttttaaatt aaaaatgaag ttttaaatca 780
atctaaagta tatatgagta aacttggtct gacagttacc aatgcttaat cagtgaggca 840
cctatctcag cgatctgtct atttcgttca tccatagttg cctgactccc cgtcgtgtag 900
ataactacga tacgggaggg cttaccatct ggccccagtg ctgcaatgat accgcgagat 960
ccacgctcac cggctccaga tttatcagca ataaaccagc cagccggaag ggccgagcgc 1020
agaagtggtc ctgcaacttt atccgcctcc atccagtcta ttaattgttg ccgggaagct 1080
agagtaagta gttcgccagt taatagtttg cgcaacgttg ttgccattgc tacaggcatc 1140
gtggtgtcac gctcgtcgtt tggtatggct tcattcagct ccggttccca acgatcaagg 1200
cgagttacat gatcccccat gttgtgcaaa aaagcggtta gctccttcgg tcctccgatc 1260
gttgtcagaa gtaagttggc cgcagtgtta tcactcatgg ttatggcagc actgcataat 1320
tctcttactg tcatgccatc cgtaagatgc ttttctgtga ctggtgagta ctcaaccaag 1380
tcattctgag aatagtgtat gcggcgaccg agttgctctt gcccggcgtc aatacgggat 1440
aataccgcgc cacatagcag aactttaaaa gtgctcatca ttggaaaacg ttcttcgggg 1500
cgaaaactct caaggatctt accgctgttg agatccagtt cgatgtaacc cactcgtgca 1560
cccaactgat cttcagcatc ttttactttc accagcgttt ctgggtgagc aaaaacagga 1620
aggcaaaatg ccgcaaaaaa gggaataagg gcgacacgga aatgttgaat actcatactc 1680
ttcctttttc aatattattg aagcatttat cagggttatt gtctcatgag cggatacata 1740
tttgaatgta tttagaaaaa taaacaaata ggggttccgc gcacatttcc ccgaaaagtg 1800
ccacctgacg cgccctgtag cggcgcatta agcgcggcgg gtgtggtggt tacgcgcagc 1860
gtgaccgcta cacttgccag cgccctagcg cccgctcctt tcgctttctt cccttccttt 1920
ctcgccacgt tcgccggctt tccccgtcaa gctctaaatc gggggctccc tttagggttc 1980
cgatttagtg ctttacggca cctcgacccc aaaaaacttg attagggtga tggttcacgt 2040
agtgggccat cgccctgata gacggttttt cgccctttga cgttggagtc cacgttcttt 2100
aatagtggac tcttgttcca aactggaaca acactcaacc ctatctcggt ctattctttt 2160
gatttataag ggattttgcc gatttcggcc tattggttaa aaaatgagct gatttaacaa 2220
aaatttaacg cgaattttaa caaaatatta acgcttacaa tttgccattc gccattcagg 2280
ctgcgcaact gttgggaagg gcgatcggtg cgggcctctt cgctattacg ccagcccaag 2340
ctaccatgat aagtaagtaa tattaaggta cgggaggtac ttggagcggc cgcaataaaa 2400
tatctttatt ttcattacat ctgtgtgttg gttttttgtg tgaatcgata gtactaacat 2460
acgctctcca tcaaaacaaa acgaaacaaa acaaactagc aaaataggct gtccccagtg 2520
caagtgcagg tgccagaaca tttctctatc gataggtacc gattagtgaa cggatctcga 2580
cggtatcgat cacgagacta gcctcgagcg gccgccccct tcaccgaggg cctatttccc 2640
atgattcctt catatttgca tatacgatac aaggctgtta gagagataat tggaattaat 2700
ttgactgtaa acacaaagat attagtacaa aatacgtgac gtagaaagta ataatttctt 2760
gggtagtttg cagttttaaa attatgtttt aaaatggact atcatatgct taccgtaact 2820
tgaaagtatt tcgatttctt ggctttatat atcttgtgga aaggacgaaa caccgcaagt 2880
aaacccctac caactggtcg gggtttgaaa cagaagagcc tcgaggctct tctcaagtaa 2940
acccctacca actggtcggg gtttgaaacg aagacttttt ttttcgcttc ctcgctcact 3000
gactcgctgc gctcggtcgt tcggctgcgg cgagcggtat cagctcactc aaaggcggta 3060
atacggtcct cgagacaaat ggcagtattc atccacaatt ttaaaagaaa aggggggatt 3120
ggggggtaca gtgcagggga aagaatagta gacataatag caacagacat acaaactaaa 3180
gaattacaaa aacaaattac aaaaattcaa aattttcggg tttattacag ggacagcaga 3240
gatccacttt ggccgcggct cgagggggtt ggggttgcgc cttttccaag gcagccctgg 3300
gtttgcgcag ggacgcggct gctctgggcg tggttccggg aaacgcagcg gcgccgaccc 3360
tgggactcgc acattcttca cgtccgttcg cagcgtcacc cggatcttcg ccgctaccct 3420
tgtgggcccc ccggcgacgc ttcctgctcc gcccctaagt cgggaaggtt ccttgcggtt 3480
cgcggcgtgc cggacgtgac aaacggaagc cgcacgtctc actagtaccc tcgcagacgg 3540
acagcgccag ggagcaatgg cagcgcgccg accgcgatgg gctgtggcca atagcggctg 3600
ctcagcaggg cgcgccgaga gcagcggccg ggaaggggcg gtgcgggagg cggggtgtgg 3660
ggcggtagtg tgggccctgt tcctgcccgc gcggtgttcc gcattctgca agcctccgga 3720
gcgcacgtcg gcagtcggct ccctcgttga ccgaatcacc gacctctctc cccaggggga 3780
tccaccggag cttaccatga ccgagtacaa gcccacggtg cgcctcgcca cccgcgacga 3840
cgtccccagg gccgtacgca ccctcgccgc cgcgttcgcc gactaccccg ccacgcgcca 3900
caccgtcgat ccggaccgcc acatcgagcg ggtcaccgag ctgcaagaac tcttcctcac 3960
gcgcgtcggg ctcgacatcg gcaaggtgtg ggtcgcggac gacggcgccg cggtggcggt 4020
ctggaccacg ccggagagcg tcgaagcggg ggcggtgttc gccgagatcg gcccgcgcat 4080
ggccgagttg agcggttccc ggctggccgc gcagcaacag atggaaggcc tcctggcgcc 4140
gcaccggccc aaggagcccg cgtggttcct ggccaccgtc ggcgtctcgc ccgaccacca 4200
gggcaagggt ctgggcagcg ccgtcgtgct ccccggagtg gaggcggccg agcgcgccgg 4260
