CN104628262B - 火柴状TiO2纳米颗粒和纳米棒复合阵列的制备方法 - Google Patents

火柴状TiO2纳米颗粒和纳米棒复合阵列的制备方法 Download PDF

Info

Publication number
CN104628262B
CN104628262B CN201410641369.0A CN201410641369A CN104628262B CN 104628262 B CN104628262 B CN 104628262B CN 201410641369 A CN201410641369 A CN 201410641369A CN 104628262 B CN104628262 B CN 104628262B
Authority
CN
China
Prior art keywords
tio
array
composite array
nano
particle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201410641369.0A
Other languages
English (en)
Other versions
CN104628262A (zh
Inventor
汪竞阳
胡安正
谢仁涛
成乐笑
赵园林
柳纯刚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hubei University of Arts and Science
Original Assignee
Hubei University of Arts and Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hubei University of Arts and Science filed Critical Hubei University of Arts and Science
Priority to CN201410641369.0A priority Critical patent/CN104628262B/zh
Publication of CN104628262A publication Critical patent/CN104628262A/zh
Application granted granted Critical
Publication of CN104628262B publication Critical patent/CN104628262B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/3411Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions with at least two coatings of inorganic materials
    • C03C17/3417Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions with at least two coatings of inorganic materials all coatings being oxide coatings
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/006Surface treatment of glass, not in the form of fibres or filaments, by coating with materials of composite character
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/40Coatings comprising at least one inhomogeneous layer
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/70Properties of coatings
    • C03C2217/71Photocatalytic coatings
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/90Other aspects of coatings
    • C03C2217/94Transparent conductive oxide layers [TCO] being part of a multilayer coating
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2218/00Methods for coating glass
    • C03C2218/10Deposition methods
    • C03C2218/11Deposition methods from solutions or suspensions
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2218/00Methods for coating glass
    • C03C2218/10Deposition methods
    • C03C2218/15Deposition methods from the vapour phase
    • C03C2218/154Deposition methods from the vapour phase by sputtering
    • C03C2218/156Deposition methods from the vapour phase by sputtering by magnetron sputtering

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Composite Materials (AREA)
  • Physical Vapour Deposition (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Hybrid Cells (AREA)

Abstract

本发明提供一种火柴状TiO2纳米颗粒和纳米棒复合阵列的制备方法,具体方法为:首先用水热法制备在透明导电玻璃衬底上制备出二氧化钛纳米棒阵列;然后,以高纯金属Ti作为溅射靶材,通过直流磁控溅射法,在制备好的二氧化钛纳米棒顶端表面沉积Ti纳米颗粒,最后通过空气中的退火晶化,形成火柴状TiO2纳米颗粒和纳米棒复合阵列。该复合阵列提高了TiO2纳米棒阵列的比表面积,并且拓宽了光吸收范围。应用这种火柴状TiO2纳米颗粒和纳米棒复合阵列组装成有机染料敏化太阳能电池、光催化、光解水制氢等光电器件的工作电极,能有效提高器件的光电转换效率、光催化降解效率和光解水制氢效率,同时该复合阵列制备工艺简单、重复性好、成本低、易于大规模成产。

