CN1046174C - 纳米宽度有机导线的制备方法 - Google Patents

纳米宽度有机导线的制备方法 Download PDF

Info

Publication number
CN1046174C
CN1046174C CN96116467A CN96116467A CN1046174C CN 1046174 C CN1046174 C CN 1046174C CN 96116467 A CN96116467 A CN 96116467A CN 96116467 A CN96116467 A CN 96116467A CN 1046174 C CN1046174 C CN 1046174C
Authority
CN
China
Prior art keywords
width
organic
stm
conductive wires
bistable material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN96116467A
Other languages
English (en)
Other versions
CN1149199A (zh
Inventor
华中一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fudan University
Original Assignee
Fudan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fudan University filed Critical Fudan University
Priority to CN96116467A priority Critical patent/CN1046174C/zh
Publication of CN1149199A publication Critical patent/CN1149199A/zh
Application granted granted Critical
Publication of CN1046174C publication Critical patent/CN1046174C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Electrodes Of Semiconductors (AREA)
  • Thin Film Transistor (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

一种制备纳米宽度有机导线的方法,采用扫描隧道显微镜(STM)技术,工作基质采用低压电双稳材料。先把电双稳材料蒸发到基本上成为均匀薄膜,再用STM技术在基体面上按预先设计的点、线或图形扫描,使扫描过的部分从绝缘态变为导电态,从而获得纳米宽度的有机导线或导电图形。由本发明制备的纳米导线,可避免距离小于0.1微米(100钠米)的金属导线间因原子徙动而产生短路的问题。

Description

纳米宽度有机导线的制备方法
本发明属微电子学技术领域,是一种制备纳米电子器件的方法。
众所周知,为了继续增加集成度,微电子器件正继续向线宽更细的方向发展。但是这种“更细”并不是无限的。在0.1微米(100纳米)以下,量子力学的效应将显著地呈现出来,因此人们正在寻求新的材料和新的加工方法,以得到纳米尺寸(1-100纳米)的电子器件,简称“纳米电子器件”。
纳米电子器件的制作,要求大量的功能材料作运算、存贮、开关之用,还要大量纳米尺寸(直线或图形)的导线、高阻线和电介质。其中纳米尺寸的导线制作是一个非常特殊的问题,因为金属导线往往在间距很小(<100纳米)时,将因金属原子的表面徙动而形成导线之间短路。为此人们致力于研究新的“有机导线”或“导电聚合物”来克服这一缺点。但迄今为止,二者都未能制成宽度为1-10纳米的导线。
在扫描隧道显微镜(STM)发展之后,曾有人把材料通过STM针尖沉积在表面上(IBM J.Res.Dev.30,492,1986);继而有人用含碳材料在玻璃态的Pd81Si19表面画出相距16纳米的线条,以及用碳氢化合物抗蚀剂画出了宽度为100纳米、间隔为1微米的线条(Adriatico Res.Conf.on STM,1987)。在原子操纵技术开始以后,又有人试图用STM进行原子操纵来制备导线族。例如Lyding等(J.Vac.Sci.Technol.12B,3735,1994)曾用硼掺杂的硅(100)吸附一层原子,然后用STM的针尖移走氢原子而露出基底硅,可以得到由宽度为3纳米的硅与1纳米的氢所构成的相间条纹。但不言而喻,这种硅条纹并不是真正意义上的导线。
本发明的目的在于提供一种能够避免因原子徙动而形成短路的纳米宽度有机导线的制备方法。
本发明提出的制备纳米宽度有机导线的方法,采用了扫描隧道显微镜(STM)技术,工作基质采用低压电双稳材料,具体步骤为把有机电双稳材料在真空中蒸发到绝缘基体上,使之成为均匀薄膜,然后,把基体放入大气中使用的STM工作室,在选定的区域上,用人工或计算机操纵STM针尖位置,使它在带电状态下扫描。扫描的范围可以是直线、曲线或者其他图形。在针尖电场的作用下,选择合适的针尖电压和扫描速度,使扫描过的部分发生跃迁(“翻转”),即原来为绝缘态的材料变为导电态,从而在绝缘基板上获得真正的纳米有机导线或导电图形。它的工作原理同Lyding和上述其他各种方法都是完全不同的。
根据需要,上述方法也可以用来制备各层薄膜分别绘有纳米点、线或图形的多层布线。
上述有机电双稳材料可以采用具有电双稳特性的聚合物、络合物、螯合物或其他材料,它们应当具有如下特性:
1.在相当于3-6电子伏能量的电子、离子或光子作用下能够“翻转”使原来的绝缘态变为导电态。
2.绝缘态与导电态之间的电阻率之差至少应为105倍。
3.“翻转”的时间应小于100纳秒。
4.在室温、大气下有合理的保存时间。
本发明也可利用光电双稳特性的材料,把原来为绝缘体的材料在扫描光子显微镜(SPM)的激光束作用下“画出”导线。同样,也可以借助计算机控制描出导电的图形,且具有纳米级的加工精度。具体步骤同前所述。
由本发明制备的纳米宽度(1~10纳米)的有机导线或高精度导电图形,可以避免产生导线间的短路现象。
实施例:下列两种全有机络合物符合上述条件:
(1)三聚腈胺尿酸(melamin cyanuric acid,简称MA)与四氰基对醌二甲烷(7,7,8,8-tetracyanoquinodimethane,简称TCNQ)构成的络合物;
(2)四甲基镍二噻唏(Bis[2-butene-2,3-dithiolato(2-)-s,s']-Ni,简称BBDN)与TCNQ构成的络合物。
把络合物放入坩锅,在真空中加热蒸发,使在玻璃或SiO2基板上形成均匀薄膜,厚度为50nm左右。用STM针尖扫描,电压为4-6伏,使膜从高阻态(绝缘态)变为低阻态(导电态)。翻转时间经测定小于100纳秒。
还可以使用其他合适的电双稳有机材料。

