CN104596685A - 一种基于mems工艺的微型封装f-p压力传感器及成型方法 - Google Patents
一种基于mems工艺的微型封装f-p压力传感器及成型方法 Download PDFInfo
- Publication number
- CN104596685A CN104596685A CN201410728291.6A CN201410728291A CN104596685A CN 104596685 A CN104596685 A CN 104596685A CN 201410728291 A CN201410728291 A CN 201410728291A CN 104596685 A CN104596685 A CN 104596685A
- Authority
- CN
- China
- Prior art keywords
- silicon
- film
- glass sheet
- optical fiber
- reflecting film
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 44
- 230000008569 process Effects 0.000 title claims abstract description 12
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims abstract description 110
- 229910052710 silicon Inorganic materials 0.000 claims abstract description 102
- 239000010703 silicon Substances 0.000 claims abstract description 102
- 239000011521 glass Substances 0.000 claims abstract description 67
- 239000013307 optical fiber Substances 0.000 claims abstract description 56
- 238000005516 engineering process Methods 0.000 claims abstract description 28
- 238000007254 oxidation reaction Methods 0.000 claims abstract description 4
- 239000004606 Fillers/Extenders Substances 0.000 claims description 35
- 239000002131 composite material Substances 0.000 claims description 17
- 229910004298 SiO 2 Inorganic materials 0.000 claims description 15
- 238000002161 passivation Methods 0.000 claims description 15
- 230000008021 deposition Effects 0.000 claims description 12
- 230000003287 optical effect Effects 0.000 claims description 12
- 238000001259 photo etching Methods 0.000 claims description 11
- 238000012545 processing Methods 0.000 claims description 9
- 238000005530 etching Methods 0.000 claims description 8
- 239000000463 material Substances 0.000 claims description 7
- 230000009467 reduction Effects 0.000 claims description 7
- 239000011248 coating agent Substances 0.000 claims description 6
- 238000000576 coating method Methods 0.000 claims description 6
- 229920002120 photoresistant polymer Polymers 0.000 claims description 6
- 229910000679 solder Inorganic materials 0.000 claims description 6
- 229910010413 TiO 2 Inorganic materials 0.000 claims description 5
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 claims description 5
- 239000010931 gold Substances 0.000 claims description 5
- 229910052737 gold Inorganic materials 0.000 claims description 5
- 238000005498 polishing Methods 0.000 claims description 4
- 230000015572 biosynthetic process Effects 0.000 claims description 3
- 239000000470 constituent Substances 0.000 claims description 3
- 238000001312 dry etching Methods 0.000 claims description 3
- 239000005304 optical glass Substances 0.000 claims description 3
