CN104600982B - 一种多工作模式的新能源混合系统功率控制器设计方法 - Google Patents

一种多工作模式的新能源混合系统功率控制器设计方法 Download PDF

Info

Publication number
CN104600982B
CN104600982B CN201510005868.5A CN201510005868A CN104600982B CN 104600982 B CN104600982 B CN 104600982B CN 201510005868 A CN201510005868 A CN 201510005868A CN 104600982 B CN104600982 B CN 104600982B
Authority
CN
China
Prior art keywords
fuel cell
hybrid system
super capacitor
mode
soc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201510005868.5A
Other languages
English (en)
Other versions
CN104600982A (zh
Inventor
杨帆
盛波
符杨
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai University of Electric Power
Original Assignee
Shanghai University of Electric Power
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai University of Electric Power filed Critical Shanghai University of Electric Power
Priority to CN201510005868.5A priority Critical patent/CN104600982B/zh
Publication of CN104600982A publication Critical patent/CN104600982A/zh
Application granted granted Critical
Publication of CN104600982B publication Critical patent/CN104600982B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • H02J7/345Parallel operation in networks using both storage and other dc sources, e.g. providing buffering using capacitors as storage or buffering devices

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Fuel Cell (AREA)

Abstract

本发明涉及一种多工作模式的新能源混合系统功率控制器设计方法,包括以下步骤:1)以控制电路中的电感磁链和电容电荷作为系统状态变量,建立混合系统的状态空间模型;2)获取混合系统的工作模式及在各工作模式下的平衡状态;3)建立混合系统的哈密顿模型;4)根据所述哈密顿模型及各工作模式下的平衡状态,采用IDA‑PBC方法获得各工作模式下的功率控制器的控制律。与现有技术相比,本发明能够根据混合系统当前的工作模式,控制燃料电池和超级电容,合理分配燃料电池和超级电容出力,使系统稳定在当前工作模式下的平衡状态,具有快速响应负载的用电需求、实现闭环系统渐进稳定等优点。