ggtgcccgcc ttcctggaaa cctccgcgcc ccgcaacctc cccttctacg agcggctcgg 4320
cttcaccgtc accgccgacg tcgaggtgcc cgaaggaccg cgcacctggt gcatgacccg 4380
caagcccggt gcctgacgcc cgccccacga cccgcagcgc ccgaccgaaa ggagcgcacg 4440
accccatgca tcggtacctt taagaccaat gacttacaag gcagctgtag atcttagcca 4500
ctttctagag tcggggcggc cggccgcttc gagcagacat gataagatac attgatgagt 4560
ttggacaaac cacaactaga atgcagtgaa aaaaatgctt tatttgtgaa atttgtgatg 4620
ctattgcttt atttgtaacc attataagct gcaataaaca agttaacaac aacaattgca 4680
ttcattttat gtttcaggtt cagggggagg tgtgggaggt tttttaaagc aagtaaaacc 4740
tctacaaatg tggtcgcttc ctcgctcact gactcgctgc gctcggtcgt tcggctgcgg 4800
cgagcggtat cagctcactc aaaggcggta atacggttat ccacagaatc aggggataac 4860
gcaggaaaga acatg 4875
<210> 28
<211> 53
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 28
ttgctgaggg tccccagtgt ttctggatga catcatggat cagcccagct gtc 53
<210> 29
<211> 53
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 29
aacgacagct gggctgatcc atgatgtcat ccagaaacac tggggaccct cag 53
<210> 30
<211> 53
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 30
ttgttacagg atgctatgat tccatgatac ggatatggaa agttgagatg aga 53
<210> 31
<211> 53
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 31
aactctcatc tcaactttcc atatccgtat catggaatca tagcatcctg taa 53
<210> 32
<211> 53
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 32
ttgtggaaca gatacgcgct tactgtgaaa cctgttggga gtggcaggaa gct 53
<210> 33
<211> 53
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 33
aacagcttcc tgccactccc aacaggtttc acagtaagcg cgtatctgtt cca 53
<210> 34
<211> 53
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 34
ttgtatgcaa gtatttaagt ctccacacaa gtgactgggt aagctcttgc cgt 53
<210> 35
<211> 53
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 35
aacacggcaa gagcttaccc agtcacttgt gtggagactt aaatacttgc ata 53
<210> 36
<211> 53
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 36
ttggatgtgt gaggcacctg tggtgacccg agagtgggtg ttggacagtg tag 53
<210> 37
<211> 53
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 37
aacctacact gtccaacacc cactctcggg tcaccacagg tgcctcacac atc 53
<210> 38
<211> 53
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 38
ttgtctgcca tcctgaactc aagagtggag aatactgggt tgaccctaac caa 53
<210> 39
<211> 53
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 39
aacttggtta gggtcaaccc agtattctcc actcttgagt tcaggatggc aga 53
<210> 40
<211> 53
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 40
ttgtcatcaa ggaaccaaat gatctgttaa agctgtggaa gcatgagtgt aaa 53
<210> 41
<211> 53
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 41
aactttacac tcatgcttcc acagctttaa cagatcattt ggttccttga tga 53
<210> 42
<211> 53
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 42
ttgccatgta tgatgacccc accctgcctg aaggctggac acggaagctt aag 53
<210> 43
<211> 53
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 43
aaccttaagc ttccgtgtcc agccttcagg cagggtgggg tcatcataca tgg 53
<210> 44
<211> 53
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 44
ttgagccacc ccaggatgtc ggcaacacgg agctctgggg gtacacagtg cag 53
<210> 45
<211> 53
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 45
aacctgcact gtgtaccccc agagctccgt gttgccgaca tcctggggtg gct 53
<210> 46
<211> 53
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 46
ttgggctcga gtggtgctgg aactgtggct gcgagtggaa ccgcgtctgc atg 53
<210> 47
<211> 53
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 47
aaccatgcag acgcggttcc actcgcagcc acagttccag caccactcga gcc 53
<210> 48
<211> 63
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 48
ttgccccagt gcaggctcga gtggtgctgg aactgtggct gcgagtggaa ccgcgtctgc 60
atg 63
<210> 49
<211> 63
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 49
aaccatgcag acgcggttcc actcgcagcc acagttccag caccactcga gcctgcactg 60
ggg 63
<210> 50
<211> 43
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 50
ttggtgctgg aactgtggct gcgagtggaa ccgcgtctgc atg 43
<210> 51
<211> 43
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 51
aaccatgcag acgcggttcc actcgcagcc acagttccag cac 43
<210> 52
<211> 33
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 52