- 230000003647 oxidation Effects 0.000 claims description 3
- 238000001039 wet etching Methods 0.000 claims description 3
- 230000016507 interphase Effects 0.000 claims description 2
- 238000001556 precipitation Methods 0.000 claims description 2
- 238000002360 preparation method Methods 0.000 claims 3
- 239000000126 substance Substances 0.000 claims 1
- 238000005259 measurement Methods 0.000 abstract description 12
- 238000004519 manufacturing process Methods 0.000 abstract description 3
- 238000003466 welding Methods 0.000 abstract description 2
- 230000004907 flux Effects 0.000 abstract 1
- 238000005459 micromachining Methods 0.000 abstract 1
- 239000010408 film Substances 0.000 description 102
- 238000001514 detection method Methods 0.000 description 10
- 239000000835 fiber Substances 0.000 description 8
- 238000001228 spectrum Methods 0.000 description 7
- 230000035945 sensitivity Effects 0.000 description 5
- 230000008859 change Effects 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 230000007797 corrosion Effects 0.000 description 3
- 238000005260 corrosion Methods 0.000 description 3
- 238000011161 development Methods 0.000 description 3
- 230000005611 electricity Effects 0.000 description 3
- 239000012528 membrane Substances 0.000 description 3
- 238000002310 reflectometry Methods 0.000 description 3
- 239000004065 semiconductor Substances 0.000 description 3
- 230000008901 benefit Effects 0.000 description 2
- 230000001427 coherent effect Effects 0.000 description 2
- 230000008878 coupling Effects 0.000 description 2
- 238000010168 coupling process Methods 0.000 description 2
- 238000005859 coupling reaction Methods 0.000 description 2
- 229910021421 monocrystalline silicon Inorganic materials 0.000 description 2
- 239000002210 silicon-based material Substances 0.000 description 2
- 239000004411 aluminium Substances 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 238000009530 blood pressure measurement Methods 0.000 description 1
- 239000003990 capacitor Substances 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 230000005662 electromechanics Effects 0.000 description 1
- 238000005538 encapsulation Methods 0.000 description 1
- 230000005713 exacerbation Effects 0.000 description 1
- 239000002360 explosive Substances 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 238000005272 metallurgy Methods 0.000 description 1
- 238000003032 molecular docking Methods 0.000 description 1
- 230000006855 networking Effects 0.000 description 1
- 238000004806 packaging method and process Methods 0.000 description 1
