CN104622886A - 烟酰胺核糖在制备治疗非酒精性脂肪性肝炎的药物中的应用 - Google Patents

烟酰胺核糖在制备治疗非酒精性脂肪性肝炎的药物中的应用 Download PDF

Info

Publication number
CN104622886A
CN104622886A CN201510098227.9A CN201510098227A CN104622886A CN 104622886 A CN104622886 A CN 104622886A CN 201510098227 A CN201510098227 A CN 201510098227A CN 104622886 A CN104622886 A CN 104622886A
Authority
CN
China
Prior art keywords
liver
application
alcoholic steatohepatitis
hepatitis
nicotinamide riboside
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201510098227.9A
Other languages
English (en)
Inventor
缪朝玉
王培�
杨茜
徐添颖
李志勇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Second Military Medical University SMMU
Original Assignee
Second Military Medical University SMMU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Second Military Medical University SMMU filed Critical Second Military Medical University SMMU
Priority to CN201510098227.9A priority Critical patent/CN104622886A/zh
Publication of CN104622886A publication Critical patent/CN104622886A/zh
Pending legal-status Critical Current

Links

Abstract

本发明涉及烟酰胺核糖在制备治疗非酒精性脂肪性肝炎的药物中的应用。本发明通过非酒精性脂肪性肝炎动物模型,证实了烟酰胺核糖可以降低动物模型的肝脏脂质含量、肝脏炎症及肝纤维化程度,提示烟酰胺核糖可用于制备治疗非酒精性脂肪性肝炎的药物。本发明拓展了烟酰胺核糖的用途,为治疗非酒精性脂肪性肝炎提供了一种新途径,有助于非酒精性脂肪性肝炎的防治和预后。

