CN104581786B - 一种远距离分布式载波检测无线网络退避时隙长度优化方法 - Google Patents
一种远距离分布式载波检测无线网络退避时隙长度优化方法 Download PDFInfo
- Publication number
- CN104581786B CN104581786B CN201510030202.5A CN201510030202A CN104581786B CN 104581786 B CN104581786 B CN 104581786B CN 201510030202 A CN201510030202 A CN 201510030202A CN 104581786 B CN104581786 B CN 104581786B
- Authority
- CN
- China
- Prior art keywords
- node
- probability
- network
- formula
- nodes
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000000034 method Methods 0.000 title claims abstract description 28
- 238000005457 optimization Methods 0.000 title claims abstract description 10
- 238000001514 detection method Methods 0.000 title abstract description 8
- 230000005540 biological transmission Effects 0.000 claims abstract description 27
- 238000005315 distribution function Methods 0.000 claims abstract description 13
- 230000007704 transition Effects 0.000 claims abstract description 7
- 238000012546 transfer Methods 0.000 claims description 3
- NAWXUBYGYWOOIX-SFHVURJKSA-N (2s)-2-[[4-[2-(2,4-diaminoquinazolin-6-yl)ethyl]benzoyl]amino]-4-methylidenepentanedioic acid Chemical compound C1=CC2=NC(N)=NC(N)=C2C=C1CCC1=CC=C(C(=O)N[C@@H](CC(=C)C(O)=O)C(O)=O)C=C1 NAWXUBYGYWOOIX-SFHVURJKSA-N 0.000 claims description 2
- 238000012797 qualification Methods 0.000 claims description 2
- 238000006467 substitution reaction Methods 0.000 claims description 2
- 238000004088 simulation Methods 0.000 abstract description 10
- 238000010586 diagram Methods 0.000 description 5
- 238000011160 research Methods 0.000 description 2
- 101100172132 Mus musculus Eif3a gene Proteins 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 230000006855 networking Effects 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W24/00—Supervisory, monitoring or testing arrangements
- H04W24/02—Arrangements for optimising operational condition
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Mobile Radio Communication Systems (AREA)
- Small-Scale Networks (AREA)
Abstract
本发明公开了一种远距离分布式载波检测无线网络退避时隙长度优化方法。该方法首先确定节点间距离分布函数。然后采用二维离散马尔可夫链对远距离条件下分布式载波检测无线网络节点退避过程进行建模,根据非空一步状态转移概率得出分布式载波检测无线网络退避阶段的稳态概率分布,并利用稳态概率归一化条件求出节点的发送概率。进而根据网络节点在一个时隙中平均成功传输的数据比特数及时隙的平均长度,计算网络饱和吞吐量。最后通过数值搜索法确定不同网络规模条件下退避时隙长度的最优取值。无线网络仿真环境EXata中的仿真实验证明了该方法的有效性。