- 230000003071 parasitic effect Effects 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- 230000003746 surface roughness Effects 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 230000002463 transducing effect Effects 0.000 description 1
Landscapes
- Measuring Fluid Pressure (AREA)
Abstract
本发明公开了一种基于MEMS工艺的微型封装F-P压力传感器及成型方法,属于高精度光纤传感测量领域。所述F-P压力传感器主要包括F-P压力敏感MEMS芯片和准直扩束光纤;其中,F-P压力敏感MEMS芯片由SOI硅片、玻璃片和双抛硅片组成;SOI硅片包括顶层硅、中间氧化层和底层硅;SOI硅片通过硅-玻璃阳极键合固定在玻璃片上;玻璃片通过硅-玻璃阳极键合固定在双抛硅片上;准直扩束光纤通过焊料固定在双抛硅片的通孔中;所述F-P压力敏感MEMS芯片基于MEMS微加工技术制备,通过与准直扩束光纤对准封装后构成光纤F-P压力传感器,可以实现器件的微型化、批量化制作;所述传感器兼具高灵敏度、高测量精度、过量程能力优异、机械可靠性高和动态测量响应特性好。
Description
技术领域
本发明涉及一种基于MEMS工艺的微型封装F-P压力传感器及成型方法,属于高精度光纤传感测量领域。
背景技术
压力传感器是工业实践、仪器仪表控制中最为常用的一种传感器。传统的压力传感器主要是以弹性元件的形变指示压力的机械结构型的器件,这种器件体积大、质量重,不能提供电学输出。随着半导体技术的发展,半导体压力传感器也应运而生,特别是随着MEMS技术的发展,半导体传感器向着微型化、低功耗发展。
采用电信号检测的MEMS压力传感器主要有压阻式和电容式两种,压阻式压力传感器是指利用单晶硅材料的压阻效应和集成电路技术制成的传感器,单晶硅材料在受到力的作用后,电阻率发生变化,通过测量电路就可得到正比于力变化的电信号输出。电容式压力传感器是一种利用电容敏感元件将被测压力转换成与之成一定关系的电量输出的压力传感器。它一般采用圆形金属薄膜或镀金属薄膜作为电容器的一个电极,当薄膜感受压力而变形时,薄膜与固定电极之间形成的电容量发生变化,通过测量电路即可输出与电压成一定关系的电信号。由于压阻式和电容式的检测精度受热机械噪声和寄生阻容参量的影响很难进一步地提高,因此,为了能够提高压力传感器的检测精度,需要最大限度的降低敏感薄膜的厚度,增加了MEMS压力传感器的制作难度,降低了机械可靠性和批量成品率。
目前,基于F-P干涉原理的压力传感器主要是全光纤式结构,将两光纤的端面进行抛磨,其中一光纤端面制作微槽,然后两光纤熔融对接在一起,以形成F-P腔。现有的这种全光纤式的F-P压力传感器存在诸多缺陷,比如对连接的光纤进行端面抛磨,抛磨质量较差,微槽的制作比较困难,从而使得F-P腔的两个端面粗糙度较差,而且端面沉积高反膜比较困难;两光纤进行熔接,F-P腔两个端面的平行度较差,从而使得现有的F-P压力传感器制作困难,检测信号的信噪比较差,检测灵敏度较低等。
发明内容
有鉴于此,本发明的目的之一在于提供一种基于MEMS工艺的微型封装F-P压力传感器,所述光纤F-P压力传感器兼具高灵敏度、高测量精度、过量程能力优异、机械可靠性高和动态测量响应能力高;目的之二在于提供一种基于MEMS工艺的微型封装F-P压力传感器的成型方法所述压力传感器的器件采用MEMS工艺制作,可以实现器件的微型化、批量化制作。
本发明的目的由以下技术方案实现:
一种基于MEMS工艺的微型封装F-P压力传感器,所述F-P压力传感器主要包括F-P压力敏感MEMS芯片和准直扩束光纤;
其中,F-P压力敏感MEMS芯片由SOI硅片、玻璃片和双抛硅片组成;
其中,底层硅的外表面依次沉积有增透膜Ⅰ和钝化层;由SOI硅片顶层硅的表面沿SOI硅片厚度方向加工深度至底层硅的环形凹槽后形成圆柱形凸台,即形成“膜-岛”结构,所述环形凹槽部分为“膜”,圆柱形凸台部分为“岛”;所述圆柱形凸台的表面与底层硅和中间氧化层的分界面处于同一平面,且圆柱形凸台(“岛”)的表面沉积有高反膜Ⅰ;
所述玻璃片上表面沉积有高反膜Ⅱ,下表面沉积有增透膜Ⅱ;
所述双抛硅片的轴向设置有圆孔,所述圆孔直径大于准直扩束光纤的外径;
所述准直扩束光纤的上端设置有自聚焦透镜或等效光学元件,并在上端面沉积有增透膜;所述准直扩束光纤的出射平行光束直径大于光纤纤芯直径。
整体连接关系:
SOI硅片通过硅-玻璃阳极键合固定在玻璃片上,键合面为SOI硅片中顶层硅的下表面与玻璃片的上表面;玻璃片通过硅-玻璃阳极键合固定在双抛硅片上,键合面为玻璃片的下表面与双抛硅片的上表面;准直扩束光纤通过焊料固定在双抛硅片的通孔中;所述高反膜Ⅰ、高反膜Ⅱ的高反膜之间的形成的区域构成F-P光学干涉腔;准直扩束光纤的光学轴与F-P光学干涉腔同轴;所述高反膜Ⅰ、高反膜Ⅱ、增透膜Ⅰ和增透膜Ⅱ的中心点位于圆柱形凸台的轴线上;且高反膜Ⅰ、高反膜Ⅱ、增透膜Ⅰ和增透膜Ⅱ的面积均大于准直扩束光纤的出射光束面积并小于等于圆柱形凸台的面积。
所述增透膜构成材料均优选SiO2/Ta2O5复合介质膜、SiO2/TiO2复合介质膜和SiO2/Si3N4复合介质膜中的一种;
所述高反膜优选SiO2/Ta2O5复合介质膜、SiO2/TiO2复合介质膜和SiO2/Si3N4复合介质膜中的一种;
其中,底层硅上的高反膜还可采用金属薄膜材料;所述金属优选金或铝;当底层硅上的高反膜采用金属薄膜材料时,底层硅的上表面可以不沉积增透膜。
工作原理:
光纤F-P压力传感器利用法布里-珀罗(Fabry-Perot,简称F-P)干涉原理:当相干光束沿准直扩束光纤入射到F-P压力敏感MEMS芯片时,在SOI硅片“岛”上表面的高反膜与玻璃片上表面的高反膜之间多次反射构成多光束干涉,并沿原路返回到准直扩束光纤。沿原路返回到准直扩束光纤的干涉输出信号与SOI硅片“岛”上表面的高反膜与玻璃片上表面的高反膜之间的微腔的长度相关。在外部压力的作用下,SOI硅片“岛”上表面的高反膜与玻璃片上表面的高反膜之间的微腔的长度发生改变,使得返回到准直扩束光纤的干涉输出信号的波长或相位相应改变,由此可以实现对外部压力的精确测量。
一种基于MEMS工艺的微型封装F-P压力传感器的成型方法,所述方法的具体步骤如下:
