CN104617284A - 一种多孔四方片状TiO2及其制备方法和应用 - Google Patents

一种多孔四方片状TiO2及其制备方法和应用 Download PDF

Info

Publication number
CN104617284A
CN104617284A CN201510060099.9A CN201510060099A CN104617284A CN 104617284 A CN104617284 A CN 104617284A CN 201510060099 A CN201510060099 A CN 201510060099A CN 104617284 A CN104617284 A CN 104617284A
Authority
CN
China
Prior art keywords
porous
square
sheet
porous square
tio2
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201510060099.9A
Other languages
English (en)
Other versions
CN104617284B (zh
Inventor
洪振生
周凯强
洪家兴
黄志高
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujian Normal University
Original Assignee
Fujian Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujian Normal University filed Critical Fujian Normal University
Priority to CN201510060099.9A priority Critical patent/CN104617284B/zh
Publication of CN104617284A publication Critical patent/CN104617284A/zh
Application granted granted Critical
Publication of CN104617284B publication Critical patent/CN104617284B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/483Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides for non-aqueous cells
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/04Oxides; Hydroxides
    • C01G23/047Titanium dioxide
    • C01G23/053Producing by wet processes, e.g. hydrolysing titanium salts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/054Accumulators with insertion or intercalation of metals other than lithium, e.g. with magnesium or aluminium
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Composite Materials (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

本发明公开了一种多孔四方片状TiO2及其制备方法和在钠离子电池中的应用,将1.2-1.8g十六烷基磺酸钠分散于35-60mL1.5-2.5mol/L盐酸溶液中,然后滴加1.2-2mL钛酸异丙酯,在70-85℃下反应12-24小时,再经离心洗涤、干燥,经300-390℃退火得到所述的多孔四方片状TiO2,粒径为30-50nm,由4-7nm的纳米晶构筑形成的四方片状,且具有多孔的形貌。操作简便、成本低、纯度高、性能优异,可以大量合成。此产品还能推广至其他能源和催化等领域的应用。