Description
技术领域
本发明属于无线网络领域,特别涉及远距离分布式载波检测无线网络退避时隙长度优化方法。
背景技术
随着无线局域网(Wireless Local Area Networks)的普及和应用,IEEE 802.11标准受到人们的广泛关注。IEEE 802.11标准采用分布式接入功能(DCF)作为媒质接入控制协议。DCF协议采用载波检测多路访问冲突避免(CSMA/CA)机制和二进制指数退避(BEB)算法避免冲突。IEEE 802.11 DCF协议最初被应用于实现短距离接入的无线局域网,而近年来,该协议已被逐渐应用于一些远距离组网的场景。例如,在地广人稀的贫困地区,IEEE802.11 DCF协议被用于构建远距离无线通信网络,以低廉的成本解决远距离数据传输。
二进制指数退避算法(BEB)是保证分布式接入协议性能的关键。根据BEB算法,节点发送数据包之前,首先监听信道持续空闲DIFS时长,然后在区间[0,W-1]内随机选择一个整数b(t)作为退避计数器初始值,并在b(t)δ的时间内继续监听信道,其中W为当前退避窗口长度,δ为一个单位时隙长度。退避计数器值减小到0,即退避定时器超时后,节点发送数据包。如果节点在退避时间内侦听信道变忙,则节点保存当前退避计数器的剩余值,并在下一次重新侦听信道持续空闲DIFS时长后,继续从该剩余值开始继续退避。如果节点发送数据包成功,则节点保持当前退避窗口不变,而如果节点发送数据包失败,节点则把当前W的值扩大一倍,并在重发数据包之前,在新的退避窗口中重新选择退避计数器的初始值,W的取值范围为(CWmin,CWmax)。节点多次重传数据包失败,并将该数据包丢弃后,节点将W的值设置为最小值。
在远距离条件下,研究DCF协议性能,提高网络饱和吞吐量具有重要意义。由于BEB算法是DCF协议性能的关键,因而研究人员已针对BEB算法开展了大量的研究工作。现有的研究工作都假定单位时隙长度δ的取值不小于节点的最大传播时延,因而数据包冲突仅发生在多个节点在同一个时隙内完成退避的条件下。只要多个节点不在同一个时隙完成退避,则不会发生冲突。然而,在远距离的应用场景中,节点最大传播时延远大于短距离的应用场景(假定节点最大传输距离为150公里,则最大传播时延为0.5毫秒)。如果仍然将单位时隙长度δ的取值设置为不小于节点的最大传播时延,则退避等待将导致极大的开销,严重影响网络总平均吞吐量。因此,寻找最优的退避时隙长度成为了提高远距离分布式载波检测无线网络性能的关键问题,本发明的内容即围绕该问题展开。
发明内容
本发明的目的是针对远距离分布式载波检测无线网络,提出一种退避时隙长度优化方法,从而获得最大的网络饱和吞吐量性能。为了实现该目的,本发明所采用的步骤是:
步骤1:确定节点之间距离的分布函数。
步骤2:采用离散马尔可夫链对远距离环境下网络中节点退避过程进行建模,节点在离散马尔可夫链中的状态用二维随机变量{s(t),b(t)}表示;其中,s(t)表示节点退避阶段;b(t)表示节点当前退避计数器的剩余值;根据节点状态之间的转移关系得出离散马尔可夫链非空一步状态转移概率。
步骤3:根据节点非空一步状态转移概率以及稳态概率分布归一化条件求出节点发送概率及条件冲突概率。
步骤4:根据网络节点在一个时隙中平均成功传输的数据比特数及时隙的平均长度,计算网络饱和吞吐量。
步骤5:利用数值搜索法求得网络饱和吞吐量最大时对应的最优时隙长度。
本发明提出的远距离分布式载波检测无线网络退避时隙长度优化方法已经在EXata 3.1网络仿真环境中实现。节点在单跳传输范围内随机运动;网络中随机建立10条业务流;信道带宽为256Kbit/s;网络层采用静态路由,传输层采用UDP协议;仿真时间为300s。
附图3给出了本发明提出的退避过程的原理框图。附图4和附图5给出了在10条业务流,节点传输范围分别为300km和800km情况下,通过改变退避时隙长度得到的条件冲突概率和网络饱和吞吐量的仿真值与本发明得到的计算值的对比。仿真值与计算值的一致性说明了本发明在不同网络条件下,确定退避时隙长度最优取值方法的有效性。
附图说明
图1是节点分布示意图;
图2是二维马尔可夫链退避模型状态转移图;
图3是本发明提出的退避过程原理框图;
图4是条件冲突概率理论值与仿真值对比图;
图5是饱和吞吐量理论值与仿真值对比图;
具体实施方式
下面结合附图和实施例对本发明作进一步详细描述。
本发明提出的远距离分布式载波检测无线网络退避时隙长度优化方法已经在无线网络仿真环境EXata 3.1中实现,并通过仿真结果证明了该方法的有效性。下面给出本发明的具体实施步骤:
步骤1:确定节点之间距离的分布函数。
假设网络中各节点在单跳范围内随机分布,如附图1所示,圆O的半径R为传输距离的一半,所有节点在圆O内随机分布。节点A、B是圆O内任意两个节点,节点A、B到圆心O的距离分别记作a,b。节点A、B之间的距离为d。OA与OB间夹角为θ。由余弦定理得