Description

火柴状TiO2纳米颗粒和纳米棒复合阵列的制备方法
技术领域
本发明涉及一种火柴状TiO2纳米颗粒和纳米棒复合阵列的方法,特别是涉及一种在TiO2纳米棒表面制备TiO2纳米颗粒,形成复合纳米阵列结构的方法,属于纳米材料领域。
背景技术
2009年Liu Bin等人首次报道了水热法在透明导电玻璃基底上制备一维TiO2纳米棒阵列,并将这种纳米棒阵列应用在有机染料敏化太阳能电池中作为工作电极。(Bin Liu,Eray S. Aydil, Journal of the American Chemical Society. 2009, 131, 11:3985-3990. Growth of oriented single-crystalline rutile TiO2 nanorods ontransparent conducting substrates for dye-Sensitized solar cells)相比较传统的纳米颗粒材料,一维半导体纳米阵列结构可以为载流子传输提供直接通道,减少传输电阻和载流子复合,并且能够增大入射光的散射效果,提高光吸收效率。因而将一维半导体纳米阵列结构作为工作电极可广泛应用在染料敏化太阳能电池、光催化及光解水制氢等光电器件中。为进一步改善一维TiO2纳米棒阵列的形貌及结构特性,2011年,Wang Hua等人报道了用TiO2纳米颗粒作种子骨架,生长了树枝型TiO2纳米棒阵列,增大了阵列的比表面积并研究了它们在染料敏化太阳能电池方面的应用情况(Hua Wang, Yusong Bai, Qiong Wu, WeiZhou, Hao Zhang, Jinghong Li, Lin Guo, Physical Chemistry Chemical Physics,2011, 13, 7008-7013. Rutile TiO2 nano-branched arrays on FTO for dye-sensitized solar cells)。同年Pan Hao等人报道了通过化学刻蚀制备中空TiO2纳米棒阵列结构,增大了阵列的比表面积。(Hao Pan, Jieshu Qian, Ang Yu, Meigui Xu, Luo Tu,Qingli Chai, Xingfu Zhou, Applied Surface Science, 2011, 257, 5059-5063. TiO2wedgy nanotubes array flims for photovoltaic enhancement)上述工作都集中在增大阵列的比表面积上,而对TiO2纳米棒阵列的光学吸收性质并没有改善。到目前为止,还未见有人报道过既能增大TiO2纳米棒阵列比表面积,又能拓宽其光吸收范围的研究工作。
发明内容
本发明提供一种火柴状TiO2纳米颗粒和纳米棒复合阵列的制备方法,旨在提高TiO2纳米棒阵列的比表面积和拓宽光吸收范围,将这种复合阵列作为工作电极,可有效提高有机染料敏化太阳能电池、光催化、光解水制氢等光电器件的效率。具体方法为:首先用水热法制备在氟掺杂氧化锡(fluorine-doped tin oxide,简称FTO)透明导电玻璃上制备出二氧化钛纳米棒阵列;然后,以高纯金属Ti作为溅射靶材,通过直流磁控溅射法,在制备好的二氧化钛纳米棒顶端表面沉积Ti纳米颗粒,最后通过空气中的退火晶化,形成火柴状TiO2纳米颗粒和纳米棒复合阵列。
本发明是采用下列技术方案来实现的。一种火柴状TiO2纳米颗粒和纳米棒复合阵列的制备方法,包括以下步骤:
步骤(1).选用厚度为1.2mm的氟掺杂氧化锡(fluorine-doped tin oxide,简称FTO)透明导电玻璃,裁剪成1.5cm×5cm的长方块,用异丙醇、丙酮和去离子水的混合溶液(体积比为1:1:1)将FTO导电玻璃超声清洗30min,取出用去离子水冲洗后再用乙醇超声清洗15min,最后取出FTO导电玻璃用去离子水冲洗干净放入烘箱,在60℃烘干备用;
步骤(2).用量筒量取25 ml 的去离子水和25 ml 重量百分比为36.5%-38% 的浓盐酸,混合搅拌5 min,加入0.5 g的钛酸四丁酯(分析纯),继续搅拌5 min,得到前驱溶液。
步骤(3).将清洗干净烘干的FTO导电玻璃放入容量为100ml的聚四氟乙烯内衬罐中,再将步骤(2)中配制好的前驱溶液倒入内衬罐中,将内衬罐装进不锈钢外套封闭好,放入鼓风烘箱中,在150℃加热 4~10h,得到1.5 ~ 3 μm 垂直生长的TiO2纳米棒阵列;
步骤(4).以步骤(3)中生长在FTO导电玻璃上的TiO2纳米棒阵列作为基片,采用直流磁控溅射方法,以高纯Ti(99.99%)作为靶材,在TiO2纳米棒阵列表面沉积纳米颗粒,制备出火柴状的TiO2纳米颗粒和纳米棒复合阵列。溅射本底真空为6×10-6 Torr,溅射气压为5mTorr~10mTorr,溅射功率为50W-200W,溅射时间为30-60min,靶基距20cm,衬底自传速度为6转/分,沉积温度为室温。制备好的复合阵列再用430℃在空气中退火60min即得到晶化了的火柴状TiO2纳米颗粒和纳米棒复合阵列。
本发明的主要技术优点在于:
1、用本发明提供的制备工艺所获得的一种火柴状TiO2纳米颗粒和纳米棒复合阵列,其取向高度有序,载流子的定向传输效率高;而且由于纳米棒顶端纳米颗粒的存在,使得复合阵列的比表面积比通常的TiO2纳米结构明显增加,可以增加染料吸附量、增大接触面积。