(1)在SOI硅片的顶层硅上进行光刻处理后利用Deep RIE工艺刻蚀,在顶层硅的轴向形成圆孔;刻蚀深度为顶层硅的厚度;
(2)利用湿法腐蚀或干法刻蚀将SOI硅片上暴露出的中间氧化层去除,在中间氧化层的轴向形成圆孔;
(3)在底层硅的内表面上沉积高反膜(反射率高于95%);对所述高反膜进行图形化处理;
(4)在通过步骤(3)处理后的底层硅内表面进行光刻,随后以光刻胶作为掩膜,利用Deep RIE工艺刻蚀,在底层硅内表面形成环形凹槽,在环形凹槽的中心形成圆形凸起;其中,刻蚀深度为2~100μm;
(5)在玻璃片的上表面沉积高反膜(反射率95~96%);对所述高反膜进行图形化处理;
(6)将步骤(1)~(4)处理后的SOI硅片与步骤(5)处理后的玻璃片进 行硅-玻璃阳极键合,键合面为SOI硅片中顶层硅的下表面与玻璃片的上表面;随后对底层硅的上表面进行减薄处理;
(7)在键合后玻璃片的下表面沉积增透膜,并对所述增透膜进行图形化处理;
(8)在氧化后的双抛硅片的上表面进行光刻,腐蚀掉光刻图形中的氧化层;随后以氧化层和光刻胶作为掩膜,采用Deep RIE工艺进行刻蚀,在双抛硅片上的轴向形成圆孔;所述圆孔直径大于准直扩束光纤和玻璃片下表面的增透膜的直径;
(9)将步骤(8)处理后的双抛硅片与玻璃片进行硅-玻璃阳极键合,键合面为玻璃片的下表面与双抛硅片的上表面;随后,依次在底层硅的外表面沉积增透膜和钝化层,并对增透膜和钝化层进行图形化处理,得到F-P压力敏感MEMS芯片;
(10)将准直扩束光纤通过焊料固定在F-P压力敏感MEMS芯片上双抛硅片的圆孔中,得到本发明所述压力传感器。
其中,所述图形化处理优选采用光刻后再腐蚀高反膜工艺或Lift-off工艺;
步骤(6)所述减薄处理优选采用KOH溶液腐蚀或化学机械抛光(CMP)工艺;
有益效果
(1)本发明所述微型封装F-P压力传感器将高灵敏度光纤F-P传感信号检测技术与MEMS微细加工技术相结合,利用F-P干涉原理实现对MEMS工艺制作的硅压力敏感膜位移变化的高分辨率检测,使得硅压力敏感膜不需要设计得非常薄,从而兼顾MEMS压力传感器的测量精度、过量程能力、机械可靠性和动态测量响应能力。
(2)本发明所述微型封装F-P压力传感器中F-P压力敏感MEMS芯片的SOI硅片可以有效地解决了现有F-P压力传感器两端面平行度较差、F-P腔长不能精确控制等问题,从而实现高精度、高分辨率的F-P压力传感器的批量一致化制作;其中,SOI硅片的底层硅设置为“膜-岛”结构,“岛”部分的厚度大于 “膜“厚度,使得F-P压力传感器芯片在压力作用下光束照射区仍能保持非常低的翘曲,避免了现有F-P压力传感器在压力作用下由于F-P腔两端面平行度降低导致干涉光谱劣化使检测精度和分辨率降低的问题。
(3)本发明所述微型封装F-P压力传感器中的SOI硅片的底层硅上的高反膜可采用金属薄膜材料,当底层硅上的高反膜采用金属薄膜材料时,底层硅的上表面可以不沉积增透膜,解决了现有F-P压力传感器F-P腔两个表面均沉积介质高反膜导致的硅压力敏感膜上形成干扰F-P信号的问题,提高了检测精度和分辨率。
(4)本发明所述方法基于MEMS微加工技术制备F-P压力敏感MEMS芯片,其F-P光学干涉腔的其中一个反射面为SOI硅片的原始抛光表面沉积高反膜后构成,另外一个反射面为玻璃片的原始抛光表面沉积高反膜后构成,都非常光洁和平整,通过硅-玻璃阳极键合固定后可以获得很高的F-P光学干涉腔干涉精细度,其精细度因子也即自由谱宽FSR与信号谱3dB带宽FWHM之比不小于20,可采用波长信号解调方式进行压力信号检测,提高压力分辨率和测量精度,解决了F-P光学干涉腔采用强度调制解调方法和相位调制解调方法所存在的灵敏度低、受光源功率波动和光纤弯折影响等问题。
(5)本发明所述F-P压力传感器中采用SOI硅片的底层硅制作“膜-岛”结构作为压力敏感变形元件,可以利用底层硅的优异材料特性获得良好的压力线性度和重复性;此外,对“膜-岛”结构上的高反膜、增透膜和钝化层均进行了图形化处理,只在“膜-岛”结构的低应力变形区-“岛”的两侧沉积高反膜、增透膜和钝化层,而在“膜-岛”结构的主要应力变形区-“膜”的两侧没有沉积高反膜、增透膜和钝化层,保证“膜-岛”结构中“膜”始终保留原始的底层硅表面,从而确保F-P压力传感器具有良好的线性度、重复性和极低的热漂移系数。
(6)本发明所述F-P压力传感器中的压力敏感F-P光学干涉腔通过硅-玻璃阳极键合形成,可以通过在硅-玻璃阳极键合过程中抽真空而实现绝对压力测量,可测量的最小绝对压力小于1KPa。而且由于F-P光学干涉腔由硅-玻璃阳极键合形成,所以可以保持长期的高真空稳定度。
(7)本发明所述基于MEMS微加工技术制备的F-P压力敏感MEMS芯片自带轴向圆孔,用于粘接或焊接固定准直扩束光纤后构成光纤F-P压力传感器, 实现了光纤F-P压力传感器的微型化、无金属封装,不但减小了光纤F-P压力传感器的体积、重量和封装应力,而且还减小了光纤F-P压力传感器的热漂移误差并消除雷达信号反射,对于航空应用尤其具有技术优势。
(8)本发明所述微型封装F-P压力传感器通过采用准直扩束光纤,将光斑平行扩束到直径50μm以上进行光路耦合,可减小因光束发散、角度偏差而造成的信号严重恶化,从而降低耦合封装的难度。
(9)本发明所述方法可实现光纤F-P压力传感器的批量化制造,光纤F-P压力传感器的初始腔长、压力测量灵敏度、量程等关键参数的批量一致性很容易保证,可广泛用于飞机、火箭、导弹等飞行器大气数据测量,机电设备油气压力测量,油罐自动化液位测量,以及其他工业领域的高精度压力和液位测量。
(10)相比于传统的压力传感器,本发明所述微型封装F-P压力传感器精度高、批量一致性好、抗电磁干扰,电绝缘,耐腐蚀,本质安全。这使它在各种大型机电、石油化工、冶金、高压、强电磁干扰、强腐蚀、易燃易爆环境中能方便而有效地传感。而其无源无电、零点稳定、可长寿命工作的突出特点,使其在油罐自动化液位测量领域,也具有广泛的应用前景。此外,光纤不仅是敏感元件,而且是一种优良的低损耗传输线,因此几乎不必考虑测量仪和被测物体的相对位置,特别适合于电学方式等传感器不太适用的场合。可以与光纤遥测技术相配合实现远距离测量与控制。
(11)本发明所述微型封装F-P压力传感器直接由F-P压力敏感MEMS芯片与准直扩束光纤一体化封装,具有良好的抗冲击过载能力和极高的可靠性,后续免维护,可长期精确测量。在安装操作不便、维护困难的应用场合更具显著优势。