任意两节点间距离的分布函数可以表示为
由于变量a,b,θ是相互独立的,故式(2)可改写为
θ的概率密度函数为
a的分布函数为
因此a的概率密度函数可以表示为
同样,b的概率密度函数可以表示为
式(2)中限定条件
可改写为
我们用h表示式(3)中最内层θ积分的和
式(10)可进一步推导为
由式(3)和式(11)可得任意两节点间距离分布函数为
将式(6),(7),(11)代入式(12)中,可得到节点间距离分布函数Fd(d)的具体表达式。
步骤2:采用离散马尔可夫链对远距离环境下网络节点退避过程进行建模。
假设在理想信道条件下,网络中有n个节点,每个节点都处在其他节点的传输范围内。对于任意一个给定节点A,针对其退避过程,可构建如附图2所示的二维离散马尔可夫链模型。m表示节点最大退避阶段,定义竞争窗口W=W0,节点在i退避阶段的退避窗口值为
Wi=min(2i(CWmin+1)-1,CWmax)i∈[0,m] (13)
网络中节点的任一状态可用二维随机变量{s(t),b(t)}表示。其中,s(t)表示节点退避阶段;b(t)表示节点当前退避计数器的剩余值。用P(i|j)表示节点从状态j转移到状态i的一步状态转移概率,则附图2所示的离散马尔可夫链非空一步状态转移概率可以表示为:
上述方程组中,第一个方程表示在每个时隙开始时,节点退避计数器值减小1。第二个方程表示节点数据包成功传输后,进入退避阶段0,在区间[0,W0-1]内随机选择一个整数j作为退避计数器初始值;第三个方程表示当节点在第i-1个退避阶段数据包传输失败后,节点进入第i个退避阶段,并在区间[0,Wi-1]内随机选择一个整数j作为退避计数器初始值。第四个方程表示节点在m退避阶段发送数据包后,无论数据包是否传输成功,节点进入0退避阶段,并在区间[0,W0-1]内随机选择一个整数j作为退避计数器初始值。
步骤3:确定节点发送概率τ及条件冲突概率p。
用bi,j表示马尔可夫链的稳态概率分布,即bi,j=limt→∞P{s(t)=i,b(t)=j},i∈[0,m],j∈[0,Wi-1],由分析模型易得
bi-1,0·p=bi,0→bi,0=pib0,0,i∈[1,m] (15)
由式(15)和(16)可知,对于节点所处的任意一个状态bi,k都可表示为b0,0和冲突概率p的函数关系式,由归一化条件
可得
某时刻节点X的退避计数器值为j的概率记作lX,j,则
其中ceil()表示对括号中数向上取整。
式(19)中,当j值取0时,lX,0表示节点X在任意一个时隙发送数据包的概率,记作τ。p表示条件冲突概率,其大小与网络中节点数量,节点间距离以及时隙长度有关,其值可以表示为
p=1-(1-ζ)n-1 (20)
其中ζ表示任意一个其他节点与发送节点冲突的概率
根据式(19),式(20)及式(21)可解得条件冲突概率p,将p值代入式(19)可计算得到节点发送概率τ。
步骤4:确定分布式载波检测无线网络饱和吞吐量。
假设网络节点数量为n,网络饱和吞吐量S定义为单位时间内网络中节点成功传输数据比特数
在任一时隙网络中节点成功传输一个数据包概率为nτ(1-p),包的平均长度为E[P],因此,在任一时隙,网络中节点平均成功传输的数据包比特数为nτ(1-p)E[P]。E[σ]表示平均时隙长度。考虑到在任意一个时隙,对于一个给定节点A可能处于以下任意一种状态:信道始终保持空闲;数据包成功传输引起的信道变忙;给定节点A作为发送节点时与其他发送节点发生冲突引起的信道变忙;给定节点A作为非发送节点时其他节点间发生冲突引起的信道变忙。因此,平均时隙长度E[σ]可以表示为
E[σ]=(1-Ptr)δ+nτ(1-p)Ts+(Ptr-PtrPs)(τpTc1+(1-τp)Tc2) (23)
其中
δ表示信道空闲时节点的时隙长度,
Ptr=1-(1-τ)n (24)
表示在任意一个时隙,至少有一个节点传输数据包的概率,
表示在至少有一个节点传输数据包的条件下,数据包能够成功被接收的概率,
Ts=E[P]+2×PLCP+SIFS+DIFS+ACK+2×E[td] (26)
为节点成功传输一个数据包所花费的时间,E[td]为平均传播时延,
Tc1=E[P]+PLCP+ACKTimeout+DIFS (27)
为给定节点A作为发送节点时与其他发送节点发生冲突的情况下,A检测到的冲突持续时间,
Tc2=E[P]+PLCP+DIFS (28)
为给定节点A作为非发送节点时其他节点间发生冲突的情况下,A检测到的冲突持续时间。
因此,网络饱和吞吐量S可以表示为
步骤5:确定分布式载波检测无线网络退避时隙长度的最优取值。
根据步骤4中确定的网络饱和吞吐量S,本发明通过数值搜索法确定给定网络规模条件下分布式网络时隙长度的最优取值。具体方法为:将分布式网络时隙长度的取值从最小值1开始递增,依次分别计算出相应的网络饱和吞吐量S(δ)的值,δ=1,2,3……。若S(δ)的取值满足
S(δ+1)-S(δ)<0 (30)
则δ即为当前网络规模条件下分布式网络时隙长度的最优取值。
本发明申请书中未作详细描述的内容属于本领域专业技术人员公知的现有技术。
Claims (4)