ttgtgtggct gcgagtggaa ccgcgtctgc atg 33
<210> 53
<211> 33
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 53
aaccatgcag acgcggttcc actcgcagcc aca 33
<210> 54
<211> 28
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 54
ttggtggctg cgagtggaac cgcgtctg 28
<210> 55
<211> 28
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 55
aaccagacgc ggttccactc gcagccac 28
<210> 56
<211> 25
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 56
ttggctgcga gtggaaccgc gtctg 25
<210> 57
<211> 25
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 57
aaccagacgc ggttccactc gcagc 25
<210> 58
<211> 21
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 58
ttgcgagtgg aaccgcgtct g 21
<210> 59
<211> 21
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 59
aaccagacgc ggttccactc g 21
<210> 60
<211> 21
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 60
cgccgagggc cgccactcca c 21
<210> 61
<211> 21
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 61
acgctgaact tgtggccgtt t 21
<210> 62
<211> 201
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 62
gagcaggctc gttgggaagc agcctccaaa gaaaccatca agaaaaccac caagccctgt 60
ccccgctgcc atgtaccagt ggaaaaaaat ggaggctgca tgcacatgaa gtgtccgcag 120
ccccagtgca ggctcgagtg gtgctggaac tgtggctgcg agtagaaccg cgtctgcatg 180
ggggaccact ggttcgacgt g 201
<210> 63
<211> 21
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 63
aaccatgcag acgcggttcc a 21
<210> 64
<211> 21
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 64
ttgtggaacc gcgtctgcat g 21
<210> 65
<211> 25
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 65
aaccatgcag acgcggttcc actcg 25
<210> 66
<211> 25
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 66
ttgcgagtgg aaccgcgtct gcatg 25
<210> 67
<211> 28
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 67
aaccatgcag acgcggttcc actcgcag 28
<210> 68
<211> 28
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 68
ttgctgcgag tggaaccgcg tctgcatg 28
<210> 69
<211> 33
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 69
aaccatgcag acgcggttcc actcgcagcc aca 33
<210> 70
<211> 33
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 70
ttgtgtggct gcgagtggaa ccgcgtctgc atg 33
<210> 71
<211> 43
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 71
aaccatgcag acgcggttcc actcgcagcc acagttccag cac 43
<210> 72
<211> 43
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 72
ttggtgctgg aactgtggct gcgagtggaa ccgcgtctgc atg 43
<210> 73
<211> 53
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 73
aaccatgcag acgcggttcc actcgcagcc acagttccag caccactcga gcc 53
<210> 74
<211> 53
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 74
ttgggctcga gtggtgctgg aactgtggct gcgagtggaa ccgcgtctgc atg 53
<210> 75
<211> 25
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 75
aactccactc gcagccacag ttcca 25
<210> 76
<211> 24
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 76
ttgtggaact gtggctgcga gtgg 24
<210> 77
<211> 26
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 77
aacgttccac tcgcagccac agttcc 26
<210> 78
<211> 26
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 78
ttgggaactg tggctgcgag tggaac 26
<210> 79
<211> 25
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 79
aacggttcca ctcgcagcca cagtt 25
<210> 80
<211> 25
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 80
ttgaactgtg gctgcgagtg gaacc 25
<210> 81
<211> 25
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 81
aaccggttcc actcgcagcc acagt 25
<210> 82
<211> 25
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 82
ttgactgtgg ctgcgagtgg aaccg 25
<210> 83
<211> 25
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 83
aacgcggttc cactcgcagc cacag 25
<210> 84
<211> 25
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 84
ttgctgtggc tgcgagtgga accgc 25
<210> 85
<211> 25
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 85
aaccgcggtt ccactcgcag ccaca 25
<210> 86
<211> 25
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 86
ttgtgtggct gcgagtggaa ccgcg 25
<210> 87
<211> 25
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 87
aacacgcggt tccactcgca gccac 25
<210> 88
<211> 25