附图说明
图1为本发明所述微型封装F-P压力传感器的结构示意图;
图2为F-P压力敏感MEMS芯片的结构示意图;
图3为本发明所述微型封装F-P压力传感器的俯视图;
图4a~4m为本发明所述微型封装F-P压力传感器的工艺流程图;
图5为本发明所述微型封装F-P压力传感器的高精细度光学干涉谱;
图6为现有F-P压力传感器的低精细度典型光学干涉谱;
图7为本发明所述微型封装F-P压力传感器的波长-压力实测特性;
图8为本发明所述微型封装F-P压力传感器的波分复用+时分复用组网图。
其中,1-F-P压力敏感MEMS芯片,2-准直扩束光纤,3-玻璃片,4-双抛硅片,5-顶层硅,6-中间氧化层,7-底层硅,8-增透膜,9-高反膜,10-钝化层;
具体实施方式
下面结合附图和具体实施例来详述本发明,但不限于此。
实施例
一种基于MEMS工艺的微型封装F-P压力传感器的结构示意图如图1所示,所述F-P压力传感器主要包括F-P压力敏感MEMS芯片1和准直扩束光纤2;
其中,F-P压力敏感MEMS芯片1的结构示意图如图2所示,所述F-P压力敏感MEMS芯片1由SOI硅片、玻璃片3和双抛硅片4组成;
所述SOI硅片包括顶层硅5、中间氧化层6和底层硅7;其中,底层硅7的上表面沉积有增透膜8和钝化层10;底层硅7的下表面设置有环形凹槽和圆形凸起,圆形凸起位于环形凹槽的中心,形成“膜-岛”结构,所述环形凹槽部分为“膜”,圆形凸起部分为“岛”,所述“岛”的上表面沉积有高反膜9;中间氧化层6和顶层硅5的轴向均设置有圆孔,所述圆孔的半径与环形凹槽的外圆半径相等;
所述玻璃片3上表面沉积有高反膜9,下表面沉积有增透膜8;
所述双抛硅片4的轴向设置有圆孔,所述圆孔直径大于准直扩束光纤的外径;
所述准直扩束光纤2的上端设置有自聚焦透镜或等效光学元件,并在上端面沉积有增透膜8;
所述高反膜9、增透膜8、中间氧化层6和顶层硅5轴向的圆孔、双抛硅片4轴向的圆孔与“膜-岛”结构中的“岛”同轴;且高反膜9和增透膜8的面积均大于光束面积,所述光束直径为50~300μm;
整体连接关系:
SOI硅片通过硅-玻璃阳极键合固定在玻璃片3上,键合面为SOI硅片中顶层硅5的下表面与玻璃片的上表面;玻璃片3通过硅-玻璃阳极键合固定在双抛 硅片4上,键合面为玻璃片3的下表面与双抛硅片4的上表面;准直扩束光纤2通过焊料固定在双抛硅片4的通孔中;所述“岛”上表面的高反膜9与玻璃片3上表面的高反膜9之间的形成的空腔构成F-P光学干涉腔;准直扩束光纤2的光学轴与F-P光学干涉腔同轴;
所述增透膜8构成材料为SiO2/Ta2O5复合介质膜;
所述高反膜为SiO2/Ta2O5复合介质膜;
其中,底层硅上的高反膜还可采用金反射膜;当底层硅上的高反膜采用金反射膜时,底层硅的上表面可以不沉积增透膜而直接沉积金膜作为钝化层。
工作原理:
光纤F-P压力传感器利用法布里-珀罗(Fabry-Perot,简称F-P)干涉原理:当相干光束沿准直扩束光纤入射到F-P压力敏感MEMS芯片时,在SOI硅片“岛”上表面的高反膜与玻璃片上表面的高反膜之间多次反射构成多光束干涉,并沿原路返回到准直扩束光纤。沿原路返回到准直扩束光纤的干涉输出信号与SOI硅片“岛”上表面的高反膜与玻璃片上表面的高反膜之间的微腔的长度相关。在外部压力的作用下,SOI硅片“岛”上表面的高反膜与玻璃片上表面的高反膜之间的微腔的长度发生改变,使得返回到准直扩束光纤的干涉输出信号的波长或相位相应改变,由此可以实现对外部压力的精确测量。
一种基于MEMS工艺的微型封装F-P压力传感器的成型方法,所述方法的具体步骤如下:
(1)在SOI硅片的顶层硅上进行光刻处理后利用Deep RIE工艺刻蚀,在顶层硅的轴向形成圆孔;刻蚀深度为顶层硅的厚度;如图4a和图4b所示;
(2)利用湿法腐蚀或干法刻蚀将SOI硅片上暴露出的中间氧化层去除,在中间氧化层的轴向形成圆孔;如图4c所示;
(3)在底层硅的下表面上沉积金反射膜,厚度0.1~0.4μm;对所述金反射膜进行图形化处理;如图4d所示;
(4)在通过步骤(3)处理后的底层硅下表面进行光刻,随后以光刻胶作为掩膜,利用Deep RIE工艺刻蚀,在底层硅下表面形成环形凹槽,在环形凹槽的中心形成圆形凸起;其中,刻蚀深度为2~100μm;如图4e和图4f所示;
(5)在玻璃片的上表面沉积高反膜(反射率为95~96%);对所述高反膜进行图形化处理;如图4g所示;
(6)将步骤(1)~(4)处理后的SOI硅片与步骤(5)处理后的玻璃片进行硅-玻璃阳极键合,键合面为SOI硅片中顶层硅的下表面与玻璃片的上表面;随后对底层硅的上表面进行减薄处理;如图4h和图4i所示;
(7)在键合后玻璃片的下表面沉积增透膜,并对所述增透膜进行图形化处理;如图4j所示;
(8)在氧化后的双抛硅片的上表面进行光刻,腐蚀掉光刻图形中的氧化层;随后以氧化层和光刻胶作为掩膜,采用Deep RIE工艺进行刻蚀,在双抛硅片上的轴向形成圆孔;所述圆孔直径大于准直扩束光纤和玻璃片下表面的增透膜的直径;如图4k所示;
(9)将步骤(8)处理后的双抛硅片与玻璃片进行硅-玻璃阳极键合,键合面为玻璃片的下表面与双抛硅片的上表面;随后,在底层硅的上表面沉积金膜作为钝化层,并对钝化层进行图形化处理,得到F-P压力敏感MEMS芯片;如图4l和图4m所示;
(10)将准直扩束光纤通过焊料固定在F-P压力敏感MEMS芯片上双抛硅片的圆孔中,得到本发明所述压力传感器;如图1所示。
其中,所述图形化处理采用Lift-off工艺;
步骤(6)所述减薄处理采用KOH溶液腐蚀。
根据本发明制所述方法制作的基于MEMS工艺的高精度法布里-珀罗(F-P)压力传感器,法布里-珀罗(F-P)腔的自由谱宽FSR为68.2nm,如图4a所示;信号谱的3dB带宽FWHM为0.5nm,如图4b所示;计算出的光学精细度因子(自由谱宽FSR与3dB带宽FWHM的比值)达到136.4,远远高于现有F-P压力传感器的光学精细度因子(通常小于10,典型光谱图如图5所示)。