Description

一种多工作模式的新能源混合系统功率控制器设计方法
技术领域
本发明涉及电力系统控制技术领域,尤其是涉及一种多工作模式的新能源混合系统功率控制器设计方法。
背景技术
面对传统能源大量消耗与环境污染日益严重的双重压力,世界各国政府正积极的发展新能源发电技术(光伏,风电,燃料电池,等)以实现能源的可持续发展。目前,燃料电池因其高效、节能和清洁等优点受到了国内外研究人员的大量关注。
在燃料电池的燃料供应系统中包含一系列泵、管道、阀门等机械元件;受这些装置反应速度的限制,导致燃料电池的动态响应较慢,使得燃料电池系统无法满足脉动性负载的用电需求。为了改善这个不足,可在燃料电池系统中增加一个辅助储能装置---超级电容,构成燃料电池和超级电容混合系统。超级电容的引入,能够充分发挥燃料电池节能、环保的优势,并且可以提高系统的能源利用率。
功率控制器的控制对象为具有连续出力调节能力的燃料电池和具有快速充放电能力的超级电容。由于燃料电池和超级电容混合系统具有多种工作模式,且含有大量的电力电子器件;使得混合系统具有强烈的非线性特性且容易出现不稳定,因此应用非线性方法设计混合系统的功率控制器是十分必要的。
无源性理论作为一种非线性方法,是从系统的能量角度出发,可实现系统的渐进稳定,且对系统的参数摄动和外界扰动具有较强的鲁棒性,互联与阻尼配置无源控制(interconnection and damping assignment passivity-based control,IDA-PBC)是其中一种新型无源性理论,本发明基于该无源性理论提出了一种多工作模式的新能源混合系统功率器设计方法。
发明内容
本发明的目的就是为了克服上述现有技术存在的缺陷而提供一种能够快速响应负载的用电需求,实现闭环系统渐进稳定的多工作模式的新能源混合系统功率控制器设计方法。
本发明的目的可以通过以下技术方案来实现:
一种多工作模式的新能源混合系统功率控制器设计方法,所述功率控制器分别通过控制电路控制燃料电池和超级电容的输出功率,所述设计方法包括以下步骤:
1)以控制电路中的电感磁链和电容电荷作为系统状态变量,建立混合系统的状态空间模型;
2)获取混合系统的工作模式及在各工作模式下的平衡状态;
3)建立混合系统的哈密顿模型;
4)根据所述哈密顿模型及各工作模式下的平衡状态,采用IDA-PBC方法获得各工作模式下的功率控制器的控制律。
所述混合系统的状态空间模型为:
x · = f ( x , d ) + g ( x ) u
式中:x为系统状态变量;u为系统外部输入信号,在燃料电池和超级电容混合系统中,u即为燃料电池和超级电容的电压信号;d为控制电路的占空比信号;f(x,d)和g(x)是相应维数的矩阵函数。
所述混合系统的工作模式包括:
工作模式1:燃料电池的额定功率大于负载功率,即PFCrated>PL,并且超级电容的SOC>SOCmax
工作模式2:燃料电池的额定功率大于负载功率,即PFCrated>PL,并且超级电容的SOC<SOCmax
工作模式3:燃料电池的额定功率小于负载功率,即PFCrated<PL,并且超级电容的SOC>SOCmin
工作模式4:燃料电池的额定功率小于负载功率,即PFCrated<PL,并且超级电容的SOC<SOCmin
其中,PFCrated为燃料电池额定功率,PL为负载功率;SOC为超级电容的荷电状态,SOCmax为超级电容允许的最大荷电状态,SOCmin为超级电容允许的最小荷电状态。
所述混合系统的哈密顿模型为:
x · = [ J ( x , d ) - R ( x ) ] ∂ H ( x ) ∂ x + g ( x ) u
式中:J(x,d)为反对称矩阵,反映了系统各状态变量之间的互联特性,且满足J(x,d)=-JT(x,d),JT(x,d)为J(x,d)的转置矩阵;R(x)≥0为对称半正定矩阵,表征系统的自然阻尼,且满足R(x)=RT(x),RT(x)为R(x)的转置矩阵;H(x)为系统的自然能量函数。
所述步骤4)具体为:
401)获得混合系统在各工作模式下的平衡状态x*
402)根据J(x,d)、R(x)、H(x)、g(x)和平衡状态x*设计函数Ja(x),Ra(x)、β(x)和向量函数K(x),使下式成立:
{ J ( x , β ( x ) ) + J a ( x ) - [ R ( x ) + R a ( x ) ] } K ( x ) = - [ J a ( x ) - R a ( x ) ] ∂ H ( x ) ∂ x + g ( x ) u
且满足以下条件:
a)结构守恒:
J d ( x ) = J ( x , β ( x ) ) + J a ( x ) = - { J ( x , β ( x ) ) + J a ( x ) } T R d ( x ) = R ( x ) + R a ( x ) = [ R ( x ) + R a ( x ) ] T ≥ 0