2、本发明提供的磁控溅射法在TiO2纳米棒顶端沉积的TiO2纳米颗粒,其具有明显的量子效应,复合阵列的光学吸收边从普通TiO2纳米棒阵列的420 nm拓宽到了520 nm,显著提高了光吸收效率。
3、本发明提供的制备方法中的水热法和磁控溅射法,其技术成熟简单,可控性好,易于推广。
附图说明
图1为本发明的复合阵列扫描电子显微镜断面形貌图,可以看出TiO2纳米颗粒聚集在TiO2纳米棒的顶端,形成火柴状的纳米颗粒和纳米棒复合阵结构。
图2为本发明的复合阵列扫描电子显微镜表面形貌图。可以看出在TiO2纳米棒的顶端沉积形成了球状TiO2纳米颗粒团聚。
图3为本发明的复合阵列光学吸收范围和吸收效率提高比较图。从图中可以看出复合阵列的光学吸收范围和吸收效率相比普通TiO2纳米棒阵列提高了。
具体实施方式
实施例一:
本发明的具体工艺步骤如下:
步骤①.选用厚度为1.2mm的FTO透明导电玻璃,裁剪成1.5cm×5cm的长方块,用异丙醇、丙酮和去离子水的混合溶液(体积比为1:1:1)将FTO导电玻璃超声清洗30min,取出用去离子水冲洗后再用乙醇超声清洗15min,最后取出FTO导电玻璃用去离子水冲洗干净放入烘箱,在60℃烘干备用;
步骤②.用量筒量取25 ml 的去离子水和25 ml 重量百分比为36.5%-38% 的浓盐酸,混合搅拌5 min,加入0.5 g的钛酸四丁酯(分析纯),继续搅拌5 min,得到前驱溶液。
步骤③. 将清洗干净烘干的FTO导电玻璃放入容量为100ml的聚四氟乙烯内衬罐中,再将步骤②中配制好的前驱溶液倒入内衬罐中,将内衬罐装进不锈钢外套封闭好,放入鼓风烘箱中,在150℃加热5h,得到在FTO表明垂直生长的TiO2纳米棒阵列;
步骤④. 以步骤③中生长在FTO导电玻璃上的TiO2纳米棒阵列作为基片,采用直流磁控溅射方法,以高纯Ti(99.99%)作为靶材,在TiO2纳米棒阵列表面沉积纳米颗粒,制备出火柴状的TiO2纳米颗粒和纳米棒复合阵列。溅射本底真空为6×10-6 Torr,溅射气压为8mTorr,溅射功率为100W,溅射时间为60min,靶基距20cm,衬底自传速度为6转/分,沉积温度为室温。制备好的复合阵列再用430℃在空气中退火60min即得到晶化了的一种火柴状TiO2纳米颗粒和纳米棒复合阵列。
上述实施例为本发明的优选实施方案。
实施例二,
步骤①.选用厚度为1.2mm的FTO透明导电玻璃,裁剪成1.5cm×5cm的长方块,用异丙醇、丙酮和去离子水的混合溶液(体积比为1:1:1)将FTO导电玻璃超声清洗30min,取出用去离子水冲洗后再用乙醇超声清洗15min,最后取出FTO导电玻璃用去离子水冲洗干净放入烘箱,在60℃烘干备用;
步骤②.用量筒量取25 ml 的去离子水和25 ml 重量百分比为36.5%-38% 的浓盐酸,混合搅拌5 min,加入0.5 g的钛酸四丁酯(分析纯),继续搅拌5 min,得到前驱溶液。
步骤③.将清洗干净烘干的FTO导电玻璃放入容量为100ml的聚四氟乙烯内衬罐中,再将骤②中配制好的前驱溶液倒入内衬罐中,将内衬罐装进不锈钢外套封闭好,放入鼓风烘箱中,在150℃加热7h,得到在FTO表明垂直生长的TiO2纳米棒阵列;
步骤④.以步骤③中生长在FTO导电玻璃上的TiO2纳米棒阵列作为基片,采用直流磁控溅射方法,以高纯Ti(99.99%)作为靶材,在TiO2纳米棒阵列表面沉积纳米颗粒,制备出火柴状的TiO2纳米颗粒和纳米棒复合阵列。溅射本底真空为6×10-6 Torr,溅射气压为8mTorr,溅射功率为50W,溅射时间为60min,靶基距20cm,衬底自传速度为6转/分,沉积温度为室温。制备好的复合阵列再用430℃在空气中退火60min即得到晶化了的一种火柴状TiO2纳米颗粒和纳米棒复合阵列。
实施例三,
步骤①.选用厚度为1.2mm的FTO透明导电玻璃,裁剪成1.5cm×5cm的长方块,用异丙醇、丙酮和去离子水的混合溶液(体积比为1:1:1)将FTO导电玻璃超声清洗30min,取出用去离子水冲洗后再用乙醇超声清洗15min,最后取出FTO导电玻璃用去离子水冲洗干净放入烘箱,在60℃烘干备用;
步骤②.用量筒量取25 ml 的去离子水和25 ml 重量百分比为36.5%-38% 的浓盐酸,混合搅拌5 min,加入0.5 g的钛酸四丁酯(分析纯),继续搅拌5 min,得到前驱溶液。
步骤③.将清洗干净烘干的FTO导电玻璃放入容量为100ml的聚四氟乙烯内衬罐中,再将步骤②中配制好的前驱溶液倒入内衬罐中,将内衬罐装进不锈钢外套封闭好,放入鼓风烘箱中,在150℃加热10 h,得到在FTO表明垂直生长的TiO2纳米棒阵列;
步骤④.以步骤③中生长在FTO导电玻璃上的TiO2纳米棒阵列作为基片,采用直流磁控溅射方法,以高纯Ti(99.99%)作为靶材,在TiO2纳米棒阵列表面沉积纳米颗粒,制备出火柴状的TiO2纳米颗粒和纳米棒复合阵列。溅射本底真空为6×10-6 Torr,溅射气压为8mTorr,溅射功率为150W,溅射时间为60min,靶基距20cm,衬底自传速度为6转/分,沉积温度为室温。制备好的复合阵列再用430℃在空气中退火60min即得到晶化了的一种火柴状TiO2纳米颗粒和纳米棒复合阵列。
上述实施例中所用的药品均采用分析纯化学药品。