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 88
ttggtggctg cgagtggaac cgcgt 25
<210> 89
<211> 25
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 89
aacgacgcgg ttccactcgc agcca 25
<210> 90
<211> 25
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 90
ttgtggctgc gagtggaacc gcgtc 25
<210> 91
<211> 25
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 91
aacagacgcg gttccactcg cagcc 25
<210> 92
<211> 25
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 92
ttgggctgcg agtggaaccg cgtct 25
<210> 93
<211> 25
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 93
aaccagacgc ggttccactc gcagc 25
<210> 94
<211> 25
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 94
ttggctgcga gtggaaccgc gtctg 25
<210> 95
<211> 25
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 95
aacgcagacg cggttccact cgcag 25
<210> 96
<211> 25
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 96
ttgctgcgag tggaaccgcg tctgc 25
<210> 97
<211> 25
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 97
aactgcagac gcggttccac tcgca 25
<210> 98
<211> 25
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 98
ttgtgcgagt ggaaccgcgt ctgca 25
<210> 99
<211> 25
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 99
aacccatgca gacgcggttc cactc 25
<210> 100
<211> 25
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 100
ttggagtgga accgcgtctg catgg 25
<210> 101
<211> 25
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 101
aacagacgcg gttacactcg cagcc 25
<210> 102
<211> 25
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 102
ttgggctgcg agtgtaaccg cgtct 25
<210> 103
<211> 25
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 103
aacagacgcg gtttcactcg cagcc 25
<210> 104
<211> 25
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 104
ttgggctgcg agtgaaaccg cgtct 25
<210> 105
<211> 25
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 105
aacagacgcg gttgcactcg cagcc 25
<210> 106
<211> 25
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 106
ttgggctgcg agtgcaaccg cgtct 25
<210> 107
<211> 25
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 107
aacagacgcg gtttctctcg cagcc 25
<210> 108
<211> 25
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 108
ttgggctgcg agagaaaccg cgtct 25
<210> 109
<211> 25
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 109
aacagacgcg gttactctcg cagcc 25
<210> 110
<211> 25
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 110
ttgggctgcg agtgaaaccg cgtct 25
<210> 111
<211> 24
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 111
aacagacgcg gttgctctcg cagc 24
<210> 112
<211> 25
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 112
ttgggctgcg agagcaaccg cgtct 25
<210> 113
<211> 24
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 113
aacagacgcg gttcctctcg cagc 24
<210> 114
<211> 25
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 114
ttgggctgcg agaggaaccg cgtct 25
<210> 115
<211> 24
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 115
aacagacgcg gtttcgctcg cagc 24
<210> 116
<211> 25
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 116
ttgggctgcg agcgaaaccg cgtct 25
<210> 117
<211> 24
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 117
aacagacgcg gttacgctcg cagc 24
<210> 118
<211> 25
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 118
ttgggctgcg agcgtaaccg cgtct 25
<210> 119
<211> 24
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 119
aacagacgcg gttgcgctcg cagc 24
<210> 120
<211> 25
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 120
ttgggctgcg agcgcaaccg cgtct 25
<210> 121
<211> 24
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 121
aacagacgcg gttccgctcg cagc 24
<210> 122
<211> 25
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 122
ttgggctgcg agcggaaccg cgtct 25
<210> 123
<211> 24
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 123
aacagacgcg gtttccctcg cagc 24
<210> 124
<211> 25
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 124
ttgggctgcg agggaaaccg cgtct 25
<210> 125
<211> 24
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 125
aacagacgcg gttaccctcg cagc 24
<210> 126
<211> 25
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 126