Description

烟酰胺核糖在制备治疗非酒精性脂肪性肝炎的药物中的应用
技术领域
本发明涉及烟酰胺核糖的一种新用途,具体地说,涉及烟酰胺核糖在制备治疗非酒精性脂肪性肝炎的药物中的应用。
背景技术
烟酰胺核糖英文名为nicotinamide riboside,CAS号1341-23-7,分子式C11H16N2O5
非酒精性脂肪性肝炎(non-alcoholic steatohepatitis,NASH)是非酒精性脂肪性肝病(NAFLD)的一种类型,除了可发生于中年、肥胖、抗胰岛素的糖尿病、高脂血症和女性外,还可见于其他许多情况(药物的接触、异常铁沉积、HEF基因的突变、男性和10~15岁的儿童)。最近尚有报道其发生肝硬化的比率达到了16%,也有报道肝移植后NASH复发的情况。
NASH的常见损伤有:脂肪沉积、小叶炎症(典型者伴有多形核白细胞浸润)、肝细胞气球样变、窦周纤维化,可能还有Mallory小体,糖生成核(glycogenated nuclei)也常出现。目前NASH的诊断主要根据临床和病理特点作出,而且尚无临床或组织学标志能判定哪种病人会继续进展到肝病末期。
NASH的发生可能是由环境、遗传、饮食和代谢等因素相互作用的结果,其组织病理学改变可能是由于多种机制所致,它们包括脂肪酸堆积、线粒体功能障碍、自由基的产生、氧应激、脂质过氧化和内毒素介导的细胞因子释放等。
但是目前关于烟酰胺核酸在治疗非酒精性脂肪性肝炎方面的作用还未见报道。
发明内容
本发明的目的是针对现有技术中的不足,提供烟酰胺核糖的新用途。
为实现上述目的,本发明采取的技术方案是:
第一方面,本发明提供了烟酰胺核糖在制备治疗非酒精性脂肪性肝炎的药物中的应用。
第二方面,本发明提供了烟酰胺核糖在制备药物中的应用,所述的药物用于:
a)降低患有非酒精性脂肪性肝炎的哺乳动物的肝脏脂质含量;
b)减轻患有非酒精性脂肪性肝炎的哺乳动物的肝脏炎症;和/或
c)降低患有非酒精性脂肪性肝炎的哺乳动物的的肝纤维化程度。
作为本发明的一个优选例,所述的哺乳动物是人或小鼠。
本发明优点在于:本发明涉及烟酰胺核糖在制备治疗非酒精性脂肪性肝炎的药物中的应用。本发明通过非酒精性脂肪性肝炎动物模型,证实了烟酰胺核糖可以降低动物模型的肝脏脂质含量、肝脏炎症及肝纤维化程度,提示烟酰胺核糖可用于制备治疗非酒精性脂肪性肝炎的药物。本发明拓展了烟酰胺核糖的用途。非酒精性脂肪性肝炎的机制目前还不完全清楚,本发明为治疗非酒精性脂肪性肝炎提供了一种新途径,有助于非酒精性脂肪性肝炎的防治和预后。
具体实施方式
下面对本发明提供的具体实施方式作详细说明。
实施例1
1、方法
动物为8周年龄的雄性C57BL/6小鼠,采用能量比例为60%的高脂肪饮食(北京维通利华动物公司,市售可得),持续3个月,诱导非酒精性脂肪性肝炎。2个月后,取肝脏切片,做以下检测可确认非酒精性脂肪性肝炎的制备成功:(1)用油红O染色证明肝脏组织内沉积大量脂质;(2)经免疫组化染色可见肝脏内有大量F4/80阳性的细胞(10倍物镜下每个视野超过20个),即激活的Kupffer细胞(肝脏浸润的巨噬细胞);(3)Real-time PCR检测可知肝脏内的肿瘤坏死因子(TNF-α)表达明显升高(相对正常饮食动物超过3倍)。结果证明模型制备成功。
然后,将这些小鼠分为两组,一组为对照组(n=8),另外一组为给药组(n=8)。给药组每天腹腔注射烟酰胺核糖(200mg/kg/次,终体积1ml,上午下午各一次)。烟酰胺核糖注射液的配制方式:烟酰胺核糖先溶于二甲亚砜(DMSO),再溶于去离子水以稀释100倍,DMSO的终浓度为1%。对照组则每天腹腔注射等体积的1%的DMSO,上午下午各一次。给药时间持续1个月。在此期间,饲料仍为高脂饮食。
1个月后,检测肝脏的各项指标,对比对照组和给药组的非酒精性脂肪肝炎病变程度。
2、结果
2.1烟酰胺核糖有效的降低肝脏的脂质含量
检测手段:麻醉小鼠,放血处死后,取肝脏。去离子水冲洗3遍后,剪下重量为1g的肝脏组织,然后使用北京普利莱(APPLYGEN)基因技术有限公司的甘油三酯测定试剂盒和胆固醇测定试剂盒(市售可得)检测。检测过程按照说明书操作。结果如表1所示,给药组的肝脏甘油三酯和总胆固醇含量与对照组相比较,经统计学t检验,有显著意义(P<0.05)。
表1各组肝脏甘油三酯和总胆固醇含量
对照组 给药组
肝脏甘油三酯含量(mg/g组织) 32.9±4.1 25.7±3.2(P<0.05)
肝脏总胆固醇含量(mg/g组织) 1.6±0.28 1.1±0.16(P<0.05)
2.2烟酰胺核糖有效的降低非酒精性脂肪肝炎的Kupffer炎症细胞数目
检测手段:麻醉小鼠,放血处死后,取肝脏。去离子水冲洗3遍后,剪下黄豆大小的肝脏组织,然后检测肝脏组织中的Kupffer细胞数目。Kupffer细胞数目用F4/80冰冻免疫组化染色方法检测,具体流程简述如下:新鲜肝脏组织立即用OCT包埋剂(德国莱卡公司)包裹,然后用冷冻切片机(德国莱卡)切片,厚度为8μm。裱片后,立即用电吹风吹干。染色前用4%多聚甲醛再固定30分钟。去离子水洗3次,每次5分钟,然后用0.1%的triton-X100(德国Sigma公司,市售可得)打孔。用3%的H2O2灭活内源性过氧化物酶,避光孵育20分钟。再用去离子水洗3次,每次5分钟。用5%的山羊正常血清封闭后,滴加F4/80单克隆抗体(德国Sigma公司,市售可得)37℃孵育2小时。用含有Tween-20的去离子水洗5分钟,3次。然后滴加生物素化的二抗,37℃,40分钟。再用SABC-AP孵育,最后用DAB显色。显微镜放大倍数40倍下观察,计算肝脏Kupffer细胞数目,棕褐色细胞为阳性细胞。结果如表2所示,经统计学t检验,两组肝脏Kupffer细胞数目有显著意义(P<0.05)。
表2各组肝脏组织中的Kupffer细胞数目
对照组 给药组
肝脏Kupffer细胞数目(个/视野) 52.1±8.1 34.1±4.2(P<0.05)
2.3烟酰胺核糖有效的降低非酒精性脂肪肝炎的纤维化程度
纤维化程度用α-平滑肌肌动蛋白(α-SMA)免疫组化染色检测。α-SMA是肝脏纤维化的重要表现,表达越高,纤维化越严重。α-SMA免疫组化染色与上述F4/80免疫组化染色过程类似,第一抗体更换为α-SMA单克隆抗体(德国Sigma公司,市售可得)即可。显微镜放大倍数40倍下观察,计算肝脏α-SMA的相对染色强度(以对照组为100%),即可半定量α-SMA在肝脏的表达。结果如表3所示,经统计学t检验,两组肝脏α-SMA的相对染色强度有显著意义(P<0.05)。
表3各组肝脏α-SMA的相对染色强度
对照组 给药组
肝脏α-SMA的相对染色强度(100%) 100±8.1 64.8±6.1(P<0.05)
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员,在不脱离本发明方法的前提下,还可以做出若干改进和补充,这些改进和补充也应视为本发明的保护范围。