1.一种远距离分布式载波检测无线网络退避时隙长度优化方法,所采用的步骤是:
步骤1:确定节点之间距离的分布函数;
步骤2:采用离散马尔可夫链对远距离环境下网络中节点退避过程进行建模,节点在离散马尔可夫链中的状态用二维随机变量{s(t),b(t)}表示;其中,s(t)表示节点退避阶段;b(t)表示节点当前退避计数器的剩余值;根据节点状态之间的转移关系得出离散马尔可夫链非空一步状态转移概率;
步骤3:根据节点非空一步状态转移概率以及稳态概率分布归一化条件求出节点发送概率及条件冲突概率;
步骤4:根据网络节点在一个时隙中平均成功传输的数据比特数及时隙的平均长度,计算网络饱和吞吐量;
步骤5:利用数值搜索法求得网络饱和吞吐量最大时对应的最优时隙长度。
2.根据权利要求1所述的一种远距离分布式载波检测无线网络退避时隙长度优化方法,其特征在于确定节点之间距离分布函数的具体方法为:
网络中各节点在单跳范围内随机分布,设圆O的半径R为传输距离的一半,所有节点在圆O内随机分布,节点A、B是圆O内任意两个节点,节点A、B到圆心O的距离分别记作a,b,节点A、B之间的距离为d,OA与OB间夹角为θ,由余弦定理得
任意两节点间距离的分布函数可以表示为
由于变量a,b,θ是相互独立的,故式(2)可改写为
θ的概率密度函数为
a的分布函数为
因此a的概率密度函数可以表示为
同样,b的概率密度函数可以表示为
式(2)中限定条件
可改写为
我们用h表示式(3)中最内层θ积分的和
式(10)可进一步推导为
由式(3)和式(11)可得任意两节点间距离分布函数为
将式(6),(7),(11)代入式(12)中,可得到节点间距离分布函数Fd(d)的具体表达式。
3.根据权利要求1所述的一种远距离分布式载波检测无线网络退避时隙长度优化方法,其特征在于确定节点发送概率τ及条件冲突概率p的具体方法为:
用符号t表示时间,Wi表示节点在i退避阶段的退避窗口值,m表示节点最大退避阶段,W表示当前退避窗口长度,n表示网络节点数量,用bi,j表示马尔可夫链的稳态概率分布,即bi,j=limt→∞P{s(t)=i,b(t)=j},i∈[0,m],j∈[0,Wi-1],由模型可得
bi-1,0·p=bi,0→bi,0=pib0,0,i∈[1,m] (13)
由式(13)和(14)可知,对于节点所处的任意一个状态bi,k都可表示为b0,0和条件冲突概率p的函数关系式,由归一化条件
可得
某时刻节点X的退避计数器值为j的概率记作lX,j,则
其中ceil()表示对括号中数向上取整,
式(17)中,当j值取0时,lX,0表示节点X在任意一个时隙发送数据包的概率,记作τ,p表示条件冲突概率,其大小与网络中节点数量,节点间距离以及时隙长度有关,其值可以表示为
p=1-(1-ζ)n-1 (18)
其中ζ表示任意一个其他节点与发送节点冲突的概率,c表示光速,则有:
根据式(17),式(18)及式(19)可解得条件冲突概率p,将p值代入式(17)可计算得到节点发送概率τ。
4.根据权利要求1所述的一种远距离分布式载波检测无线网络退避时隙长度优化方法,其特征在于确定分布式网络饱和吞吐量的具体方法为:
用符号p表示条件冲突概率、τ表示节点发送概率,n表示网络节点数量,网络饱和吞吐量S定义为单位时间内网络中节点成功传输数据比特数
在任一时隙网络中节点成功传输一个数据包概率为nτ(1-p),包的平均长度为E[P],因此,在任一时隙,网络中节点平均成功传输的数据包比特数为nτ(1-p)E[P],E[σ]表示平均时隙长度,考虑到在任意一个时隙,对于一个给定节点A可能处于以下任意一种状态:信道始终保持空闲;数据包成功传输引起的信道变忙;给定节点A作为发送节点时与其他发送节点发生冲突引起的信道变忙;给定节点A作为非发送节点时其他节点间发生冲突引起的信道变忙,因此,平均时隙长度E[σ]可以表示为
E[σ]=(1-Ptr)δ+nτ(1-p)Ts+(Ptr-PtrPs)(τpTc1+(1-τp)Tc2) (21)
其中,δ表示信道空闲时节点的时隙长度,
Ptr=1-(1-τ)n (22)
表示在任意一个时隙,至少有一个节点传输数据包的概率,
表示在至少有一个节点传输数据包的条件下,数据包能够成功被接收的概率,
Ts=E[P]+2×PLCP+SIFS+DIFS+ACK+2×E[td] (24)
为节点成功传输一个数据包所花费的时间,E[td]为平均传播时延,
Tc1=E[P]+PLCP+ACKTimeout+DIFS (25)
为给定节点A作为发送节点时与其他发送节点发生冲突的情况下,A检测到的冲突持续时间,
Tc2=E[P]+PLCP+DIFS (26)
为给定节点A作为非发送节点时其他节点间发生冲突的情况下,A检测到的冲突持续时间,
因此,网络饱和吞吐量S可以表示为