根据本发明制所述方法制作的基于MEMS工艺的高精度法布里-珀罗(F-P)压力传感器采用波长信号解调方式可以达到0.2pm的波长解调分辨率,压力满量程对应的波长变化量为18nm,传感器的测量动态范围达到1/90000,压力测量精度达到满量程的万分之一;如图6所示。同时,由于采用波长信号解调方式,所以测量精度不受光纤弯曲损耗和光源功率波动的影响;而且可以借助WDM波分复用器将多个基于MEMS工艺的高精度法布里-珀罗(F-P)压力传 感器通过波分复用+时分复用串接到一芯单模光纤上,如图7所示。光纤传输距离可以达到20公里以上。
本发明包括但不限于以上实施例,凡是在本发明精神的原则之下进行的任何等同替换或局部改进,都将视为在本发明的保护范围之内。
Claims (7)
1.一种基于MEMS工艺的微型封装F-P压力传感器,其特征在于:所述F-P压力传感器包括F-P压力敏感MEMS芯片(1)和准直扩束光纤(2);
其中,所述F-P压力敏感MEMS芯片(1)由SOI硅片、玻璃片(3)和双抛硅片(4)组成;
所述SOI硅片包括顶层硅(5)、中间氧化层(6)和底层硅(7);其中,底层硅(7)的外表面依次沉积有增透膜Ⅰ(8)和钝化层(10);由SOI硅片顶层硅(5)的表面沿SOI硅片厚度方向加工深度至底层硅(7)的环形凹槽,在环形凹槽的中心形成圆柱形凸台;所述圆柱形凸台的表面与底层硅(7)和中间氧化层(6)的分界面处于同一平面,且圆柱形凸台的表面沉积有高反膜Ⅰ(3);
所述玻璃片(3)上表面沉积有高反膜Ⅱ(12),下表面沉积有增透膜Ⅱ(11);
所述双抛硅片(4)的具有中心孔,所述圆孔直径大于准直扩束光纤(2)的外径;
所述准直扩束光纤(2)的上端设置有自聚焦透镜或等效光学元件;
整体连接关系:
所述SOI硅片通过硅-玻璃阳极键合固定在玻璃片(3)上,键合面为SOI硅片中顶层硅(5)的外表面与玻璃片(3)的上表面;玻璃片(3)通过硅-玻璃阳极键合固定在双抛硅片(4)上,键合面为玻璃片(3)的下表面与双抛硅片(4)的上表面;准直扩束光纤(2)通过焊料同轴固定在双抛硅片(4)的中心孔中;其中,SOI硅片上的环形凹槽与玻璃片(3)的上表面形成密闭空腔;所述高反膜Ⅰ(9)与高反膜Ⅱ(12)之间的形成的区域构成F-P光学干涉腔;所述高反膜Ⅰ(9)、高反膜Ⅱ(12)、增透膜Ⅰ(8)和增透膜Ⅱ(11)的中心点位于圆柱形凸台的轴线上;且高反膜Ⅰ(9)、高反膜Ⅱ(12)、增透膜Ⅰ(8)和增透膜Ⅱ(11)的面积均大于准直扩束光纤(2)的出射光束面积并小于等于圆柱形凸台的面积。
2.根据权利要求1所述的一种基于MEMS工艺的微型封装F-P压力传感器,其特征在于:所述增透膜Ⅰ(8)和增透膜Ⅱ(11)构成材料均为SiO2/Ta2O5复合介质膜、SiO2/TiO2复合介质膜和SiO2/Si3N4复合介质膜中的一种。
3.根据权利要求1所述的一种基于MEMS工艺的微型封装F-P压力传感器,其特征在于:所述高反膜Ⅰ(9)为SiO2/Ta2O5复合介质膜、SiO2/TiO2复合介质膜、SiO2/Si3N4复合介质膜和金反射膜中的一种;所述高反膜Ⅱ(12)为SiO2/Ta2O5复合介质膜、SiO2/TiO2复合介质膜和SiO2/Si3N4复合介质膜中的一种。
4.根据权利要求2所述的一种基于MEMS工艺的微型封装F-P压力传感器,其特征在于:所述高反膜Ⅰ(9)为金反射膜时,底层硅(7)的上表面不沉积增透膜而直接沉积金膜作为钝化层。
5.一种如权利要求1所述的基于MEMS工艺的微型封装F-P压力传感器的制备方法,其特征在于:所述方法步骤如下:
(1)在SOI硅片的顶层硅上进行光刻处理后利用Deep RIE工艺刻蚀,在顶层硅的轴向形成圆孔;刻蚀深度为顶层硅的厚度;
(2)利用湿法腐蚀或干法刻蚀将SOI硅片上暴露出的中间氧化层去除,在中间氧化层的轴向形成圆孔;
(3)在底层硅的内表面上沉积高反膜;对所述高反膜进行图形化处理;
(4)在通过步骤(3)处理后的底层硅内表面进行光刻,随后以光刻胶作为掩膜,利用Deep RIE工艺刻蚀,在底层硅内表面形成环形凹槽,在环形凹槽的中心形成圆柱形凸台;其中,刻蚀深度为2~100μm;
(5)在玻璃片的上表面沉积高反膜;对所述高反膜进行图形化处理;
(6)将步骤(1)~(4)处理后的SOI硅片与步骤(5)处理后的玻璃片进行硅-玻璃阳极键合,键合面为SOI硅片中顶层硅的下表面与玻璃片的上表面;随后对底层硅的上表面进行减薄处理;
(7)在键合后玻璃片的下表面沉积增透膜,并对所述增透膜进行图形化处理;
(8)在氧化后的双抛硅片的上表面进行光刻,腐蚀掉光刻图形中的氧化层;随后以氧化层和光刻胶作为掩膜,采用Deep RIE工艺进行刻蚀,在双抛硅片上的轴向形成圆孔;所述圆孔直径大于准直扩束光纤和玻璃片下表面的增透膜的直径;
(9)将步骤(8)处理后的双抛硅片与玻璃片进行硅-玻璃阳极键合,键合面为玻璃片的下表面与双抛硅片的上表面;随后,依次在底层硅的外表面沉积增透膜和钝化层,并对增透膜和钝化层进行图形化处理,得到F-P压力敏感MEMS芯片;
(10)将准直扩束光纤通过焊料固定在F-P压力敏感MEMS芯片上双抛硅片的圆孔中,得到所述压力传感器。
6.根据权利要求5所述的一种基于MEMS工艺的微型封装F-P压力传感器的制备方法,其特征在于:所述图形化处理采用光刻后再腐蚀高反膜工艺或Lift-off工艺。
7.根据权利要求5所述的一种基于MEMS工艺的F-P压力传感器的制备方法,其特征在于:步骤(6)所述减薄处理采用KOH溶液直接腐蚀方法或化学机械抛光工艺。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410728291.6A CN104596685B (zh) | 2014-12-04 | 2014-12-04 | 一种基于mems工艺的微型封装f‑p压力传感器及成型方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410728291.6A CN104596685B (zh) | 2014-12-04 | 2014-12-04 | 一种基于mems工艺的微型封装f‑p压力传感器及成型方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN104596685A true CN104596685A (zh) | 2015-05-06 |
CN104596685B CN104596685B (zh) | 2017-05-10 |
Family
ID=53122611