Claims (4)

1.一种制备纳米宽度有机导线的方法,采用扫描隧道显微镜(STM)技术,其特征在于工作基质采用低压电双稳材料,把有机电双稳材料在真空中蒸发到绝缘基体上,使之成为均匀薄膜,然后把基体放入在大气中的STM工作室,在选定的区域上用人工或计算机操纵STM针尖位置,使在带电状态下扫描,并控制扫描速度,使扫描过的部分从绝缘态变为导电态。
2.根据权利要求1所述的制备纳米宽度有机导线的方法,其特征在于采用的有机电双稳材料为具有电双稳特性的聚合物、络合物、螯合物等。
3.根据权利要求2所述的制备纳米宽度有机导线的方法,其特征在于采用的有机电双稳材料为三聚腈胺尿酸与四氰基对醌二甲烷构成的络合物。
4.根据权利要求2所述的制备纳米宽度有机导线的方法,其特征在于采用的有机电双稳材料为四甲基镍二噻唏与四氰基对醌二甲烷构成的络合物。
CN96116467A 1996-08-16 1996-08-16 纳米宽度有机导线的制备方法 Expired - Fee Related CN1046174C (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN96116467A CN1046174C (zh) 1996-08-16 1996-08-16 纳米宽度有机导线的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN96116467A CN1046174C (zh) 1996-08-16 1996-08-16 纳米宽度有机导线的制备方法

Publications (2)

Publication Number Publication Date
CN1149199A CN1149199A (zh) 1997-05-07
CN1046174C true CN1046174C (zh) 1999-11-03

Family

ID=5123569

Family Applications (1)

Application Number Title Priority Date Filing Date
CN96116467A Expired - Fee Related CN1046174C (zh) 1996-08-16 1996-08-16 纳米宽度有机导线的制备方法

Country Status (1)

Country Link
CN (1) CN1046174C (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1321438C (zh) * 2000-03-14 2007-06-13 国际商业机器公司 由多晶物质形成微米级结构

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6635311B1 (en) * 1999-01-07 2003-10-21 Northwestern University Methods utilizing scanning probe microscope tips and products therefor or products thereby
US6827979B2 (en) * 1999-01-07 2004-12-07 Northwestern University Methods utilizing scanning probe microscope tips and products therefor or produced thereby

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0576263A2 (en) * 1992-06-24 1993-12-29 Hitachi Europe Limited Method for fabricing nano-scale devices and nano-scale device fabricated by that method

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0576263A2 (en) * 1992-06-24 1993-12-29 Hitachi Europe Limited Method for fabricing nano-scale devices and nano-scale device fabricated by that method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1321438C (zh) * 2000-03-14 2007-06-13 国际商业机器公司 由多晶物质形成微米级结构

Also Published As

Publication number Publication date
CN1149199A (zh) 1997-05-07

Similar Documents

Publication Publication Date Title
Koops et al. Characterization and application of materials grown by electron-beam-induced deposition
Avouris et al. AFM-tip-induced and current-induced local oxidation of silicon and metals.
US5365073A (en) Nanofabricated structures
Andres et al. Room temperature Coulomb blockade and Coulomb staircase from self‐assembled nanostructures
JP2001524266A (ja) 量子アイランドに基づく装置および製造方法
AU2015299748A1 (en) Transparent electrode materials and methods for forming same
CN1046174C (zh) 纳米宽度有机导线的制备方法
Ma et al. Ultrahigh density data storage from local polymerization by a scanning tunneling microscope
Iwamoto et al. Electrical properties of polyimide Langmuir-Blodgett films deposited on noble metal electrodes
Vullers et al. Field induced local oxidation of Ti and Ti/Au structures by an atomic force microscope with diamond coated tips
Hitosugi et al. Scanning tunneling microscopy/spectroscopy of dangling-bond wires fabricated on the Si (100)-2× 1-H surface
EP1096569A1 (en) Quantum wire array, uses thereof, and methods of making the same
Iwamoto et al. Electrical properties of Au/polyimide/squarylium-arachidic acid junctions fabricated by the Langmuir-Blodgett technique
Hartmann et al. Writing electronically active nanometer‐scale structures with a scanning tunneling microscope
Weidinger Ion tracks-a new route to nanotechnology
Hota et al. Direct Nanoscale Observation of Resistance Switching with Au Nano-Dots Embedded Nb2O5 by Scanning Tunneling Microscopy
CN1177361C (zh) 采用电诱导生长技术制作有机导线的方法
CN100437120C (zh) 单根一维纳米材料的测试电极的制作方法
Haupt et al. Preparation and Characterization of YBa2Cu3O7-. delta./Polypyrrole Bilayer Structures
Kratochvílová et al. Current-voltage characterization of alkanethiol self-assembled monolayers in metal nanowires
Li et al. Analysis of Potential Distribution and Current–Voltage Characteristic in Polyimide Langmuir–Blodgett Films
Gubin et al. The molecular cluster-materials for nanoelectronics
Takimoto et al. Negative resistance and electron emission in metal/Langmuir-Blodgett film/metal structures
Matsumoto Room temperature operated single electron transistor made by a scanning tunnelling microscopy/atomic force microscopy nano-oxidation process
JP2002501835A (ja) アモルファス炭素層のナノ構造化法

Legal Events

Date Code Title Description
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C06 Publication
PB01 Publication
C14 Grant of patent or utility model
GR01 Patent grant
C19 Lapse of patent right due to non-payment of the annual fee
CF01 Termination of patent right due to non-payment of annual fee