由此确定远距离分布式网络选取不同时隙长度时对应的网络饱和吞吐量。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510030202.5A CN104581786B (zh) | 2015-01-19 | 2015-01-19 | 一种远距离分布式载波检测无线网络退避时隙长度优化方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510030202.5A CN104581786B (zh) | 2015-01-19 | 2015-01-19 | 一种远距离分布式载波检测无线网络退避时隙长度优化方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN104581786A CN104581786A (zh) | 2015-04-29 |
CN104581786B true CN104581786B (zh) | 2019-02-26 |
Family
ID=53096765
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201510030202.5A Expired - Fee Related CN104581786B (zh) | 2015-01-19 | 2015-01-19 | 一种远距离分布式载波检测无线网络退避时隙长度优化方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN104581786B (zh) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105141713B (zh) * | 2015-09-08 | 2018-05-11 | 中国互联网络信息中心 | 一种检测异构物联网标识命名空间冲突率的方法及系统 |
CN105487407B (zh) * | 2015-12-31 | 2018-06-12 | 中国人民解放军理工大学 | 实时控制Exata节点移动轨迹的方法 |
CN109548061B (zh) * | 2019-01-16 | 2021-10-29 | 南京航空航天大学 | 一种基于马尔科夫链的认知无线网络饱和吞吐量求解方法 |
CN110049453B (zh) * | 2019-05-30 | 2021-07-09 | 磐基技术有限公司 | 一种通信设备的传输等待间隔设置方法 |
CN110972162B (zh) * | 2019-11-22 | 2022-03-25 | 南京航空航天大学 | 一种基于马尔科夫链的水声传感器网络饱和吞吐量求解方法 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103068033A (zh) * | 2013-01-29 | 2013-04-24 | 南京航空航天大学 | 一种无线网络分布式网同步退避参数优化方法 |
CN103781094A (zh) * | 2012-10-19 | 2014-05-07 | 中国科学院沈阳自动化研究所 | 一种工业无线网络的组网优化方法 |
CN103857055A (zh) * | 2014-03-20 | 2014-06-11 | 南京航空航天大学 | 一种实现无线自组织网络链路公平性的退避参数设计方法 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7539168B2 (en) * | 2003-02-03 | 2009-05-26 | Avaya Inc. | Emergency call handling in contention-based wireless local-area networks |
-
2015
- 2015-01-19 CN CN201510030202.5A patent/CN104581786B/zh not_active Expired - Fee Related
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103781094A (zh) * | 2012-10-19 | 2014-05-07 | 中国科学院沈阳自动化研究所 | 一种工业无线网络的组网优化方法 |
CN103068033A (zh) * | 2013-01-29 | 2013-04-24 | 南京航空航天大学 | 一种无线网络分布式网同步退避参数优化方法 |
CN103857055A (zh) * | 2014-03-20 | 2014-06-11 | 南京航空航天大学 | 一种实现无线自组织网络链路公平性的退避参数设计方法 |
Also Published As
Publication number | Publication date |
---|---|
CN104581786A (zh) | 2015-04-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104581786B (zh) | 一种远距离分布式载波检测无线网络退避时隙长度优化方法 | |
Zhai et al. | Performance analysis of IEEE 802.11 MAC protocols in wireless LANs | |