Claims (1)

1.一种火柴状TiO2纳米颗粒和纳米棒复合阵列的制备方法,其特征在于,包括如下步骤:
步骤(1) FTO透明导电玻璃清洗
选用厚度为1.2mm的FTO透明导电玻璃,裁剪成1.5cm×5cm的长方块,先用体积比为1:1:1的异丙醇、丙酮和去离子水的混合溶液将切割好的FTO导电玻璃片超声清洗30min,取出用去离子水冲洗后再用乙醇超声清洗15min,最后取出FTO导电玻璃用去离子水冲洗干净放入烘箱,在60℃烘干备用;
步骤(2) TiO2前驱液的配制
用量筒量取25 ml 的去离子水和25 ml 重量百分比为36.5%-38% 的浓盐酸,混合搅拌5 min,加入0.5 g分析纯的钛酸四丁酯,继续搅拌5 min,得到TiO2前驱溶液;
步骤(3) TiO2纳米棒阵列的生长
将清洗干净烘干的FTO导电玻璃放入容量为100ml的聚四氟乙烯内衬罐中,导电面向上,再将步骤(2)中配制好的前驱溶液倒入内衬罐中,将内衬罐装进不锈钢外套封闭好,放入鼓风烘箱中,在150℃加热 4~10h,得到1.5~3 μm 垂直生长的TiO2纳米棒阵列;
步骤(4) TiO2纳米棒阵列表面沉积TiO2纳米颗粒
以步骤(3)中生长在FTO导电玻璃上的TiO2纳米棒阵列作为基片,采用直流磁控溅射方法,以纯度为99.99%的高纯Ti作为靶材,在TiO2纳米棒阵列表面沉积纳米颗粒,制备出火柴状的TiO2纳米颗粒和纳米棒复合阵列,溅射本底真空为6×10-6 Torr,溅射气压为5mTorr~10mTorr,溅射功率为50W-200W,溅射时间为30-60min,靶基距20cm,衬底自传速度为6转/分,沉积温度为室温,制备好的复合阵列再用430℃在空气中退火60min即得到晶化了的火柴状TiO2纳米颗粒和纳米棒复合阵列。
CN201410641369.0A 2014-11-14 2014-11-14 火柴状TiO2纳米颗粒和纳米棒复合阵列的制备方法 Expired - Fee Related CN104628262B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410641369.0A CN104628262B (zh) 2014-11-14 2014-11-14 火柴状TiO2纳米颗粒和纳米棒复合阵列的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410641369.0A CN104628262B (zh) 2014-11-14 2014-11-14 火柴状TiO2纳米颗粒和纳米棒复合阵列的制备方法