ttgggctgcg agggtaaccg cgtct 25
<210> 127
<211> 24
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 127
aacagacgcg gttgccctcg cagc 24
<210> 128
<211> 25
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 128
ttgggctgcg agggcaaccg cgtct 25
<210> 129
<211> 24
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 129
aacagacgcg gttcccctcg cagc 24
<210> 130
<211> 25
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 130
ttgggctgcg aggggaaccg cgtct 25
<210> 131
<211> 25
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 131
aacctgggct gatccatgat gtcat 25
<210> 132
<211> 25
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 132
ttgatgacat catggatcag cccag 25
<210> 133
<211> 25
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 133
aactctcaac tttccatatc cgtat 25
<210> 134
<211> 25
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 134
ttgatacgga tatggaaagt tgaga 25
<210> 135
<211> 25
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 135
aaccctgcca ctcccaacag gtttc 25
<210> 136
<211> 25
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 136
ttggaaacct gttgggagtg gcagg 25
<210> 137
<211> 25
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 137
aactagggtc aacccagtat tctcc 25
<210> 138
<211> 25
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 138
ttgggagaat actgggttga cccta 25
<210> 139
<211> 25
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 139
aacactcatg cttccacagc tttaa 25
<210> 140
<211> 25
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 140
ttgttaaagc tgtggaagca tgagt 25
<210> 141
<211> 25
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 141
aacgcttccg tgtccagcct tcagg 25
<210> 142
<211> 25
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 142
ttgcctgaag gctggacacg gaagc 25
<210> 143
<211> 25
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 143
aacctgtgta cccccagagc tccgt 25
<210> 144
<211> 25
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 144
ttgacggagc tctgggggta cacag 25
<210> 145
<211> 33
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 145
aactttgtaa atcaaagtac accttgactg tga 33
<210> 146
<211> 33
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 146
ttgtcacagt caaggtgtac tttgatttac aaa 33
<210> 147
<211> 33
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 147
aaccaaagac gactcgtccc acagattcat ctc 33
<210> 148
<211> 33
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 148
ttggagatga atctgtggga cgagtcgtct ttg 33
<210> 149
<211> 25
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 149
tcttcctttt gctgcccgga ccctc 25
<210> 150
<211> 29
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 150
acatccatgc cctctagaac tttgccgaa 29
<210> 151
<211> 21
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 151
gccgaaaacc acatgcttgc c 21
<210> 152
<211> 33
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 152
aactcccaag tagaaatacc agtgtcagga agt 33
<210> 153
<211> 33
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 153
ttgacttcct gacactggta tttctacttg gga 33
<210> 154
<211> 33
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 154
aacgctttga tgtcacttcc aaagtcccct tgt 33
<210> 155
<211> 33
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 155
ttgacaaggg gactttggaa gtgacatcaa agc 33
<210> 156
<211> 24
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 156
agctcatctg gaatttcgcc gact 24
<210> 157
<211> 30
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 157
aaggcactgt aagttattat ccccacggaa 30
<210> 158
<211> 23
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 158
gaatttcgcc gacttcatga cga 23
<210> 159
<211> 32
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 159
aactctcctg ctcgaagtcc agagcaacat ag 32
<210> 160
<211> 32
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 160
ttgctatgtt gctctggact tcgagcagga ga 32
<210> 161
<211> 28
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 161
acatccgtaa agacctctat gccaacac 28
<210> 162
<211> 28
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 162
ccagggagac caaagccttc atacatca 28
<210> 163
<211> 21
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 163
ccgacaggat gcagaaggag a 21