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201410728291.6A Active CN104596685B (zh) | 2014-12-04 | 2014-12-04 | 一种基于mems工艺的微型封装f‑p压力传感器及成型方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN104596685B (zh) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106449269A (zh) * | 2016-10-12 | 2017-02-22 | 厦门大学 | 一种压力敏感结构以及制备该压力敏感结构的方法 |
CN106773014A (zh) * | 2016-12-12 | 2017-05-31 | 南京大学 | 一种提高光纤液压传感器灵敏度的复合双腔结构 |
CN107664548A (zh) * | 2017-11-03 | 2018-02-06 | 中国航空工业集团公司北京长城计量测试技术研究所 | 一种efpi光纤压力传感器及其制作方法 |
WO2019109905A1 (zh) * | 2017-12-05 | 2019-06-13 | 北京佰为深科技发展有限公司 | 法珀传感器及其制造方法 |
CN110057388A (zh) * | 2019-05-13 | 2019-07-26 | 山东大学 | 一种基于金金键合制备穿孔结构光学腔f-p光纤传感器的方法 |
CN110332981A (zh) * | 2019-07-10 | 2019-10-15 | 西北工业大学 | 一种mems光纤水听器及其制作方法 |
CN110715681A (zh) * | 2018-07-12 | 2020-01-21 | 山东大学 | 一种金金热压键合制备高反射膜光学腔的方法 |
CN115031878A (zh) * | 2022-07-08 | 2022-09-09 | 北京智芯传感科技有限公司 | 一种带有硬心结构的电容压力传感器及其制备方法 |
CN115728512A (zh) * | 2021-08-25 | 2023-03-03 | 上海拜安传感技术有限公司 | 光纤加速度传感器及光纤加速度传感器的形成方法 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20020003917A1 (en) * | 2000-04-14 | 2002-01-10 | Sherrer David W. | Micromachined, etalon-based optical fiber pressure sensor |
US20050105098A1 (en) * | 2001-11-29 | 2005-05-19 | Sinvent As | Optical displacement sensor |
CN102384809A (zh) * | 2011-08-09 | 2012-03-21 | 天津大学 | 无胶封装的高稳定性光纤法-珀压力传感器及制作方法 |
CN103154682A (zh) * | 2010-03-15 | 2013-06-12 | 里兰斯坦福初级大学理事会 | 光纤兼容声学传感器 |
CN103234673A (zh) * | 2013-04-27 | 2013-08-07 | 北京航空航天大学 | 一种在高温环境下具有高稳定性的压力传感器微纳结构 |
CN103528735A (zh) * | 2013-10-31 | 2014-01-22 | 南京信息工程大学 | 一种微型光纤法布里-珀罗压力传感器及其制作方法 |
-
2014
- 2014-12-04 CN CN201410728291.6A patent/CN104596685B/zh active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20020003917A1 (en) * | 2000-04-14 | 2002-01-10 | Sherrer David W. | Micromachined, etalon-based optical fiber pressure sensor |
US20050105098A1 (en) * | 2001-11-29 | 2005-05-19 | Sinvent As | Optical displacement sensor |
CN103154682A (zh) * | 2010-03-15 | 2013-06-12 | 里兰斯坦福初级大学理事会 | 光纤兼容声学传感器 |
CN102384809A (zh) * | 2011-08-09 | 2012-03-21 | 天津大学 | 无胶封装的高稳定性光纤法-珀压力传感器及制作方法 |
CN103234673A (zh) * | 2013-04-27 | 2013-08-07 | 北京航空航天大学 | 一种在高温环境下具有高稳定性的压力传感器微纳结构 |
CN103528735A (zh) * | 2013-10-31 | 2014-01-22 | 南京信息工程大学 | 一种微型光纤法布里-珀罗压力传感器及其制作方法 |
Non-Patent Citations (1)
Title |
---|
陈绪兴等: "台面结构硅基法珀型光纤MEMS压力传感器的研究", 《传感器技术学报》 * |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106449269A (zh) * | 2016-10-12 | 2017-02-22 | 厦门大学 | 一种压力敏感结构以及制备该压力敏感结构的方法 |
CN106773014A (zh) * | 2016-12-12 | 2017-05-31 | 南京大学 | 一种提高光纤液压传感器灵敏度的复合双腔结构 |
CN107664548A (zh) * | 2017-11-03 | 2018-02-06 | 中国航空工业集团公司北京长城计量测试技术研究所 | 一种efpi光纤压力传感器及其制作方法 |