Chatzimisios et al. | Throughput and delay analysis of IEEE 802.11 protocol | |
CN103326913B (zh) | 用于对等通信的确定性退避方法和装置 | |
US9246711B2 (en) | Wireless mesh networking with multiple simultaneous transmissions by nearby network nodes | |
KR101627885B1 (ko) | 랜덤 액세스 네트워크에서의 통신 링크(들)의 채널 손실률 및 충돌 손실률의 계산을 위한 장치 및 방법 | |
EP1832127A2 (en) | System and method for determining the mobility of nodes in a wireless communication network | |
JP2008541603A (ja) | 無線メッシュネットワークのための分散型学習方法 | |
KR100915050B1 (ko) | 무선 통신 네트워크에서 노드들 간의 통신 링크를 관리하는시스템 및 방법 | |
Hou et al. | Analyzing the throughput of IEEE 802.11 DCF scheme with hidden nodes | |
Wu et al. | A simple model of IEEE 802.11 wireless LAN | |
CN109842556A (zh) | 带宽确定方法、路由器及终端设备 | |
Wang et al. | Delay analysis of the IEEE 802.11 DCF | |
CN104619005B (zh) | 一种水下无线传感器网络媒体介质访问控制方法 | |
Hsu et al. | Multihop cellular: A novel architecture for wireless data communications | |
Togou et al. | Throughput analysis of the IEEE802. 11p EDCA considering transmission opportunity for non-safety applications | |
Hung et al. | Performance modeling and analysis of the IEEE 802.11 distribution coordination function in presence of hidden stations | |
Zhou et al. | Performance analysis of prioritized broadcast service in WAVE/IEEE 802.11 p | |
Liu et al. | RO‐RAW: Run‐Time Restricted Access Window Optimization in IEEE 802.11 ah Network with Extended Kalman Filter | |
Abreu et al. | Hierarchical modeling of IEEE 802.11 multi-hop wireless networks | |
Inaba et al. | Analysis and experiments of maximum throughput in wireless multi-hop networks for VoIP application | |
CN104185243B (zh) | 一种快速邻居发现方法 | |
Ahmad et al. | Modified Binary Exponential Backoff Algorithm to Minimize Mobiles Communication Time | |
US8873503B2 (en) | Method and device for transmitting information in contention on time slots between transceiver nodes of an ad hoc network | |
Ansari et al. | Performance Analysis of MultiACK-SFAMA for Underwater Acoustic Networks |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20190226 Termination date: 20200119 |
|
CF01 | Termination of patent right due to non-payment of annual fee |