Description

一种多孔四方片状TiO2及其制备方法和应用
技术领域
本发明属于钠离子电池负极材料制备领域,具体涉及一种多孔四方片状TiO2及其制备方法和在钠离子电池中的应用。
背景技术
近年来,锂离子电池具有高电压、高容量和循环寿命长等显著优点而被广泛应用于移动电子设备、国防工业、电动汽车等领域。但是随着锂离子电池的不断普及,锂(碳酸锂)的价格不断上升,且锂的资源在地球中的储量也较少。钠元素在地球上的储量比锂要丰富得多,金属钠来源广泛且廉价,因而钠离子电池近年来得到广泛的关注。当前,钠离子电池因缺乏合适的负极材料而制约其应用,开发性能优异的钠离子电池负极材料是当然该领域的研究重点和热点。目前没有高性能多孔四方片状TiO2基钠离子电池的相关报道。
发明内容
本发明的目的在于提供一种多孔四方片状TiO2及其制备方法和在钠离子电池中的应用,操作简便、成本低、纯度高、性能优异,可以大量合成。此产品还能推广至其他能源和催化等领域的应用。
为实现上述目的,本发明采用如下技术方案:
一种多孔四方片状TiO2,其粒径为30-50 nm,由4-7 nm的纳米晶构筑形成的四方片状,且具有多孔的形貌。
制备方法:将1.2-1.8 g十六烷基磺酸钠分散于35-60 mL 1.5-2.5 mol/L盐酸溶液中,然后滴加1.2-2 mL钛酸异丙酯,在70-85 ℃下反应12-24 小时,再经离心洗涤、干燥,经300-390℃退火得到所述的多孔四方片状TiO2
所述的多孔四方片状TiO2作为钠离子电池负极材料。钠离子电池组装:按四方片状TiO2、聚偏氟乙烯和乙炔黑的质量比为70-75:5-10:15-20混合,研磨后均匀地涂在1.2 cm2的铜片上做负极,正极为金属钠,电解质是1M NaClO4的EC+DEC溶液;所述的EC+DEC溶液中EC和DEC的体积比为1:1;电池组装在氩气保护下手套箱里进行,氧气和水分含量均低于1ppm。
本发明的显著优点在于:本发明首次提供了一种高性能多孔四方片状TiO2钠离子电池负极材料的制备方法,操作简便、成本低、纯度高(95%以上)、性能优异,可以大量合成。此多孔四方片状TiO2作为钠离子电池负极材料,结果表明其具有较高的比容量、优异的倍率充放电性能和良好的循环稳定性。电流密度为0.5 C的情况下,其可逆比容量高达270 mAhg-1,经过10次循环后,其比容量仍可达220 mAhg-1。该电极材料的具有斜坡型充放电曲线的特点,这有助于其在实际全电池中的使用。此产品还能推广至其他能源和催化等领域的应用。
附图说明
图1是多孔四方片状TiO2的XRD图。
图2是多孔四方片状TiO2的扫描电镜分析图(插图为电子衍射图)。
图3是钠电池的充电曲线图。
具体实施方式
实施例1
将1.2 g十六烷基磺酸钠分散于35 mL 1.5mol/L盐酸溶液中,然后滴加1.2mL钛酸异丙酯,在70℃下反应12小时,再经离心洗涤、干燥,经300℃退火得到所述的多孔四方片状TiO2,纯度为95%,粒径为30nm,由4nm的纳米晶构筑形成的四方片状,且具有多孔的形貌。
所述的多孔四方片状TiO2作为钠离子电池负极材料。钠离子电池组装:按四方片状TiO2、聚偏氟乙烯和乙炔黑的质量比为70:10:20混合,研磨后均匀地涂在1.2 cm2的铜片上做负极,正极为金属钠,电解质是1M NaClO4的EC+DEC溶液;所述的EC+DEC溶液中EC和DEC的体积比为1:1;电池组装在氩气保护下手套箱里进行,氧气和水分含量均低于1ppm。
电流密度为0.5 C的情况下,其可逆比容量高达270 mAhg-1,经过10次循环后,其比容量仍可达220 mAhg-1
实施例2
将1.8 g十六烷基磺酸钠分散于60 mL 2.5 mol/L盐酸溶液中,然后滴加2 mL钛酸异丙酯,在85 ℃下反应24 小时,再经离心洗涤、干燥,经390℃退火得到所述的多孔四方片状TiO2,纯度为98%,粒径为50 nm,由7 nm的纳米晶构筑形成的四方片状,且具有多孔的形貌。
所述的多孔四方片状TiO2作为钠离子电池负极材料。钠离子电池组装:按四方片状TiO2、聚偏氟乙烯和乙炔黑的质量比为75:10:15混合,研磨后均匀地涂在1.2 cm2的铜片上做负极,正极为金属钠,电解质是1M NaClO4的EC+DEC溶液;所述的EC+DEC溶液中EC和DEC的体积比为1:1;电池组装在氩气保护下手套箱里进行,氧气和水分含量均低于1ppm。
电流密度为0.5 C的情况下,其可逆比容量高达270 mAhg-1,经过10次循环后,其比容量仍可达220 mAhg-1
实施例3
将1.5 g十六烷基磺酸钠分散于50mL 2.0 mol/L盐酸溶液中,然后滴加1.6mL钛酸异丙酯,在80 ℃下反应18小时,再经离心洗涤、干燥,经350℃退火得到所述的多孔四方片状TiO2,纯度为99%,粒径为40 nm,由6nm的纳米晶构筑形成的四方片状,且具有多孔的形貌。
所述的多孔四方片状TiO2作为钠离子电池负极材料。钠离子电池组装:按四方片状TiO2、聚偏氟乙烯和乙炔黑的质量比为72:9:19混合,研磨后均匀地涂在1.2 cm2的铜片上做负极,正极为金属钠,电解质是1M NaClO4的EC+DEC溶液;所述的EC+DEC溶液中EC和DEC的体积比为1:1;电池组装在氩气保护下手套箱里进行,氧气和水分含量均低于1ppm。
电流密度为0.5 C的情况下,其可逆比容量高达270 mAhg-1,经过10次循环后,其比容量仍可达220 mAhg-1
以上所述仅为本发明的较佳实施例,凡依本发明申请专利范围所做的均等变化与修饰,皆应属本发明的涵盖范围。