Claims (3)

1.烟酰胺核糖在制备治疗非酒精性脂肪性肝炎的药物中的应用。
2.烟酰胺核糖在制备药物中的应用,其特征在于,所述的药物用于:
a)降低患有非酒精性脂肪性肝炎的哺乳动物的肝脏脂质含量;
b)减轻患有非酒精性脂肪性肝炎的哺乳动物的肝脏炎症;和/或
c)降低患有非酒精性脂肪性肝炎的哺乳动物的的肝纤维化程度。
3.根据权利要求2所述的应用,其特征在于,所述的哺乳动物是人或小鼠。
CN201510098227.9A 2015-03-05 2015-03-05 烟酰胺核糖在制备治疗非酒精性脂肪性肝炎的药物中的应用 Pending CN104622886A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510098227.9A CN104622886A (zh) 2015-03-05 2015-03-05 烟酰胺核糖在制备治疗非酒精性脂肪性肝炎的药物中的应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510098227.9A CN104622886A (zh) 2015-03-05 2015-03-05 烟酰胺核糖在制备治疗非酒精性脂肪性肝炎的药物中的应用

Publications (1)

Publication Number Publication Date
CN104622886A true CN104622886A (zh) 2015-05-20

Family

ID=53202449

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510098227.9A Pending CN104622886A (zh) 2015-03-05 2015-03-05 烟酰胺核糖在制备治疗非酒精性脂肪性肝炎的药物中的应用

Country Status (1)

Country Link
CN (1) CN104622886A (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106614263A (zh) * 2016-09-19 2017-05-10 南通大学附属医院 Cpt‑ⅱ在脂肪积聚肝细胞诱发恶性转化过程中的应用
CN110646621A (zh) * 2019-09-30 2020-01-03 中国药科大学 Chrna4在制备治疗非酒精性脂肪性肝炎药物中的应用
CN111658676A (zh) * 2020-06-11 2020-09-15 湖州金诺康健康科技有限公司 罗伊氏乳杆菌活菌在制备治疗或减轻非酒精性脂肪肝症状的药物中的应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002055018A2 (en) * 2001-01-11 2002-07-18 Duke University Inhibiting gs-fdh to modulate no bioactivity
CN101257897A (zh) * 2005-07-07 2008-09-03 西特里斯药业公司 用于治疗或预防肥胖、胰岛素抵抗障碍和线粒体相关障碍的方法和相关组合物
CN101360421A (zh) * 2005-11-18 2009-02-04 康乃尔研究基金会有限公司 烟酰核苷组合物及其使用方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002055018A2 (en) * 2001-01-11 2002-07-18 Duke University Inhibiting gs-fdh to modulate no bioactivity
CN101257897A (zh) * 2005-07-07 2008-09-03 西特里斯药业公司 用于治疗或预防肥胖、胰岛素抵抗障碍和线粒体相关障碍的方法和相关组合物
CN101360421A (zh) * 2005-11-18 2009-02-04 康乃尔研究基金会有限公司 烟酰核苷组合物及其使用方法

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
ANABELA P. ROLO等: "Role of oxidative stress in the pathogenesis of nonalcoholic steatohepatitis", 《FREE RADICAL BIOLOGY & MEDICINE 》 *
CARLES CANTO等: "The NAD+ Precursor Nicotinamide Riboside Enhances Oxidative Metabolism and Protects against High-Fat Diet-Induced Obesity", 《CELL METABOLISM》 *
YASAR COLAK等: "A Potential Treatment of Non-Alcoholic Fatty Liver Disease with SIRT1 Activators", 《J GASTROINTESTIN LIVER DIS》 *
YASAR COLAK等: "SIRT1 as a potential therapeutic target for treatment of nonalcoholic fatty liver disease", 《MED SCI MONIT》 *
冯怡燕等: "SIRT 1—有前景的非酒精性脂肪性肝炎药物治疗靶点", 《中华肝脏病杂志》 *
黄颖秋: "非酒精性脂肪性肝炎发病机制的研究进展", 《世界华人消化杂志》 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106614263A (zh) * 2016-09-19 2017-05-10 南通大学附属医院 Cpt‑ⅱ在脂肪积聚肝细胞诱发恶性转化过程中的应用
CN110646621A (zh) * 2019-09-30 2020-01-03 中国药科大学 Chrna4在制备治疗非酒精性脂肪性肝炎药物中的应用
CN110646621B (zh) * 2019-09-30 2022-07-01 中国药科大学 Chrna4在制备治疗非酒精性脂肪性肝炎药物中的应用
CN111658676A (zh) * 2020-06-11 2020-09-15 湖州金诺康健康科技有限公司 罗伊氏乳杆菌活菌在制备治疗或减轻非酒精性脂肪肝症状的药物中的应用
CN111658676B (zh) * 2020-06-11 2021-12-31 湖州金诺康健康科技有限公司 罗伊氏乳杆菌活菌在制备治疗或减轻非酒精性脂肪肝症状的药物中的应用