WO2019109905A1 (zh) * | 2017-12-05 | 2019-06-13 | 北京佰为深科技发展有限公司 | 法珀传感器及其制造方法 |
US11454558B2 (en) | 2017-12-05 | 2022-09-27 | Beijing Bywave Sensing Science & Technology Development Co., Ltd. | Fabry-Perot sensor and method for manufacturing same |
CN110715681A (zh) * | 2018-07-12 | 2020-01-21 | 山东大学 | 一种金金热压键合制备高反射膜光学腔的方法 |
CN110715681B (zh) * | 2018-07-12 | 2021-02-19 | 山东大学 | 一种金金热压键合制备高反射膜光学腔的方法 |
CN110057388A (zh) * | 2019-05-13 | 2019-07-26 | 山东大学 | 一种基于金金键合制备穿孔结构光学腔f-p光纤传感器的方法 |
CN110332981A (zh) * | 2019-07-10 | 2019-10-15 | 西北工业大学 | 一种mems光纤水听器及其制作方法 |
CN115728512A (zh) * | 2021-08-25 | 2023-03-03 | 上海拜安传感技术有限公司 | 光纤加速度传感器及光纤加速度传感器的形成方法 |
CN115728512B (zh) * | 2021-08-25 | 2024-02-27 | 上海拜安传感技术有限公司 | 光纤加速度传感器及光纤加速度传感器的形成方法 |
CN115031878A (zh) * | 2022-07-08 | 2022-09-09 | 北京智芯传感科技有限公司 | 一种带有硬心结构的电容压力传感器及其制备方法 |
Also Published As
Publication number | Publication date |
---|---|
CN104596685B (zh) | 2017-05-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104502016B (zh) | 一种基于mems工艺的腔长可调f‑p压力传感器及成型方法 | |
CN104502005B (zh) | 一种基于mems工艺的f‑p压力传感器及成型方法 | |
CN104596685A (zh) | 一种基于mems工艺的微型封装f-p压力传感器及成型方法 | |
CN104501729B (zh) | 一种基于mems工艺的光纤f-p应变计及成型方法 | |
CN104596435B (zh) | 一种基于mems工艺的腔长可调光纤f‑p应变计及成型方法 | |
CN101608944B (zh) | 一种光纤振动传感头及其制作方法 | |
CN101832832B (zh) | 光纤法布里-珀罗压力传感器及其制作方法 | |
US8253945B2 (en) | Optical sensor | |
CN105806543A (zh) | 一种光纤法珀高温压力传感器 | |
CN101639485A (zh) | 一种光纤加速度传感器 | |
CN101650235B (zh) | 微型光纤内集成的光纤干涉式温度传感器及其制作方法 | |
CN107505477B (zh) | 一种三维光纤布拉格光栅风速风向传感器及系统 | |
CN108845387B (zh) | 一种能同时测量海水温度盐度压力的楔型微孔光纤光栅 | |
CN105445494A (zh) | 一种基于平面环形腔的moems加速度计及其制造方法 | |
CA1203701A (en) | Fiber-optic luminescence sensor utilising interference in a thin layer structure | |
CN205664972U (zh) | 一种高温压力传感器 | |
CN106443065A (zh) | 高精度波长形加速度传感器及其制备方法 | |
CN108037308A (zh) | 一种基于游标效应的级联iffpi风速传感器及其检测装置 | |
Xu et al. | Two-dimensional displacement sensor based on a dual-cavity Fabry-Perot interferometer | |
CN112816737A (zh) | 一种基于半球形fp腔片上集成光机加速度计及制造方法 | |
CN110631616B (zh) | 一种超高温微型光纤efpi应变传感器 | |
CN114486019B (zh) | 一种消除第三腔干扰的光纤法珀压力传感器及mems制造方法 | |
CN106950673B (zh) | 一种非平衡光纤迈克尔逊干涉仪臂长调节装置 | |
CN104359587A (zh) | 一种光纤法布里-珀罗温度传感器及其制作方法 | |
CN106323516B (zh) | 带有复合介质薄膜的f-p压力传感器 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
TR01 | Transfer of patent right | ||
TR01 | Transfer of patent right |
Effective date of registration: 20170612 Address after: 201210 Shanghai City, Pudong New Area Zhangjiang hi tech Park 150 Cailun Road No. 4 Building 4 floor Patentee after: Shanghai Baian Sensing Technology Co., Ltd. Address before: 1601 room 12, No. 88, Lane 200336, Tianshan Road, Shanghai, Changning District Patentee before: Liu Yujue |