Claims (4)

1.一种多孔四方片状TiO2,其特征在于:粒径为30-50 nm,由4-7 nm的纳米晶构筑形成的四方片状,且具有多孔的形貌。
2.一种制备如权利要求1所述的多孔四方片状TiO2的方法,其特征在于:将1.2-1.8 g十六烷基磺酸钠分散于35-60 mL 1.5-2.5 mol/L盐酸溶液中,然后滴加1.2-2 mL钛酸异丙酯,在70-85 ℃下反应12-24 小时,再经离心洗涤、干燥,经300-390℃退火得到所述的多孔四方片状TiO2
3.一种如权利要求1所述的多孔四方片状TiO2的应用,其特征在于:所述的多孔四方片状TiO2作为钠离子电池负极材料。
4.根据权利要求3所述的应用,其特征在于:钠离子电池组装:按四方片状TiO2、聚偏氟乙烯和乙炔黑的质量比为70-75:5-10:15-20混合,研磨后均匀地涂在1.2 cm2的铜片上做负极,正极为金属钠,电解质是1M NaClO4的EC+DEC溶液;所述的EC+DEC溶液中EC和DEC的体积比为1:1;电池组装在氩气保护下手套箱里进行,氧气和水分含量均低于1ppm。
CN201510060099.9A 2015-02-05 2015-02-05 一种多孔四方片状TiO2及其制备方法和应用 Expired - Fee Related CN104617284B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510060099.9A CN104617284B (zh) 2015-02-05 2015-02-05 一种多孔四方片状TiO2及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510060099.9A CN104617284B (zh) 2015-02-05 2015-02-05 一种多孔四方片状TiO2及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN104617284A true CN104617284A (zh) 2015-05-13
CN104617284B CN104617284B (zh) 2017-01-11

Family

ID=53151636

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510060099.9A Expired - Fee Related CN104617284B (zh) 2015-02-05 2015-02-05 一种多孔四方片状TiO2及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN104617284B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105810918A (zh) * 2016-05-27 2016-07-27 福建师范大学 一种原位合成TiO2介晶-碳-石墨烯纳米复合材料的方法及其应用
CN107681148A (zh) * 2017-09-26 2018-02-09 福建师范大学 一种多孔无定形二氧化钛基钠离子电池及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102502810A (zh) * 2011-11-01 2012-06-20 南京林业大学 一种多孔纳米TiO2的制备方法
CN103427112A (zh) * 2013-08-22 2013-12-04 郭建国 可控电场效应充放电钠离子电池及其快速充电放电的方法
CN104016405A (zh) * 2014-05-30 2014-09-03 武汉理工大学 一种花状介孔二氧化钛材料及其制备方法与应用
CN104192900A (zh) * 2014-08-20 2014-12-10 北京师范大学 一种TiO2纳米晶的合成方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102502810A (zh) * 2011-11-01 2012-06-20 南京林业大学 一种多孔纳米TiO2的制备方法
CN103427112A (zh) * 2013-08-22 2013-12-04 郭建国 可控电场效应充放电钠离子电池及其快速充电放电的方法
CN104016405A (zh) * 2014-05-30 2014-09-03 武汉理工大学 一种花状介孔二氧化钛材料及其制备方法与应用
CN104192900A (zh) * 2014-08-20 2014-12-10 北京师范大学 一种TiO2纳米晶的合成方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ZHENSHENG HONG: "Self-assembled nanoporous rutile TiO2 mesocrystals with tunable morphologies for high rate lithium-ion batteries", 《NANO ENERGY》 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105810918A (zh) * 2016-05-27 2016-07-27 福建师范大学 一种原位合成TiO2介晶-碳-石墨烯纳米复合材料的方法及其应用
CN105810918B (zh) * 2016-05-27 2018-02-27 福建师范大学 一种原位合成TiO2介晶‑碳‑石墨烯纳米复合材料的方法及其应用
CN107681148A (zh) * 2017-09-26 2018-02-09 福建师范大学 一种多孔无定形二氧化钛基钠离子电池及其制备方法
CN107681148B (zh) * 2017-09-26 2020-10-23 福建师范大学 一种多孔无定形二氧化钛基钠离子电池及其制备方法