b)可积性,K(x)为标量函数的梯度:
∂ K ( x ) ∂ x = ( ∂ K ( x ) ∂ x ) T
c)在平衡点x*处,K(x)满足:
K ( x * ) = - ∂ H ( x ) ∂ x | x = x *
d)李雅普洛夫稳定性,即在x*处,K(x)满足:
∂ K ( x ) ∂ x | x = x * > - ∂ 2 H ( x ) ∂ 2 x | x = x *
其中,Ja(x)、Ra(x)分别表示向系统增加的互联矩阵、阻尼矩阵;Hd(x)为闭环系统的能量函数;β(x)=d,为功率控制器的控制律。
所述控制电路包括Boost电路和双向DC-DC变换器电路,所述燃料电池通过Boost电路与直流母线连接,所述超级电容通过双向DC-DC变换器电路与直流母线连接。
与现有技术相比,本发明具有以下优点:
(1)本发明基于无源性理论设计混合系统功率控制器,能够分析混合系统当前的工作模式,使系统稳定在当前工作模式下的平衡状态,合理的分配燃料电池和超级电容的出力,快速响应负载的用电需求。
(2)本发明获得的功率控制器可实现闭环系统的渐进稳定,对系统参数摄动以及外界扰动都具有较强的鲁棒性。
附图说明
图1为本发明功率控制器的结构原理示意图;
图2为实施例中混合系统的结构示意图;
图3为实施例中直流母线电压仿真波形示意图;
图4为实施例中燃料电池电压仿真波形示意图;
图5为实施例中燃料电池电流仿真波形示意图;
图6为实施例中超级电容电流仿真波形示意图;
图7为实施例中功率仿真波形示意图。
具体实施方式
下面结合附图和具体实施例对本发明进行详细说明。本实施例以本发明技术方案为前提进行实施,给出了详细的实施方式和具体的操作过程,但本发明的保护范围不限于下述的实施例。
如图1-图2所示,以燃料电池和超级电容分别通过Boost电路和双向DC-DC变换器电流连接到直流母线上的混合系统为例,详细说明本发明所涉及功率控制器的设计步骤。
1、建立混合系统的状态空间模型
以控制电路中的电感磁链和电容电荷作为系统状态变量,建立混合系统的状态空间模型:
选取电感LFC的磁链LFCiFC、电容CDC的电荷CDCVDC、电感LSC的磁链LSCiSC和电感LL的磁链LL iL为混合系统的状态变量:
x=[x1 x2 x3 x4]T=[LFCiFC CDCVDC LSCiSC LLiL]T (1)
根据KCL、KVL定律,混合系统的状态空间方程为:
x · 1 = V FC - d 1 C DC x 2 x · 2 = d 1 L FC x 1 + d 2 L SC x 3 - 1 L L x 4 x · 3 = V SC - d 2 C DC x 2 x · 4 = 1 C DC x 2 - R L L L x 4 - - - ( 2 )
式中:d=[d1,d2]T;d1,d2分别为功率开关TFC和TSC的占空比信号。
2、获取混合系统的工作模式及在各工作模式下的平衡状态
为了避免超级电容的过度充放电,本实施例中,设定超级电容的SOCmax为0.75,设定超级电容的SOCmin为0.35。混合系统的四种工作模式分别为:
工作模式1:燃料电池的额定功率大于负载功率,即PFCrated>PL,并且超级电容的SOC>SOCmax;此模式下,超级电容的稳态电流为0A,燃料电池仅为负载供电。
工作模式2:燃料电池的额定功率大于负载功率,即PFCrated>PL,并且超级电容的SOC<SOCmax;此模式下,燃料电池输出额定功率,为负载供电,同时为超级电容充电。
工作模式3:燃料电池的额定功率小于负载功率,即PFCrated<PL,并且超级电容的SOC>SOCmin;此模式下,燃料电池与超级电容共同为负载供电,超级电容放电。
工作模式4:燃料电池的额定功率小于负载功率,即PFCrated<PL,并且超级电容的SOC<SOCmin;此模式下,超级电容的稳态电流为0A,燃料电池输出额定功率,但无法提供负载所需全部功率。
当系统达到平衡状态时,直流母线电压VDC应等于其参考电压Vd;根据功率守恒定律(忽略电力电子器件的损耗),可得四种工作模式下的系统平衡状态分别为:
工作模式1平衡状态:
x * = x * 1 x * 2 x * 3 x * 4 T = L FC V d 2 R L V FC C DC V d 0 L L V d R L T - - - ( 3 )
工作模式2&3平衡状态:
x * = x * 1 x * 2 x * 3 x * 4 T = L FC I FCrated C DC V d - L SC P FCrated - P L V SC L L V d R L T - - - ( 4 )
工作模式4平衡状态:
x * = x * 1 x * 2 x * 3 x * 4 T = L FC I FCrated C DC V d 0 L L V d R L T - - - ( 5 )