Claims (12)

1. A fusion protein has an amino acid sequence shown as SEQ ID number 5.
2. An isolated polynucleotide encoding the fusion protein of claim 1.
3. A construct comprising the isolated polynucleotide of claim 2.
4. An expression system comprising the construct or genome of claim 3 having integrated therein an exogenous polynucleotide of claim 2.
5. The expression system of claim 4, wherein the host cell of the expression system is selected from the group consisting of eukaryotic cells and prokaryotic cells.
6. The expression system of claim 5, wherein the host cell is selected from a mouse cell.
7. The expression system of claim 6, wherein the host cell is selected from mouse brain neuroma cells.
8. The expression system of claim 7, wherein the host cell is selected from the group consisting of N2a cells.
9. Use of the fusion protein of claim 1, the isolated polynucleotide of claim 2, the construct of claim 3 or the expression system of any one of claims 4 to 8 for gene editing for non-disease diagnosis and treatment purposes.
10. Use according to claim 9, in particular in gene editing in eukaryotes.
11. A base editing system comprising the fusion protein of claim 1, the base editing system further comprising a sgRNA.
12. A method of gene editing comprising: gene editing is performed by the fusion protein according to claim 1 or the base editing system according to claim 11.
CN201910807276.3A 2019-08-29 2019-08-29 RNA base editing molecule Active CN110511286B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910807276.3A CN110511286B (en) 2019-08-29 2019-08-29 RNA base editing molecule