Also Published As

Publication number Publication date
CN104617284B (zh) 2017-01-11

Similar Documents

Publication Publication Date Title
Zhang et al. Top-down strategy to synthesize mesoporous dual carbon armored MnO nanoparticles for lithium-ion battery anodes
Tang et al. Nano-LiCoO2 as cathode material of large capacity and high rate capability for aqueous rechargeable lithium batteries
Wu et al. Selective S/Li2S Conversion via in-Built Crystal Facet Self-Mediation: Toward High Volumetric Energy Density Lithium–Sulfur Batteries
Gurunathan et al. Synthesis of hierarchically porous SnO2 microspheres and performance evaluation as Li-ion battery anode by using different binders
Reddy et al. Mixed Oxides,(Ni1–x Zn x) Fe2O4 (x= 0, 0.25, 0.5, 0.75, 1): Molten Salt Synthesis, Characterization and Its Lithium-Storage Performance for Lithium Ion Batteries
Min et al. Facile synthesis of electrospun Li1. 2Ni0. 17Co0. 17Mn0. 5O2 nanofiber and its enhanced high-rate performance for lithium-ion battery applications
CN103972497B (zh) 锂离子电池Co2SnO4/C纳米复合负极材料及其制备与应用
Verrelli et al. Stable, high voltage Li0. 85Ni0. 46Cu0. 1Mn1. 49O4 spinel cathode in a lithium-ion battery using a conversion-type CuO anode
Liu et al. Self-supported sisal-like CuCo2O4@ Ni (OH) 2 core–shell composites grown on Ni foam for high-performance all-solid state supercapacitors
Wang et al. Morphology control and Na+ doping toward high-performance Li-rich layered cathode materials for lithium-ion batteries
Zhang et al. Synthesis and electrochemical properties of different sizes of the CuO particles
Shen et al. Hollow Ball-in-Ball Co x Fe3–x O4 Nanostructures: High-Performance Anode Materials for Lithium-Ion Battery
Zhu et al. Mesoporous TiO2 spheres as advanced anodes for low-cost, safe, and high-areal-capacity lithium-ion full batteries
Feng et al. Preparation of SnO2 nanoparticle and performance as lithium-ion battery anode
Cen et al. Ultrathin VO2 (B) nanosheets as cathode material for high-performance hybrid magnesium-lithium ion batteries
López et al. Improving the performance of titania nanotube battery materials by surface modification with lithium phosphate
CN107275571A (zh) 一种硫化锂/纳米硅碳全电池及其制备方法与应用
Yao et al. The investigation of NaTi2 (PO4) 3@ C/Ag as a high-performance anode material for aqueous rechargeable sodium-ion batteries
Jin et al. Highly stabilized silicon nanoparticles for lithium storage via hierarchical carbon architecture
CN104009215A (zh) 一种二氧化钒-石墨烯复合物及其用作锂离子电池正极材料的用途
Mahamad Yusoff et al. Electrochemical sodiation/desodiation into Mn3O4 nanoparticles
Yang et al. Insights into electrochemical performances of NiFe2O4 for lithium-ion anode materials
Bai et al. Dual-modified Li4Ti5O12 anode by copper decoration and carbon coating to boost lithium storage
Lu et al. Stable WS2/WO3 composites as high-performance cathode for rechargeable aluminum-ion batteries
Liu et al. LiMn2O4 Cathode materials with excellent performances by synergistic enhancement of double-cation (Na+, Mg2+) doping and 3DG coating for power lithium-ion batteries

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20170111

Termination date: 20200205