式中:x*=[x*1 x*2 x*3 x*4]T为系统状态变量的平衡状态;IFCrated为燃料电池额定电流;VSC为超级电容输出电压;VDC为直流母线电压;Vd为直流母线参考电压。
3、建立混合系统的哈密顿模型(PCH模型)
x · = [ J ( x , d ) - R ( x ) ] ∂ H ( x ) ∂ x + g ( x ) u
式中:J(x,d)为反对称矩阵,反映了系统各状态变量之间的互联特性,且满足J(x,d)=-JT(x,d),JT(x,d)为J(x,d)的转置矩阵;R(x)≥0为对称半正定矩阵,表征系统的自然阻尼,且满足R(x)=RT(x),RT(x)为R(x)的转置矩阵;H(x)为系统的自然能量函数,其中,
J ( x , d ) = 0 - d 1 0 0 d 1 0 d 2 - 1 0 - d 2 0 0 0 1 0 0 - - - ( 6 )
R(x)=diag{0;0;0;RL} (7)
H ( x ) = 1 2 L FC x 1 2 + 1 2 C DC x 2 2 + 1 2 L SC x 3 2 + 1 2 L L x 4 2 - - - ( 8 )
g(x)u=[VFC 0 VSC 0]T (9)
diag表示对角阵。
4、根据所述哈密顿模型及各工作模式下的平衡状态,采用IDA-PBC方法获得各工作模式下的功率控制器的控制律。
1)闭环系统能量函数
为了使闭环系统在稳态时达到期望平衡状态,取系统的闭环能量函数Hd(x)为:
H d ( x ) = 1 2 L FC ( x 1 - x * 1 ) 2 + 1 2 C DC ( x 2 - x * 2 ) 2 + 1 2 L SC ( x 3 - x * 3 ) 2 + 1 2 L L ( x 4 - x * 4 ) 2 - - - ( 10 )
2)采用自然互联和注入阻尼的方式设计功率控制器,即令:
Ja(x)=0
(11)
Ra(x)=diag{r1;r2r3;0}
式中:r1≥0,r2≥0,r3≥0。
3)根据IDA-PBC方法,获得功率控制器的控制律:
根据J(x,d)、R(x)、H(x)、g(x)和平衡状态x*设计函数Ja(x),Ra(x)、β(x)和向量函数K(x),使下式成立:
{ J ( x , β ( x ) ) + J a ( x ) - [ R ( x ) + R a ( x ) ] } K ( x ) = - [ J a ( x ) - R a ( x ) ] ∂ H ( x ) ∂ x + g ( x ) u - - - ( 12 )
且满足以下条件:
a)结构守恒:
J d ( x ) = J ( x , β ( x ) ) + J a ( x ) = - { J ( x , β ( x ) ) + J a ( x ) } T R d ( x ) = R ( x ) + R a ( x ) = [ R ( x ) + R a ( x ) ] T ≥ 0 - - - ( 13 )
b)可积性,K(x)为标量函数的梯度:
∂ K ( x ) ∂ x = ( ∂ K ( x ) ∂ x ) T - - - ( 14 )
c)在平衡点x*处,K(x)满足:
K ( x * ) = - ∂ H ( x ) ∂ x | x = x * - - - ( 15 )
d)李雅普洛夫稳定性,即在x*处,K(x)满足:
∂ K ( x ) ∂ x | x = x * > - ∂ 2 H ( x ) ∂ 2 x | x = x * - - - ( 16 )
其中,Ja(x)、Ra(x)分别表示向系统增加的互联矩阵、阻尼矩阵;Hd(x)为闭环系统的能量函数;β(x)=d,为功率控制器的控制律,经计算,本实施例中,功率控制器的控制律β(x)为:
β ( x ) = [ d 1 , d 2 ] T = [ V FC V d , r 3 L SC V d ( x 2 - x * 3 ) + V SC V d ] T - - - ( 17 )
此时,闭环系统的哈密顿模型为:
x · = [ J d ( x ) - R d ( x ) ] ∂ H d ( x ) ∂ x - - - ( 18 )
式中:
J d ( x ) = 0 - d 1 0 0 d 1 0 d 2 - 1 0 - d 2 0 0 0 1 0 0 - - - ( 19 )
Rd(x)=diag{0;0;r3;RL} (20)
如图1所示,采用上述功率控制器时,以燃料电池的电压和电流信号、超级电容的电压和电流信号、直流母线的电压信号、负载的电流信号等作为功率控制器的输入信号,识别当前混合系统的工作模式,根据相应的控制律输出占空比信号,控制燃料电池和超级电容的输出功率。图3-图7为本实施例实验过程获得的波形示意图。