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910807276.3A CN110511286B (en) 2019-08-29 2019-08-29 RNA base editing molecule

Publications (2)

Publication Number Publication Date
CN110511286A CN110511286A (en) 2019-11-29
CN110511286B true CN110511286B (en) 2022-08-02

Family

ID=68629030

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910807276.3A Active CN110511286B (en) 2019-08-29 2019-08-29 RNA base editing molecule

Country Status (1)

Country Link
CN (1) CN110511286B (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20240101983A1 (en) * 2019-10-18 2024-03-28 Nanyang Technological University Programmable rna editing platform
CN111172133B (en) * 2020-03-10 2021-12-31 上海科技大学 Base editing tool and application thereof
CN114058607B (en) * 2020-07-31 2024-02-27 上海科技大学 Fusion protein for editing C to U base, and preparation method and application thereof
CN114380918B (en) * 2020-10-19 2023-03-31 上海交通大学 System and method for single base editing of target RNA
WO2023184107A1 (en) * 2022-03-28 2023-10-05 Huigene Therapeutics Co., Ltd. Crispr-cas13 system for treating mecp2-associated diseases

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108559738A (en) * 2018-02-12 2018-09-21 南昌大学 A kind of system and method for plant RNA modification and editor
WO2019005884A1 (en) * 2017-06-26 2019-01-03 The Broad Institute, Inc. Crispr/cas-adenine deaminase based compositions, systems, and methods for targeted nucleic acid editing
WO2019126716A1 (en) * 2017-12-22 2019-06-27 The Broad Institute, Inc. Cas12b systems, methods, and compositions for targeted rna base editing
CN110029096A (en) * 2019-05-09 2019-07-19 上海科技大学 A kind of adenine base edit tool and application thereof
CN110114461A (en) * 2016-08-17 2019-08-09 博德研究所 Novel C RISPR enzyme and system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110114461A (en) * 2016-08-17 2019-08-09 博德研究所 Novel C RISPR enzyme and system
WO2019005884A1 (en) * 2017-06-26 2019-01-03 The Broad Institute, Inc. Crispr/cas-adenine deaminase based compositions, systems, and methods for targeted nucleic acid editing
WO2019126716A1 (en) * 2017-12-22 2019-06-27 The Broad Institute, Inc. Cas12b systems, methods, and compositions for targeted rna base editing
CN108559738A (en) * 2018-02-12 2018-09-21 南昌大学 A kind of system and method for plant RNA modification and editor
CN110029096A (en) * 2019-05-09 2019-07-19 上海科技大学 A kind of adenine base edit tool and application thereof

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
Developing PspCas13b-based enhanced RESCUE system, eRESCUE, with efcient RNA base editing;Guo Li et al.;《Cell Commun Signal》;20210811;第19卷(第84期);第1-10页 *
Site-directed RNA editing (SDRE): Off-target effects and their countermeasures;Shaoshuai Mao et al.;《Journal of Genetics and Genomics》;20191127;第46卷;第531-535页 *
核酸检测和基因编辑的新工具:CRISPR/Cas13 系统;彭利君等;《临床检验杂志》;20190531;第 37 卷(第 5 期);第380-382页 *
碱基编辑系统及其在构建多点突变模型中的潜在应用;陶皖豫等;《生命的化学》;20201231;第40卷(第11期);第1917-1923页 *

Also Published As

Publication number Publication date
CN110511286A (en) 2019-11-29

Similar Documents

Publication Publication Date Title
CN110511286B (en) RNA base editing molecule
AU2021250992B2 (en) Compositions and methods for directing proteins to specific loci in the genome
CN102649947A (en) Cell strain for measuring bioactivity of GLP-1 and functional analogue thereof and application of cell strain
KR102630017B1 (en) Programmed death 1 ligand 1 (PD-L1) binding protein and methods of use thereof
CA2464239C (en) Psma antibodies and protein multimers
EP1945773B1 (en) Recombinant expression of multiprotein complexes using polygenes
AU2022200903B2 (en) Engineered Cascade components and Cascade complexes
KR20190076993A (en) A manipulated two-part cell device for the discovery and characterization of T-cell receptor interactions with cognate antigens
US20040161776A1 (en) PSMA formulations and uses thereof
CN101553506A (en) LINGO binding molecules and pharmaceutical use thereof
KR20140084242A (en) Psma antibody-drug conjugates
KR102614328B1 (en) Two-part device for T-cell receptor synthesis and stable genomic integration into TCR-presenting cells
KR102584628B1 (en) An engineered multicomponent system for the identification and characterization of T-cell receptors, T-cell antigens, and their functional interactions.
KR20220038362A (en) Recombinant AD35 Vector and Related Gene Therapy Improvements
WO1996006110A1 (en) Composite dna-binding proteins and materials and methods relating thereto
US20240207318A1 (en) Chimeric costimulatory receptors, chemokine receptors, and the use of same in cellular immunotherapies
JP2023025182A (en) Engineered multicomponent systems for identification and characterization of t cell receptors and t cell antigens
CN116745428A (en) Site-specific genetic modification
KR20210137499A (en) Genome-Editing Birds
CN110714027A (en) Expression plasmid, cell strain for packaging second-generation adenovirus and application thereof
CN111057715B (en) Reverse genetic operation system for rescuing swine seneca virus based on double promoters and establishment method thereof
CN107384917B (en) Mini-gene splicing report plasmid and construction method and application thereof
CN117321209A (en) Systems and methods for protein expression
CN114231568B (en) Auxiliary protein for improving DNA repair efficiency, gene editing vector and application thereof
CN110628815B (en) Reporter gene probe for monitoring miRNA expression based on gene editing technology and construction method thereof

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant