CN104599277B - 一种面向保积仿射变换的图像配准方法 - Google Patents

一种面向保积仿射变换的图像配准方法 Download PDF

Info

Publication number
CN104599277B
CN104599277B CN201510040855.1A CN201510040855A CN104599277B CN 104599277 B CN104599277 B CN 104599277B CN 201510040855 A CN201510040855 A CN 201510040855A CN 104599277 B CN104599277 B CN 104599277B
Authority
CN
China
Prior art keywords
parameter
iter
image
parameters
optimal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201510040855.1A
Other languages
English (en)
Other versions
CN104599277A (zh
Inventor
李东
张云华
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Space Science Center of CAS
Original Assignee
National Space Science Center of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Space Science Center of CAS filed Critical National Space Science Center of CAS
Priority to CN201510040855.1A priority Critical patent/CN104599277B/zh
Publication of CN104599277A publication Critical patent/CN104599277A/zh
Application granted granted Critical
Publication of CN104599277B publication Critical patent/CN104599277B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Image Analysis (AREA)

Abstract

本发明涉及一种面向保积仿射变换的图像配准方法,包括:读取待配准具有保积仿射几何扭曲的图像对,从所读取的图像对中提取并建立特征匹配对;其中,所述图像对中的参考图像为主图像,待配准图像为辅图像;基于特征匹配对,利用迭代估计法反演出图像对间的保积仿射扭曲参数;其中,所述保积仿射扭曲参数包括:保积仿射矩阵参数a、b、c、d以及两个图像方向上的偏移量tx和ty;利用保积仿射扭曲函数,对辅图像进行插值处理,使其与主图像在几何上实现对准。

Description

一种面向保积仿射变换的图像配准方法
技术领域
本发明涉及计算机图形图像处理领域,特别涉及一种面向保积仿射变换的图像配准方法。
背景技术
仿射变换是计算机图像处理领域一种最常用的六自由度刚性几何变换。不同于一般的四自由度相似变换,仿射变换可将一个矩形图像块变换为一个任意的平行四边形图像块,这种几何扭曲对于光学图像、遥感图像以及医学影像等都具有广泛的适用性。因此,面向仿射变换和相似变换扭曲的图像配准问题在过去一段时间内受到了大量关注,许多成熟的算法得以提出,并已在不同领域得到了普遍应用。
近期随着机器视觉和遥感技术的深入发展,图像处理领域也出现了一些新的研究动态,即关于五自由度图像几何变换和配准的研究。迄今共有两种不同的五自由度几何变换被提出,分别是弱仿射变换(参见参考文献1:“D.Li and Y.Zhang,"A novel approachfor the registration of weak affine images,"Pattern Recognition Letters,vol.33,no.12,pp.1647-1655,2012”)和保积仿射变换(参见参考文献2:“J.Flusser andB.Zitova,"A comment on'a novel approach for the registration of weak affineimages',"Pattern Recognition Letters,vol.34,no.12,pp.1381-1385,2013”)。两者分别通过对几何切变和图像块面积的约束,去掉了原始仿射变换中的一个自由度。从参数估计角度看,这种操作减少了待估参数个数,然而却极大地增加了估计难度,因为此时我们面临的是一个约束优化问题,其无法像仿射变换和相似变换那样允许我们直接得到一个严格的解析解。对于这类五自由度扭曲,常用的参数反演方法将不适用且不精确,因此亟需发展出新的估计方法。
基于一个分步优化方法,面向弱仿射变换的参数反演算法近期被发展出,实验表明其具有精确的配准效果(参见参考文献3:“D.Li and Y.Zhang,"A novel approach forthe registration of weak affine images,"Pattern Recognition Letters,vol.33,no.12,pp.1647-1655,2012”)。然而对于面向保积仿射变换的图像配准,尽管Flusser和Zitova近期给出了解决该问题的初步设想(参见参考文献4:“J.Flusser and B.Zitova,"Acomment on'a novel approach for the registration of weak affine images',"PatternRecognition Letters,vol.34,no.12,pp.1381-1385,2013”),但却没能给出确切的实现方案,并且Flusser和Zitova的设想存在明显的局限性。
发明内容
本发明的目的在于克服现有面向保积仿射变换图像配准方法存在局限性的缺陷,从而提供一种精确、有效的图像配准方法。
为了实现上述目的,本发明提供了一种面向保积仿射变换的图像配准方法,包括:
步骤1)、读取待配准具有保积仿射几何扭曲的图像对,从所读取的图像对中提取并建立特征匹配对;其中,所述图像对中的参考图像为主图像,待配准图像为辅图像;
步骤2)、基于步骤1)所得到的特征匹配对,利用迭代估计法反演出图像对间的保积仿射扭曲参数;其中,所述保积仿射扭曲参数包括:保积仿射矩阵参数a、b、c、d以及两个图像方向上的偏移量tx和ty
步骤3)、利用步骤2)得到的保积仿射扭曲函数,对辅图像进行插值处理,使其与主图像在几何上实现对准。
上述技术方案中,在步骤1)中,利用ASIFT算子在主图像与辅图像间建立特征匹配对,每一对特征匹配的表达式为其中,
上述技术方案中,所述步骤2)进一步包括:
步骤2-1)、根据步骤1)所得到的特征匹配对计算A参数和B参数,计算公式如下:
其中,N为特征匹配对的数目;
步骤2-2)、根据A参数和B参数,计算C参数和D参数,计算公式如下:
步骤2-3)、根据步骤2-1)和步骤2-2)所得到的A参数、B参数、C参数和D参数,利用迭代估计法反演保积仿射扭曲参数a、b、c、d、tx和ty
上述技术方案中,所述步骤2-3)包括:
采用内循环自动参数更新法计算出內自新最优迭代次数Iterin以及内自新最小保积误差Ein;然后在外循环自动参数更新法中采用内循环自动参数更新法所得到的计算结果,计算出最优迭代次数Iteropt与最优κ参数κopt;最后根据最优迭代次数Iteropt与最优κ参数κopt采用最优自动参数更新法计算出保积仿射参数a、b、c、d、tx和ty;其中,
内循环自动参数更新法输入:內自新最大迭代次数Itermax;参数κ;参数F;参数a、b、c和d;
内循环自动参数更新法输出:內自新最优迭代次数Iterin;内自新最小保积误差Ein
内循环自动参数更新法执行步骤如下:
初始化内自新次数Iter=1;
步骤101:若Iter≤Itermax,更新参数a、b、c和d,利用更新后的参数a、b、c和d计算保积误差E,利用更新后的参数a、b、c和d更新参数F;否则,跳转至步骤103;其中,
更新参数a、b、c和d的公式为:
计算保积误差E的计算公式为:
E=((ad-bc)2-1)2
更新参数F的公式为:
F=2×10κ(ad-bc)((ad-bc)2-1);
步骤102:更新迭代次数Iter=Iter+1,跳转至步骤101;
步骤103:将Itermax次迭代得到的E中最小值作为Ein,其对应的迭代次数作为Iterin
外循环自动参数更新法输入:参数κ最大取值κmax和更新步长κΔ
外循环自动参数更新法输出:最优迭代次数Iteropt;最优κ参数κopt
外循环自动参数更新法执行步骤如下:
初始化內自新最大迭代次数Itermax;初始化参数F=0;初始化参数κ=κmin,κminmax
步骤201:执行內自新,获得內自新最优迭代次数Iterin及最小保积误差Ein
步骤202:更新参数κ:κ=κ+κΔ,利用更新后的参数κ更新参数F,若κ≤κmax,跳转至步骤201;否则,将所有外自新迭代得到的Ein中最小值对应的迭代次数作为最优迭代次数Iteropt,对应的κ参数作为最优κ参数κopt;其中,
更新参数F的公式为:
F=2×10κ(ad-bc)((ad-bc)2-1);
最优自动参数更新法输入:参数κ;参数F;最优自新最大迭代次数Iteropt
最优自动参数更新法输出:保积仿射参数a、b、c、d、tx和ty
最优自动参数更新法执行步骤如下:
初始化参数F=0;初始化最优自新次数Iter=1;设置κ参数为κopt
步骤301:若Iter≤Iteropt,计算参数a、b、c和d,利用更新后的参数a、b、c和d更新参数F;否则,跳转至步骤303;其中,
计算参数a、b、c和d的公式为:
更新参数F的公式为:
F=2×10κ(ad-bc)((ad-bc)2-1);
步骤302:更新迭代次数Iter=Iter+1,跳转至步骤301;
步骤303:计算参数tx和ty;其计算公式为:
tx=A3-A1a-A2b,ty=A4-A1c-A2d。
本发明的优点在于:
本发明的方法能够精确有效地实现对具有保积仿射扭曲图像对的几何配准。
附图说明
图1是本发明的面向保积仿射变换的图像配准方法的流程图;
图2是待配准保积仿射扭曲图像对的示意图;其中左图为主图像,右图为辅图像;
图3是从图2提取的有效特征匹配对的示意图;
图4是本发明方法中所涉及的内循环自动参数更新法的流程图;
图5是本发明方法中所涉及的外循环自动参数更新法的流程图;
图6是本发明方法中所涉及的最优自动参数更新法的流程图;
图7是最终配准结果的示意图;其中左图为原始主图像,右图为对准后的辅图像。
具体实施方式
现结合附图对本发明作进一步的描述。
本发明的面向保积仿射变换的图像配准方法利用拉格朗日乘子法将保积仿射估计的约束优化问题转化为一个迭代优化问题,提出一个全新的面向保积仿射变换的目标函数,推导出严格的参数反演公式,设计出高效的迭代估计方法,从而精确有效地实现了对扭曲图像对的几何配准。
本发明的面向保积仿射变换的图像配准方法在实现几何配准时,需要在待配准的图像对中提取和构建具有一定规模、一定匹配精度、一定几何定位精度和具有一定几何不变性的特征匹配对。一定规模是指提取的特征匹配对数目应不小于待求解模型的自由度。对于保积仿射变换来说,这要求至少提取出五对有效特征匹配,否则较少的观测样本无法支持我们得到唯一解。一定匹配精度是指允许得到的特征匹配对中存在错匹配,但错匹配数目有一定限制。对于常用的稳健LMS和LTS估计,其要求有效匹配数目至少等于错匹配个数,对于RANSAC估计,其要求有效匹配数目最少应与待估模型的自由度相当。本发明不考虑存在错匹配情形,因为只要将提出的参数反演算法嵌入到LMS、LTS或RANSAC等稳健估计中,该问题即可得到有效解决。在常用的稳健特征提取算子中,提取的特征有几何位置和描述符两方面描述信息。几何位置的定位精度直接影响参数估计精度,因为参数估计直接使用匹配对的位置信息。故提取特征的定位精度应至少优于最终图像的配准精度,即要得到亚像素级配准精度,那么特征匹配的几何定位也需优于亚像素。描述符通常是一串具有特定几何不变性的矢量,其记录了特征周围的纹理信息,可用于特征匹配的构建。描述符的几何不变性要不低于待估模型,这才能保证得到的特征匹配能与待估模型相吻合。在本发明中,描述符几何不变性要不低于保积仿射变换。
基于对特征匹配对的上述要求,在本申请中采用ASIFT算子在待配准的两幅图像之间建立特征匹配对,该ASIFT算子的定位精度为亚像素级,对一般仿射变换具有几何不变性。
在成功构建好特征匹配点对后,即可开启参数估计流程。假设为任意一对待配准保积仿射扭曲图像,其中I为主图像,I'为辅图像,若为建立的N组特征匹配之一,保积仿射变换可写为:
其中,A为2×2保积仿射矩阵,其由参数a、b、c和d构成,tx和ty为两个图像方向上的偏移量。矩阵A满足约束:
|det(A)|=|ad-bc|=1 (1-2)
图像配准的目的是基于构建的特征匹配对反演保积仿射矩阵参数a、b、c、d以及两个图像方向上的偏移量tx和ty。由上式可看到,此时面临的是一个约束优化问题。利用拉格朗日乘子法,上述问题可转化为对下述优化问题的求解:
式中,λ为拉格朗日乘因子。为了便于计算,Flusser和Zitova建议将上述问题进一步放松为:
相比于式(2),式(3)明显忽视了det A<0的情况,这限制该估计的适用范围,即使如此,Flusser和Zitova也没有给出确切的求解式(3)的方法,因此尚缺乏一种全面有效的面向保积仿射变换的参数估计方法。本发明中,申请人提出了一个新的优化目标问题:
式(4)与式(2)完全等价,解决了式(3)的不足。进一步带入参数a、b、c和d有:
展开、整理并化简,有如下表达式:
其中:
式(6)两边分别对参数a、b、c、d、tx和ty取偏导,并令其为0,有:
其中:
F=2λ(ad-bc)((ad-bc)2-1),λ≥0 (9)
进一步令:
λ=10κ (10)
则式(9)可进一步写为:
F=2×10κ(ad-bc)((ad-bc)2-1) (11)
求解式(8)中最后二式,有:
tx=A3-A1a-A2b,ty=A4-A1c-A2d (12)
将式(12)带入式(8)中前四式,进一步化简,有:
进一步令:
则式(13)可进一步写为:
求解式(15)有如下公式:
式(11)、(12)和(16)构成了为优化求解算法的迭代基础。利用这些公式,在本申请中可精确估计保积仿射参数a、b、c、d、tx和ty,利用这些参数对辅图像进行插值处理,可将辅图像与主图像在几何上实现精确对准。
以上是对本发明的面向保积仿射变换的图像配准方法中如何选取特征匹配对、如何估计保积仿射参数的背景说明,下面结合实例对本发明方法的具体实现步骤做进一步的说明。
参考图1,本发明的面向保积仿射变换的图像配准方法包括以下步骤:
步骤1)、读取待配准具有保积仿射几何扭曲的图像对,提取并建立有效特征匹配对;
步骤2)、基于得到的特征匹配对,利用设计的迭代估计算法精确反演出图像对间的保积仿射扭曲参数;
步骤3)、利用得到的保积仿射扭曲函数,对辅图像进行插值处理,使其与主图像在几何上实现对准。
在步骤1)中,首先读入两幅待配准保积仿射扭曲图像。在一个实施例中,所读入的两幅待配准保积仿射扭曲图像如图2所示,其中左图为主图像I(768×770);右图为辅图像I'(1055×1124)。I'是将I按照表1实际值所示的保积仿射扭曲参数变换而成,如果为一对特征匹配,那么:
利用ASIFT算子在两幅图像间建立特征匹配共得到了715组有效匹配(即N=715),如图3所示。
在步骤2)中,由步骤1)所得到的有效特征匹配对,利用迭代估计方法精确反演图像间的保积仿射扭曲参数。该步骤进一步包括:
步骤2-1)、首先按照公式(7)计算A参数和B参数;
步骤2-2)、根据A参数和B参数,参照公式(14)计算C参数和D参数;
步骤2-3)、根据步骤2-1)和步骤2-2)所得到的A参数、B参数、C参数和D参数,利用迭代方法反演保积仿射扭曲参数a、b、c、d、tx和ty
反演保积仿射扭曲参数a、b、c、d、tx和ty的迭代过程由内循环自动参数更新法(简称內自新)、外循环自动参数更新法(简称外自新)和最优自动参数更新法(简称最优自新)三部分组成,其实现流程分别如图4、图5和图6所示。
內自新输入:內自新最大迭代次数Itermax;参数κ;参数F;参数a、b、c和d;
內自新输出:內自新最优迭代次数Iterin;内自新最小保积误差Ein
內自新执行步骤如下:
初始化内自新次数Iter=1;
步骤101:若Iter≤Itermax,利用式(16)更新参数a、b、c和d,基于式(18)计算保积误差E,利用式(11)更新参数F;否则,跳转至步骤103;
E=((ad-bc)2-1)2 (18)
步骤102:更新迭代次数Iter=Iter+1,跳转至步骤101;
步骤103:将Itermax次迭代得到的E中最小值作为Ein,其对应的迭代次数作为Iterin
外自新输入:参数κ最大取值κmax和更新步长κΔ
外自新输出:最优迭代次数Iteropt;最优κ参数κopt
外自新执行步骤如下:
初始化內自新最大迭代次数Itermax;初始化参数F=0;初始化参数κ=κminminmax);
步骤201:执行內自新,获得內自新最优迭代次数Iterin及最小保积误差Ein
步骤202:更新参数κ:κ=κ+κΔ,利用式(11)更新参数F,若κ≤κmax,跳转至步骤201;否则,将所有外自新迭代得到的Ein中最小值对应的迭代次数作为最优迭代次数Iteropt,对应的κ参数作为最优κ参数κopt
最优自新输入:参数κ;参数F;最优自新最大迭代次数Iteropt
最优自新输出:保积仿射参数a、b、c、d、tx和ty
最优自新执行步骤如下:
初始化参数F=0;初始化最优自新次数Iter=1;设置κ参数为κopt
步骤301:若Iter≤Iteropt,利用式(16)计算参数a、b、c和d,利用式(11)更新参数F;否则,跳转至步骤303;
步骤302:更新迭代次数Iter=Iter+1,跳转至步骤301;
步骤303:利用式(12)计算参数tx和ty
由上述迭代过程最终得到的保积仿射参数如表1中估计值所示。通过与这些参数的实际值相比较可看到,本发明可高精度反演出两幅图像间的保积仿射变换参数,实际值和估计值间只存在细微的差异,这验证了设计方案的有效性。
在步骤3)中,利用反演出的参数对辅图像进行插值处理,本申请中采用一般的双线性插值。图7左图所示为原始主图像,右图所示为变换后的辅图像,可看到,两者在几何上完美地实现了对准,这进一步说明了该方法的有效性。提出的方案可简单嵌入到现有的稳健估计算法例如LMS、LTS和RANSAC中,使其可有效用于存在大量错匹配的图像配准情形。
表1
最后所应说明的是,以上实施例仅用以说明本发明的技术方案而非限制。尽管参照实施例对本发明进行了详细说明,本领域的普通技术人员应当理解,对本发明的技术方案进行修改或者等同替换,都不脱离本发明技术方案的精神和范围,其均应涵盖在本发明的权利要求范围当中。

Claims (3)

1.一种面向保积仿射变换的图像配准方法,包括:
步骤1)、读取待配准具有保积仿射几何扭曲的图像对,从所读取的图像对中提取并建立特征匹配对;其中,所述图像对中的参考图像为主图像,待配准图像为辅图像;
步骤2)、基于步骤1)所得到的特征匹配对,利用迭代估计法反演出图像对间的保积仿射扭曲参数;其中,所述保积仿射扭曲参数包括:保积仿射矩阵参数a、b、c、d以及两个图像方向上的偏移量tx和ty;其中,所述步骤2)进一步包括:
步骤2-1)、根据步骤1)所得到的特征匹配对计算A参数和B参数,计算公式如下:
A 1 = 1 N &Sigma; i = 1 N x , A 2 = 1 N &Sigma; i = 1 N y , A 3 = 1 N &Sigma; i = 1 N x &prime; , A 4 = 1 N &Sigma; i = 1 N y &prime; B 1 = 1 N &Sigma; i = 1 N x 2 , B 2 = 1 N &Sigma; i = 1 N y 2 , B 3 = 1 N &Sigma; i = 1 N x y , B 4 = 1 N &Sigma; i = 1 N xx &prime; B 5 = 1 N &Sigma; i = 1 N yx &prime; , B 6 = 1 N &Sigma; i = 1 N xy &prime; , B 7 = 1 N &Sigma; i = 1 N yy &prime; , B 8 = 1 N &Sigma; i = 1 N x &prime; 2 , B 9 = 1 N &Sigma; i = 1 N y &prime; 2 ;
其中,N为特征匹配对的数目;
步骤2-2)、根据A参数和B参数,计算C参数和D参数,计算公式如下:
C 1 = B 1 - A 1 2 , C 2 = B 2 - A 2 2 , C 3 = B 3 - A 1 A 2 D 1 = A 1 A 3 - B 4 , D 2 = A 2 A 3 - B 5 , D 3 = A 1 A 4 - B 6 , D 4 = A 2 A 4 - B 7 ;
步骤2-3)、根据步骤2-1)和步骤2-2)所得到的A参数、B参数、C参数和D参数,利用迭代估计法反演保积仿射扭曲参数a、b、c、d、tx和ty
步骤3)、利用步骤2)得到的保积仿射扭曲函数,对辅图像进行插值处理,使其与主图像在几何上实现对准。
2.根据权利要求1所述的面向保积仿射变换的图像配准方法,其特征在于,在步骤1)中,利用ASIFT算子在主图像与辅图像间建立特征匹配对,每一对特征匹配的表达式为其中,
s.t.|ad-bc|=1。
3.根据权利要求1所述的面向保积仿射变换的图像配准方法,其特征在于,所述步骤2-3)包括:
采用内循环自动参数更新法计算出內自新最优迭代次数Iterin以及内自新最小保积误差Ein;然后在外循环自动参数更新法中采用内循环自动参数更新法所得到的计算结果,计算出最优迭代次数Iteropt与最优κ参数κopt;最后根据最优迭代次数Iteropt与最优κ参数κopt采用最优自动参数更新法计算出保积仿射参数a、b、c、d、tx和ty;其中,
内循环自动参数更新法输入:內自新最大迭代次数Itermax;参数κ;参数F;参数a、b、c和d;
内循环自动参数更新法输出:內自新最优迭代次数Iterin;内自新最小保积误差Ein
内循环自动参数更新法执行步骤如下:
初始化内自新次数Iter=1;
步骤101:若Iter≤Itermax,更新参数a、b、c和d,利用更新后的参数a、b、c和d计算保积误差E,利用更新后的参数a、b、c和d更新参数F;否则,跳转至步骤103;其中,
更新参数a、b、c和d的公式为:
a = - C 2 D 1 + C 3 D 2 + D 4 F C 1 C 2 - C 3 2 - F 2 , b = - C 1 D 2 + C 3 D 1 - D 3 F C 1 C 2 - C 3 2 - F 2 c = - C 2 D 3 + C 3 D 4 - D 2 F C 1 C 2 - C 3 2 - F 2 , d = - C 1 D 4 + C 3 D 3 + D 1 F C 1 C 2 - C 3 2 - F 2 ;
计算保积误差E的计算公式为:
E=((ad-bc)2-1)2
更新参数F的公式为:
F=2×10κ(ad-bc)((ad-bc)2-1);
步骤102:更新迭代次数Iter=Iter+1,跳转至步骤101;
步骤103:将Itermax次迭代得到的E中最小值作为Ein,其对应的迭代次数作为Iterin
外循环自动参数更新法输入:参数κ最大取值κmax和更新步长κΔ
外循环自动参数更新法输出:最优迭代次数Iteropt;最优κ参数κopt
外循环自动参数更新法执行步骤如下:
初始化內自新最大迭代次数Itermax;初始化参数F=0;初始化参数κ=κmin,κminmax
步骤201:执行內自新,获得內自新最优迭代次数Iterin及最小保积误差Ein
步骤202:更新参数κ:κ=κ+κΔ,利用更新后的参数κ更新参数F,若κ≤κmax,跳转至步骤201;否则,将所有外自新迭代得到的Ein中最小值对应的迭代次数作为最优迭代次数Iteropt,对应的κ参数作为最优κ参数κopt;其中,
更新参数F的公式为:
F=2×10κ(ad-bc)((ad-bc)2-1);
最优自动参数更新法输入:参数κ;参数F;最优自新最大迭代次数Iteropt
最优自动参数更新法输出:保积仿射参数a、b、c、d、tx和ty
最优自动参数更新法执行步骤如下:
初始化参数F=0;初始化最优自新次数Iter=1;设置κ参数为κopt
步骤301:若Iter≤Iteropt,计算参数a、b、c和d,利用更新后的参数a、b、c和d更新参数F;否则,跳转至步骤303;其中,
计算参数a、b、c和d的公式为:
a = - C 2 D 1 + C 3 D 2 + D 4 F C 1 C 2 - C 3 2 - F 2 , b = - C 1 D 2 + C 3 D 1 - D 3 F C 1 C 2 - C 3 2 - F 2 c = - C 2 D 3 + C 3 D 4 - D 2 F C 1 C 2 - C 3 2 - F 2 , d = - C 1 D 4 + C 3 D 3 + D 1 F C 1 C 2 - C 3 2 - F 2 ;
更新参数F的公式为:
F=2×10κ(ad-bc)((ad-bc)2-1);
步骤302:更新迭代次数Iter=Iter+1,跳转至步骤301;
步骤303:计算参数tx和ty;其计算公式为:
tx=A3-A1a-A2b,ty=A4-A1c-A2d。
CN201510040855.1A 2015-01-27 2015-01-27 一种面向保积仿射变换的图像配准方法 Expired - Fee Related CN104599277B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510040855.1A CN104599277B (zh) 2015-01-27 2015-01-27 一种面向保积仿射变换的图像配准方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510040855.1A CN104599277B (zh) 2015-01-27 2015-01-27 一种面向保积仿射变换的图像配准方法

Publications (2)

Publication Number Publication Date
CN104599277A CN104599277A (zh) 2015-05-06
CN104599277B true CN104599277B (zh) 2017-07-14

Family

ID=53125027

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510040855.1A Expired - Fee Related CN104599277B (zh) 2015-01-27 2015-01-27 一种面向保积仿射变换的图像配准方法

Country Status (1)

Country Link
CN (1) CN104599277B (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105184738A (zh) * 2015-09-08 2015-12-23 郑州普天信息技术有限公司 一种三维虚拟展示装置与方法
CN105469110B (zh) * 2015-11-19 2018-12-14 武汉大学 基于局部线性迁移的非刚性变换图像特征匹配方法及系统
CN105469112B (zh) * 2015-11-19 2018-12-14 武汉大学 基于局部线性迁移和刚性模型的图像特征匹配方法及系统
CN106780574B (zh) * 2016-11-18 2019-06-25 辽宁工程技术大学 一种图像的无纹理区域匹配方法
CN106990412B (zh) * 2017-05-11 2019-06-11 哈尔滨工业大学 一种干涉合成孔径激光雷达系统的图像配准方法
CN114693725A (zh) * 2020-12-15 2022-07-01 武汉市探测者科技有限公司 一种基于图像处理技术的2.5维地图自动配准方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4655242B2 (ja) * 2008-09-30 2011-03-23 マツダ株式会社 車両用画像処理装置

Also Published As

Publication number Publication date
CN104599277A (zh) 2015-05-06

Similar Documents

Publication Publication Date Title
CN104599277B (zh) 一种面向保积仿射变换的图像配准方法
US20200380294A1 (en) Method and apparatus for sar image recognition based on multi-scale features and broad learning
Bentolila et al. Conic epipolar constraints from affine correspondences
Bai et al. Surf feature extraction in encrypted domain
CN101650828B (zh) 摄像机标定中减少圆形目标定位随机误差的方法
CN104091339B (zh) 一种图像快速立体匹配方法及装置
CN103247029B (zh) 一种用于拼接式探测器生成的高光谱图像几何配准方法
CN103258328A (zh) 一种宽视场镜头的畸变中心定位方法
Gao et al. Computing a complete camera lens distortion model by planar homography
Zheng et al. Minimal solvers for 3d geometry from satellite imagery
Qiao et al. Improved Harris sub-pixel corner detection algorithm for chessboard image
CN110544202A (zh) 一种基于模板匹配与特征聚类的视差图像拼接方法及系统
CN104732546A (zh) 区域相似性和局部空间约束的非刚性sar图像配准方法
US20190332890A1 (en) Techniques for example-based affine registration
CN102750691A (zh) 基于角点对cs距离匹配的图像配准方法
Jiang et al. Self-calibration of Varying Internal Camera Parameters Algorithm Based on Quasi-affine Reconstruction.
Liu et al. Phase correlation pixel‐to‐pixel image co‐registration based on optical flow and median shift propagation
Poling et al. Better feature tracking through subspace constraints
CN107103618B (zh) 基于回归预测的肺4d-ct多相位图像配准方法
CN108335328B (zh) 摄像机姿态估计方法和摄像机姿态估计装置
CN105488754A (zh) 基于局部线性迁移和仿射变换的图像特征匹配方法及系统
CN104200460A (zh) 基于图像特征和互信息的图像配准方法
CN105184736A (zh) 一种窄重叠双视场高光谱成像仪的图像配准的方法
Migita et al. One-dimensional search for reliable epipole estimation
CN114897990A (zh) 一种基于神经网络的相机畸变标定方法、系统和存储介质

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CP01 Change in the name or title of a patent holder

Address after: 100190 No. two south of Zhongguancun, Haidian District, Beijing 1

Patentee after: NATIONAL SPACE SCIENCE CENTER, CAS

Address before: 100190 No. two south of Zhongguancun, Haidian District, Beijing 1

Patentee before: NATIONAL SPACE SCIENCE CENTER, CHINESE ACADEMY OF SCIENCES

CP01 Change in the name or title of a patent holder
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20170714

Termination date: 20220127

CF01 Termination of patent right due to non-payment of annual fee