Publications (2)

Publication Number Publication Date
CN104628262A CN104628262A (zh) 2015-05-20
CN104628262B true CN104628262B (zh) 2017-05-17

Family

ID=53207564

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410641369.0A Expired - Fee Related CN104628262B (zh) 2014-11-14 2014-11-14 火柴状TiO2纳米颗粒和纳米棒复合阵列的制备方法

Country Status (1)

Country Link
CN (1) CN104628262B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109455758A (zh) * 2018-11-27 2019-03-12 河南科技大学 一种二氧化钛纳米棒阵列薄膜及其制备方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107235508B (zh) * 2017-07-25 2019-05-21 湖北文理学院 顶部具有分枝结构的二氧化钛纳米棒阵列的制备方法及阵列
CN108704634A (zh) * 2018-05-11 2018-10-26 南昌航空大学 一种TiO2纳米线上负载TiO2纳米颗粒的光催化剂的制备方法
CN112509911B (zh) * 2020-12-02 2024-08-23 湖北文理学院 一种氧化锌/氧化钛双层纳米棒阵列异质结结构及其制备方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101574670B (zh) * 2009-06-05 2011-06-08 东华大学 一种三维纳米负载型催化剂的制备方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109455758A (zh) * 2018-11-27 2019-03-12 河南科技大学 一种二氧化钛纳米棒阵列薄膜及其制备方法

Also Published As

Publication number Publication date
CN104628262A (zh) 2015-05-20

Similar Documents

Publication Publication Date Title
CN101794670B (zh) 一种具有光学梯度的染料敏化太阳能电池光阳极的制备方法
Roy et al. Improved efficiency of TiO2 nanotubes in dye sensitized solar cells by decoration with TiO2 nanoparticles
Li et al. Fabrication of Cd-doped TiO2 nanorod arrays and photovoltaic property in perovskite solar cell
Liu et al. Dye-sensitized solar cells based on surficial TiO2 modification
Guo et al. Fabrication of TiO2 nano-branched arrays/Cu2S composite structure and its photoelectric performance
Wang et al. One-dimensional titania nanostructures: synthesis and applications in dye-sensitized solar cells
US20130048947A1 (en) Methods to fabricate vertically oriented anatase nanowire arrays on transparent conductive substrates and applications thereof
Noh et al. Photovoltaic property dependence of dye-sensitized solar cells on sheet resistance of FTO substrate deposited via spray pyrolysis
CN104628262B (zh) 火柴状TiO2纳米颗粒和纳米棒复合阵列的制备方法
CN103523827B (zh) 具有快速电子传输性能的三维枝状二氧化钛阵列的制法
Kathirvel et al. The growth of TiO2 nanotubes from sputter-deposited Ti film on transparent conducting glass for photovoltaic applications
Wang et al. CdS quantum dots sensitized solar cells based on free-standing and through-hole TiO 2 nanotube arrays
CN105244445A (zh) 一种杂化异质结太阳能电池的制备方法
CN103111276A (zh) 多孔阵列ZnO/TiO2复合光催化剂的制备方法
CN102486967B (zh) 复合有序多孔纳米二氧化钛薄膜的制备方法
Li et al. Improved performance of TiO2 electrodes coated with NiO by magnetron sputtering for dye-sensitized solar cells
CN101439873B (zh) 一种氟基水溶液生长二氧化钛薄膜的方法
Bao et al. Microsphere assembly of TiO 2 with tube-in-tube nanostructures: anisotropic etching and photovoltaic enhancement
Ahmad et al. Effect of heat treatment to the rutile based dye sensitized solar cell
Pham et al. Enhanced Efficiency of Dye-Sensitized Solar Cells with Mesoporous–Macroporous TiO 2 Photoanode Obtained Using ZnO Template
CN104037324A (zh) 一种基于硫化镉纳米阵列的钙钛矿杂化太阳电池
Deng et al. Enhanced photoelectrochemical performance of TiO 2 nanorod array films based on TiO 2 compact layers synthesized by a two-step method
Ning et al. Influence of nanobranched growth on photoelectrochemical performance of TiO2 nanotree arrays films
Ghani et al. Highly ordered combined structure of anodic TiO2 nanotubes and TiO2 nanoparticles prepared by a novel route for dye-sensitized solar cells
CN104098147A (zh) 用电化学方法制备具有玫瑰花状形貌特征的NiO纳米颗粒

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20170517

Termination date: 20171114