Similar Documents

Publication Publication Date Title
Zhang et al. Gut microbiota determines the prevention effects of Luffa cylindrica (L.) Roem supplementation against obesity and associated metabolic disorders induced by high‐fat diet
Zang et al. The anti-obesity and anti-diabetic effects of kaempferol glycosides from unripe soybean leaves in high-fat-diet mice
Kondo et al. Acetic acid upregulates the expression of genes for fatty acid oxidation enzymes in liver to suppress body fat accumulation
Li et al. Therapeutic role of ursolic acid on ameliorating hepatic steatosis and improving metabolic disorders in high-fat diet-induced non-alcoholic fatty liver disease rats
Chen et al. Saponins from stems and leaves of Panax ginseng prevent obesity via regulating thermogenesis, lipogenesis and lipolysis in high-fat diet-induced obese C57BL/6 mice
Barthel et al. Novel concepts in insulin regulation of hepatic gluconeogenesis
Wang et al. Betaine improved adipose tissue function in mice fed a high-fat diet: a mechanism for hepatoprotective effect of betaine in nonalcoholic fatty liver disease
Zhu et al. Liubao brick tea activates the PI3K-Akt signaling pathway to lower blood glucose, metabolic disorders and insulin resistance via altering the intestinal flora
Zhang et al. Anti-diabetic effect of mulberry leaf polysaccharide by inhibiting pancreatic islet cell apoptosis and ameliorating insulin secretory capacity in diabetic rats
Luo et al. Total aralosides of Aralia elata (Miq) Seem (TASAES) ameliorate nonalcoholic steatohepatitis by modulating IRE1α-mediated JNK and NF-κB pathways in ApoE–/–mice
Charlton Nonalcoholic fatty liver disease: a review of current understanding and future impact
Duan et al. Obesity, adipokines and hepatocellular carcinoma
Chidambaram et al. Cissus quadrangularis stem alleviates insulin resistance, oxidative injury and fatty liver disease in rats fed high fat plus fructose diet
Zhao et al. Protective effects of Lactobacillus plantarum C88 on chronic ethanol-induced liver injury in mice
Ge et al. Luteolin cooperated with metformin hydrochloride alleviates lipid metabolism disorders and optimizes intestinal flora compositions of high-fat diet mice
Shih et al. Momordica charantia ameliorates insulin resistance and dyslipidemia with altered hepatic glucose production and fatty acid synthesis and AMPK phosphorylation in high‐fat‐fed mice
Lin et al. The chloroform extract of Cyclocarya paliurus attenuates high-fat diet induced non-alcoholic hepatic steatosis in Sprague Dawley rats
Li et al. Syringaresinol protects against type 1 diabetic cardiomyopathy by alleviating inflammation responses, cardiac fibrosis, and oxidative stress
Lee et al. Coordinated regulation of scopoletin at adipose tissue–liver axis improved alcohol-induced lipid dysmetabolism and inflammation in rats
Dhami-Shah et al. Picroside II attenuates fatty acid accumulation in HepG2 cells via modulation of fatty acid uptake and synthesis
Suolang et al. Protective effect and mechanism of Qiwei Tiexie capsule on 3T3-L1 adipocytes cells and rats with nonalcoholic fatty liver disease by regulating LXRα, PPARγ, and NF-κB-iNOS-NO signaling pathways
JP2023145714A (ja) 脂肪肝の予防または処置用医薬組成物
Liu et al. Cornuside alleviates diabetes mellitus-induced testicular damage by modulating the gut microbiota
Hou et al. Epigallocatechin gallate suppresses inflammatory responses by inhibiting toll-like receptor 4 signaling and alleviates insulin resistance in the livers of high-fat-diet rats
Xu et al. A porcine placental extract prevents steatohepatitis by suppressing activation of macrophages and stellate cells in mice

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20150520

RJ01 Rejection of invention patent application after publication