Claims (3)

1.一种多工作模式的新能源混合系统功率控制器设计方法,所述功率控制器分别通过控制电路控制燃料电池和超级电容的输出功率,其特征在于,所述设计方法包括以下步骤:
1)以控制电路中的电感磁链和电容电荷作为系统状态变量,建立混合系统的状态空间模型,具体为:
x · = f ( x , d ) + g ( x ) u
式中:x为系统状态变量;u为系统外部输入信号,在燃料电池和超级电容混合系统中,u即为燃料电池和超级电容的电压信号;d为控制电路的占空比信号;f(x,d)和g(x)是相应维数的矩阵函数;
2)获取混合系统的工作模式及在各工作模式下的平衡状态;
3)建立混合系统的哈密顿模型,具体为:
x · = [ J ( x , d ) - R ( x ) ] ∂ H ( x ) ∂ x + g ( x ) u
式中:J(x,d)为反对称矩阵,反映了系统各状态变量之间的互联特性,且满足J(x,d)=-JT(x,d),JT(x,d)为J(x,d)的转置矩阵;R(x)≥0为对称半正定矩阵,表征系统的自然阻尼,且满足R(x)=RT(x),RT(x)为R(x)的转置矩阵;H(x)为系统的自然能量函数;
4)根据所述哈密顿模型及各工作模式下的平衡状态,采用IDA-PBC方法获得各工作模式下的功率控制器的控制律,具体为:
401)获得混合系统在各工作模式下的平衡状态x*
402)根据J(x,d)、R(x)、H(x)、g(x)和平衡状态x*设计函数Ja(x),Ra(x)、β(x)和向量函数K(x),使下式成立:
{ J ( x , β ( x ) ) + J a ( x ) - [ R ( x ) + R a ( x ) ] } K ( x ) = - [ J a ( x ) - R a ( x ) ] ∂ H ( x ) ∂ x + g ( x ) u
且满足以下条件:
a)结构守恒:
J d ( x ) = J ( x , β ( x ) ) + J a ( x ) = - { J ( x , β ( x ) ) + J a ( x ) } T R d ( x ) = R ( x ) + R a ( x ) = [ R ( x ) + R a ( x ) ] T ≥ 0
b)可积性,K(x)为标量函数的梯度:
∂ K ( x ) ∂ x = ( ∂ K ( x ) ∂ x ) T
c)在平衡点x*处,K(x)满足:
K ( x * ) = - ∂ H ( x ) ∂ x | x = x *
d)李雅普洛夫稳定性,即在x*处,K(x)满足:
∂ K ( x ) ∂ x | x = x * > - ∂ 2 H ( x ) ∂ 2 x | x = x *
其中,Ja(x)、Ra(x)分别表示向系统增加的互联矩阵、阻尼矩阵;Hd(x)为闭环系统的能量函数;β(x)=d,为功率控制器的控制律。
2.根据权利要求1所述的多工作模式的新能源混合系统功率控制器设计方法,其特征在于,所述混合系统的工作模式包括:
工作模式1:燃料电池的额定功率大于负载功率,即PFCrated>PL,并且超级电容的SOC>SOCmax
工作模式2:燃料电池的额定功率大于负载功率,即PFCrated>PL,并且超级电容的SOC<SOCmax
工作模式3:燃料电池的额定功率小于负载功率,即PFCrated<PL,并且超级电容的SOC>SOCmin
工作模式4:燃料电池的额定功率小于负载功率,即PFCrated<PL,并且超级电容的SOC<SOCmin
其中,PFCrated为燃料电池额定功率,PL为负载功率;SOC为超级电容的荷电状态,SOCmax为超级电容允许的最大荷电状态,SOCmin为超级电容允许的最小荷电状态。
3.根据权利要求1所述的多工作模式的新能源混合系统功率控制器设计方法,其特征在于,所述控制电路包括Boost电路和双向DC-DC变换器电路,所述燃料电池通过Boost电路与直流母线连接,所述超级电容通过双向DC-DC变换器电路与直流母线连接。
CN201510005868.5A 2015-01-06 2015-01-06 一种多工作模式的新能源混合系统功率控制器设计方法 Active CN104600982B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510005868.5A CN104600982B (zh) 2015-01-06 2015-01-06 一种多工作模式的新能源混合系统功率控制器设计方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510005868.5A CN104600982B (zh) 2015-01-06 2015-01-06 一种多工作模式的新能源混合系统功率控制器设计方法

Publications (2)

Publication Number Publication Date
CN104600982A CN104600982A (zh) 2015-05-06
CN104600982B true CN104600982B (zh) 2017-02-01

Family

ID=53126571

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510005868.5A Active CN104600982B (zh) 2015-01-06 2015-01-06 一种多工作模式的新能源混合系统功率控制器设计方法

Country Status (1)

Country Link
CN (1) CN104600982B (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104852623B (zh) * 2015-05-25 2017-11-24 北京空间飞行器总体设计部 一种基于超导磁储能的航天器电源系统及控制方法
CN104953580B (zh) * 2015-06-19 2017-03-29 西安理工大学 直流微电网储能接口变换器并联的控制电路及控制方法
CN108667337B (zh) * 2018-05-31 2024-01-30 西南交通大学 具有快速动态响应的大功率脉冲负载电源装置及其控制方法
CN109149742B (zh) * 2018-10-17 2020-11-10 奇瑞汽车股份有限公司 燃料电池车的复合电源能量分配方法及装置
CN113342075B (zh) * 2021-06-17 2023-08-18 青岛大学 基于端口受控哈密顿原理的耦合三容液位控制方法
CN113733936B (zh) * 2021-08-18 2023-05-23 中车唐山机车车辆有限公司 一种混合驱动有轨电车的功率控制方法、装置及存储介质

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103596798A (zh) * 2011-06-07 2014-02-19 丰田自动车株式会社 电动车辆和电动车辆的控制方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103596798A (zh) * 2011-06-07 2014-02-19 丰田自动车株式会社 电动车辆和电动车辆的控制方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
Interconnection and Damping Assignment Passivity-Based Control of a Fuel Cell System;M.Hilairet et al;《2010 IEEE International Symposium on Industrial Electronics》;20100707;第219-224页 *
Modeling and Passivity-Based Control of Hybrid Sources: Fuel Cell and Supercapacitors;M. Becherif et al;《Conference Record of the 2006 IEEE Industry Applications Conference Forty-First IAS Annual Meeting》;20061012;第3卷;第1134-1139页 *
Passivity-Based Control of PEM Fuel Cell/Battery Hybrid Power Source;Ali Tofighi,Mohsen Kalantar;《2011 IEEE Energy Conversion Congress and Exposition》;20110922;第902-908页 *
基于IDA-PBC的LCL滤波并网逆变器控制;李敏,徐群;《电力系统及其自动化学报》;20140430;第26卷(第4期);第50-55、80页 *

Also Published As

Publication number Publication date
CN104600982A (zh) 2015-05-06

Similar Documents

Publication Publication Date Title
CN104600982B (zh) 一种多工作模式的新能源混合系统功率控制器设计方法
CN106374451B (zh) 基于多端口变换器的直流住宅用能量路由器及其控制方法
CN102931672A (zh) 一种电力分布式储能装置及其控制系统
CN203800680U (zh) 一种支持多组电池接入的大功率双向变流装置
CN106026334A (zh) 超级电容三段式充电电路及其为超级电容快速充电的方法
WO2022028116A1 (zh) 一种220kV智慧能源站站用直流电源系统
CN103023155A (zh) 大容量电池储能系统的模块化设计方法
CN108233713A (zh) 一种非隔离三端口直流开关变换器及其控制方法
CN109962515A (zh) 比例-支持向量机稳态估计超级电容充放电控制方法
Ling et al. Fuzzy-PI control battery equalization for series connected lithium-ion battery strings
Liao et al. Research on equalization strategy based on credibility factor inference for lithium-ion battery packs
CN205004820U (zh) 基于超级电容的不间断电源系统
CN106026316A (zh) 一种电动汽车智能充电桩系统的控制方法
CN200987083Y (zh) 基于超级电容和太阳能电池的电源系统
Bingbing et al. Super-capacitors energy storage system applied in the microgrid
Jun et al. Characteristics analysis of ultracapacitor-battery hybrid energy storage system
CN104600746B (zh) 区域光伏储能系统并网变流器无源非线性控制方法
Safaeinasab et al. Design and control of a novel multi-port bidirectional buck-boost converter suitable for hybrid electric vehicle charging stations
CN104578367A (zh) 一种基于无源性理论的直流微网功率分配控制器设计方法
CN207588468U (zh) 一种发电机组混合储能并网供电系统
CN207166214U (zh) 一种基于控制器的风光互补节能转化系统
CN202424194U (zh) 一种锂离子电池化成储电系统
Srinivas et al. Modelling of a double-input bidirectional dc–dc converter for HESS and unified controller design for dc microgrid applications
CN206697972U (zh) 一种基于电池的超级电容充电系统
Bukhari et al. Hybrid electric energy storage and its dynamic performance

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant