CN104574967B - 一种基于北斗的城市大面积路网交通感知方法 - Google Patents

一种基于北斗的城市大面积路网交通感知方法 Download PDF

Info

Publication number
CN104574967B
CN104574967B CN201510018571.2A CN201510018571A CN104574967B CN 104574967 B CN104574967 B CN 104574967B CN 201510018571 A CN201510018571 A CN 201510018571A CN 104574967 B CN104574967 B CN 104574967B
Authority
CN
China
Prior art keywords
section
big dipper
floating car
road
city
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201510018571.2A
Other languages
English (en)
Other versions
CN104574967A (zh
Inventor
高万宝
吴先会
张广林
邹娇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HEFEI GELYU INFORMATION TECHNOLOGY Co Ltd
Original Assignee
HEFEI GELYU INFORMATION TECHNOLOGY Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by HEFEI GELYU INFORMATION TECHNOLOGY Co Ltd filed Critical HEFEI GELYU INFORMATION TECHNOLOGY Co Ltd
Priority to CN201510018571.2A priority Critical patent/CN104574967B/zh
Publication of CN104574967A publication Critical patent/CN104574967A/zh
Application granted granted Critical
Publication of CN104574967B publication Critical patent/CN104574967B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/01Detecting movement of traffic to be counted or controlled
    • G08G1/0104Measuring and analyzing of parameters relative to traffic conditions
    • G08G1/0108Measuring and analyzing of parameters relative to traffic conditions based on the source of data
    • G08G1/0112Measuring and analyzing of parameters relative to traffic conditions based on the source of data from the vehicle, e.g. floating car data [FCD]
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/01Detecting movement of traffic to be counted or controlled
    • G08G1/052Detecting movement of traffic to be counted or controlled with provision for determining speed or overspeed

Abstract

本发明提供一种基于北斗的城市大面积路网交通感知方法,包括:北斗数据预处理;构建基础空间路网;北斗坐标地图匹配;行车路线推测;路段平均旅行速度计算;历史数据补充;校正路段平均旅行速度;路段交通运行指数计算;路段交通状态等级判定。本发明通过构建北斗数据预处理模型、车辆坐标匹配指数模型、车辆路径规划模型和路段交通运行指数模型,实现城市路网大面积范围内的交通状态感知,降低高楼大厦交通环境下,城市路网北斗定位的偏差,提高城市道路交通状态采集和发布的准确度,提升城市路网的交通运行效率和服务水平。

Description

一种基于北斗的城市大面积路网交通感知方法
技术领域
本发明涉及基于北斗数据的城市路网交通状态感知技术领域,具体是一种基于北斗的城市大面积路网交通感知方法。
背景技术
中国北斗卫星导航系统是中国自行研制的全球卫星导航系统,是继美国GPS、俄罗斯GLONASS之后第三个成熟的卫星导航系统,现在北斗导航系统相关民用产品的应用还处于初级阶段,未来发展潜力巨大。
浮动车交通信息采集技术是通过在车辆上安装北斗BDS、美国GPS等装置,利用车辆的动态位置变化信息进行实时路况提取的技术,基于浮动车位移数据,将时间序列的车辆位置坐标与地图进行匹配,计算所有浮动点的平均速度和路段旅行速度,进而可以提取道路的交通状态,该技术包括数据预处理、地图匹配、路径推测和历史速度补充等关键处理程序,各个程序的处理模型也是多种多样的,精度存在着差异。
城市路网环境不同于乡村和郊区道路,由于大量高楼建筑物的影响,北斗的定位存在着偏差,目前正常的偏差在10米左右,建筑物较多的地方效果更差,不能对车辆进行精准定位;同时在浮动车信息采集系统中,由于浮动车地图匹配的对象规模十分巨大,特别是面向大城市的应用,要在较短的时间内完成上万辆浮动车与上万个路段的匹配和路径规划,各处理流程的算法优化程度特别重要。
在交通状态判别与发布系统的各功能模块中,电子地图数据处理是基础,地图匹配、行车路线推测和路段旅行时间计算是关键,系统参数优化和历史数据补充是进一步完善系统的必要步骤。
发明内容
本发明的目的在于提供一种基于北斗的城市大面积路网交通感知方法,能够在高楼大厦交通环境下,实现城市路网大面积范围的交通信息感知和发布,提升交通信息采集系统的运行效率和服务水平。
本发明的技术方案为:
一种基于北斗的城市大面积路网交通感知方法,包括以下步骤:
(1)获取城市路网中所有北斗浮动车的动态参数,包括时间、坐标和方向角数据,对获取的数据进行预处理,排除异常数据;
(2)构建城市路网基础模型,加载城市路网结点集合、路段集合和路由集合,对城市路网地图进行网格化处理,将城市路网中所有路段编号与网格编号进行关联绑定;
(3)基于北斗浮动车的当前坐标,确定其所在的网格,以该网格为中心,以周围九宫格为半径,将九宫格中处于北斗定位误差范围内的路段作为候选路段,得到候选路段集;计算出北斗浮动车的当前坐标与候选路段集中各个候选路段之间的距离,结合北斗浮动车的当前方向角与候选路段集中各个候选路段方向角之间的偏差,构建城市路网车辆坐标匹配指数模型,得到与北斗浮动车的当前坐标相匹配的路段;
(4)读取与北斗浮动车前后两相邻坐标各自相匹配的路段,分别作为该北斗浮动车的起点路段和终点路段,基于北斗浮动车的起点路段和终点路段信息,搜索北斗浮动车的拓展路段集,构建城市路网车辆路径规划模型,计算出拓展路段集中各个拓展路段的距离权重值,确定北斗浮动车的起点路段与终点路段之间的真实行驶路径轨迹;
(5)基于北斗浮动车的真实行驶路径,综合分析得到各个路段的平均旅行时间,再结合各个路段的长度,计算得到各个路段的平均旅行速度,并利用各个路段的历史同期校正平均旅行速度,计算得到各个路段的校正平均旅行速度;
(6)对于没有采样数据覆盖或者采样样本数低于预设阈值的路段,基于交通状态的周期相似理论,利用该路段的历史同期校正平均旅行速度,结合该路段在邻近时间段的校正平均旅行速度,补充得到该路段的校正平均旅行速度信息;
(7)基于各个路段的校正平均旅行速度,构建路段交通运行指数模型,根据计算得到的路段交通运行指数,对城市路网中各个路段的交通状态进行感知判定。
所述的基于北斗的城市大面积路网交通感知方法,所述步骤(1)中,对获取的数据进行预处理,排除异常数据,具体包括:
(11)采用以下公式计算北斗浮动车的旅行速度:
v = d ab t b - t a
其中,v表示北斗浮动车的旅行速度,dab表示北斗浮动车前后两相邻坐标之间的距离,ta、tb分别表示北斗浮动车前后两相邻坐标的采样时刻;
(12)判断北斗浮动车的旅行速度v是否满足:1≤v≤f*vmax,若是,则判定该北斗浮动车的采样数据为有效数据,若否,则对该北斗浮动车的采样数据进行筛选或剔除;其中,vmax表示道路允许的车辆最大行驶速度,单位:km/h,f表示修正系数;
(13)对旅行速度小于1km/h的北斗浮动车的采样数据进行判定:
a、按照路段编号、车辆编号和采样时刻三个条件对所有北斗浮动车在统计时间内的采样数据进行排列;
b、设同一辆北斗浮动车在同一路段的采样样本数为N,若N≤3,则判定该北斗浮动车的采样数据为有效数据;
c、若N>3,则提取该北斗浮动车在该路段的各个采样时刻,并将第一个采样时刻存入第一缓存区,将第二个采样时刻存入第二缓存区,将第三个采样时刻存入第三缓存区;
判断该北斗浮动车的第三个坐标与第二个坐标之间的距离,若距离等于0,则将该北斗浮动车的第三个采样时刻存入第二缓存区;再判断该北斗浮动车的第四个坐标与第三个坐标之间的距离,若距离等于0,则将该北斗浮动车的第四个采样时刻存入第三缓存区;
以此类推,不断更新缓存区,直至处理完该北斗浮动车在该路段上的所有采样样本;处理结束后,将第一缓存区、第二缓存区、第三缓存区中存储的采样时刻依次记为T1、T2、T3
若T3-T1>600s且T3-T2>300s,则判定该北斗浮动车为异常停车,其采样数据为无效数据。
所述的基于北斗的城市大面积路网交通感知方法,所述步骤(2)具体包括:
(21)在城市路网基础上,覆盖网格化处理层,确定每个网格的编号和边界范围,网格大小的基本单位为25米*25米;
(22)基于城市路网中所有路段的起点和终点坐标信息,对路段与网格进行关联绑定。
所述的基于北斗的城市大面积路网交通感知方法,所述步骤(3)中,构建城市路网车辆坐标匹配指数模型,得到与北斗浮动车的当前坐标相匹配的路段,具体包括:
(31)获取候选路段集中各个候选路段信息,包括候选路段编号、候选路段起点坐标、候选路段终点坐标和候选路段方向角;
(32)根据候选路段起点坐标和候选路段终点坐标,得到候选路段线性函数;
(33)设北斗浮动车的当前坐标为(x0,y0,z0),候选路段Pi的直线方程为Aix+Biy+Ciz+Di=0,则采用以下公式计算出(x0,y0,z0)与Pi之间的距离di
d i = | A i x 0 + B i y 0 + C i z 0 + D i | A i 2 + B i 2 + C i 2
(34)构建城市路网车辆坐标匹配指数模型:
MI i = 0.65 1 + d i / d + 0.35 1 + θ i / θ
其中,MIi表示北斗浮动车的当前坐标与候选路段Pi的匹配指数,di表示当前坐标与候选路段Pi之间的距离,d表示北斗数据距离偏差阈值,θi表示北斗浮动车的当前方向角与候选路段Pi的方向角之间的偏差,θ表示北斗数据方向角偏差阈值;
(35)选取匹配指数最大的候选路段作为与北斗浮动车的当前坐标相匹配的路段。
所述的基于北斗的城市大面积路网交通感知方法,所述步骤(4)中,构建城市路网车辆路径规划模型,计算出拓展路段集中各个拓展路段的距离权重值,确定北斗浮动车的起点路段与终点路段之间的真实行驶路径轨迹,具体包括:
(41)构建城市路网车辆路径规划模型:
g(p,b)=d(p,b)+f(b,q)
其中,p表示起点路段,q表示终点路段,b表示起点路段p的拓展路段,g(p,b)表示拓展路段b的距离权重值,d(p,b)表示当选择拓展路段b时,在其上行驶结束时,北斗浮动车总计已经行驶的路径距离,f(b,q)表示拓展路段b与终点路段q之间的欧几里得距离;
(42)基于城市路网车辆路径规划模型,计算出起点路段的各个拓展路段的距离权重值,并将距离权重值最小的拓展路段选为北斗浮动车的真实行驶路段;
(43)将选中的拓展路段作为新的起点路段,重复步骤(52),直至在拓展路段中找到终点路段。
所述的基于北斗的城市大面积路网交通感知方法,所述步骤(5)具体包括:
(51)设某辆北斗浮动车在前后两相邻坐标之间的真实行驶路径为{Pi,i=1,2,…,n},其中,Pi表示该北斗浮动车所经过的第i个路段的ID号;
(52)采用以下公式计算出该北斗浮动车通过路段Pi的旅行时间:
t ij = Δ t j * l i Δ d j
其中,tij表示北斗浮动车j在路段Pi上的旅行时间,Δdj表示北斗浮动车j行驶路径的长度,Δtj表示北斗浮动车j前后两相邻采样时刻的时间差,li表示路段Pi的长度;
(53)采用以下公式计算得到路段Pi的平均旅行速度:
v i = l i * n i Σ j = 1 n i t ij
其中,vi表示路段Pi的平均旅行速度,ni表示路段Pi上参与计算的北斗浮动车总数;
(54)采用以下公式计算得到路段Pi的校正平均旅行速度:
V i = k 1 V i ‾ + ( 1 - k 1 ) v i
其中,Vi表示路段Pi的校正平均旅行速度,表示路段Pi的若干历史同期校正平均旅行速度的平均值,k1为大于0且小于1的系数;
(55)采用以下公式对路段Pi的若干历史同期校正平均旅行速度的平均值和最近一次计算的路段Pi的校正平均旅行速度进行更新:
V ‾ i ′ = k 2 V i ‾ + ( 1 - k 2 ) V i
V′i=Vi
其中,表示更新后的路段Pi的若干历史同期校正平均旅行速度的平均值,k2为大于0且小于1的系数,V′i表示最近一次计算的路段Pi的校正平均旅行速度。
所述的基于北斗的城市大面积路网交通感知方法,所述步骤(6)具体为:
采用以下公式补充得到该路段的校正平均旅行速度:
V i = k 3 V i ‾ + ( 1 - k 3 ) V i ′
其中,Vi表示该路段的校正平均旅行速度,表示该路段的若干历史同期校正平均旅行速度的平均值,V′i表示最近一次计算的该路段的校正平均旅行速度,k3为大于0且小于1的系数。
所述的基于北斗的城市大面积路网交通感知方法,所述步骤(7)中,构建路段交通运行指数模型,具体为:
RTPI i = 10 - 2 * V i &alpha; ( 0 &le; V i &le; &alpha; ) 2 + 2 * V i - &alpha; &beta; - &alpha; ( &alpha; < V i &le; &beta; ) 4 + 2 * V i - &beta; &lambda; - &beta; ( &beta; < V i &le; &lambda; ) 6 + 2 * V i - &lambda; p - &lambda; ( &lambda; < V i &le; p ) 8 + 2 * V i - p m - p ( p < V i &le; p ) 10 ( V i > m )
其中,RTPIi表示某路段的交通运行指数,Vi表示该路段的校正平均旅行速度,α、β、λ、p、m为道路交通拥堵感受优化参数。
由上述技术方案可知,本发明通过构建北斗数据预处理模型、车辆坐标匹配指数模型、车辆路径规划模型和路段交通运行指数模型,实现城市路网大面积范围内的交通状态感知,降低高楼大厦交通环境下,城市路网北斗定位的偏差,提高城市道路交通状态采集和发布的准确度,提升城市路网的交通运行效率和服务水平。
附图说明
图1是本发明的方法流程图;
图2是本发明的路径规划示意图。
具体实施方式
下面,结合附图和具体实施例进一步说明本发明。
如图1所示,一种基于北斗的城市大面积路网交通感知方法,包括以下步骤:
S1、构建北斗数据预处理模型,获取城市路网中所有北斗浮动车的动态参数,包括时间、坐标和方向角数据,对异常数据(如车辆停车)进行有效过滤,排除异常数据。
S11、北斗浮动车旅行速度预处理
定义北斗浮动车旅行速度v的合理范围为:1≤v≤f*vmax,其中,f是修正系数,vmax是道路允许的车辆最大行驶速度(km/h);
v = d ab t b - t a - - - ( 1 )
其中,dab为北斗浮动车前后两相邻坐标之间的距离,ta、tb分别为北斗浮动车前后两相邻坐标的采样时刻;
如果v满足合理范围区间,则认为该北斗浮动车的采样数据是有效数据,否则,认为是北斗精度误差和干扰误差,需要对该北斗浮动车的采样数据进行筛选或剔除。
S12、北斗浮动车旅行速度为0预处理
如果北斗浮动车旅行速度小于1km/h,其采样数据可能存在异常情况,因为无法判定是路边载客停车还是交通拥堵停车导致的;
为了避免由于北斗浮动车原始采样数据存在精度问题而产生假行驶现象,应该把相应北斗浮动车前后两相邻坐标之间的距离置为0,并保留时间差,同时运行0值判定筛选算法:
(1)定义T为统计时间,B1、B2、B3为三个数据缓存区;
(2)按照路段编号、车辆编号和采样时刻三个条件对所有北斗浮动车在统计时间T内的采样数据进行排列;
(3)设同一辆北斗浮动车在同一路段的采样样本数为N,提取该北斗浮动车在该路段的各个采样时刻,分别放入缓存区:第一个采样时刻存入B1,第二个采样时刻存入B2,第三个采样时刻存入B3;
(4)如果N≤3,则该北斗浮动车的采样数据可以使用(无法排除异常情况);
(5)如果N>3,首先判断该北斗浮动车的第三个坐标与第二个坐标之间的距离,若距离等于0,则将该北斗浮动车的第三个采样时刻存入B2,即将B2中存储的采样时刻更新为该北斗浮动车的第三个采样时刻;接着再判断该北斗浮动车的第四个坐标与第三个坐标之间的距离,若距离等于0,则将该北斗浮动车的第四个采样时刻存入B3;重复上述步骤,不断更新缓存区,直至处理完该北斗浮动车在该路段上的所有采样样本,此时,将B1、B2、B3三个数据缓存区中存储的采样时刻分别记为T1、T2、T3
(6)异常数据筛选
若T3-T1>600s且T3-T2>300s,则判定该北斗浮动车为异常停车,如路边休息、抛锚、停车等人等,其采样数据不能使用。
S2、构建城市路网基础模型,加载城市路网结点集合、路段集合和路由集合;
结点N是路网构建的原始点元素,是路段和路由的基础;
路段P是由两个结点所组成的连接,P=(n1,n2,B),其中n1∈N,n2∈N,表示前后两个结点间存在一条可以通行车辆的有界道路,B代表通行条件:B=0,限制通行;B=1,单向通行;B=2,双向通行;
路由L是多个结点和路段所组成的通行长路段集;
在城市路网基础模型上,覆盖网格化处理层,确定每个网格的编号和边界范围,网格大小的基本单位为25米*25米,然后基于城市路网中所有小路段的起点和终点坐标信息,对小路段与网格进行关联绑定:
设路段编码为Pi,网格编码为Qj,网格编码Qj与路段编码Pi进行一对多关联配对:
Qj={P1,P2,…,Pi}(i∈I,j∈J) (2)
i为当前路段的编号;j为当前网格的编号;I为当前网格内的所有路段个数;J为城市路网中所有网格的总个数。
S3、将北斗浮动车采集的坐标信息与城市路网地图进行匹配:
S31、基于北斗浮动车的当前坐标,确定其所在的网格,以该网格为中心,以周围九宫格为半径,搜索目标范围内的路段信息,确定候选路段集,具体包括:
设北斗浮动车的当前坐标为G=(x0,y0,z0),网格Qj={G1,G2,G3,G4},其中,G1为Qj的左上坐标,G2为Qj的右上坐标,G3为Qj的左下坐标,G4为Qj的右下坐标,如果G落入G1、G2、G3、G4界定的范围内,则判定G属于Qj
然后以Qj为中心,查找周围九宫格,利用公式(2)提取九宫格内的所有路段信息,作为候选路段集。
S32、获取候选路段集中各个候选路段信息,包括候选路段编号、候选路段起点坐标、候选路段终点坐标和候选路段方向角;根据候选路段起点坐标和候选路段终点坐标,得到候选路段线性函数;
设北斗浮动车的当前坐标为(x0,y0,z0),候选路段Pi的直线方程为Aix+Biy+Ciz+Di=0,则采用以下公式计算出(x0,y0,z0)与Pi之间的距离di
d i = | A i x 0 + B i y 0 + C i z 0 + D i | A i 2 + B i 2 + C i 2 - - - ( 3 )
构建城市路网车辆坐标匹配指数模型:
MI i = 0.65 1 + d i / d + 0.35 1 + &theta; i / &theta; - - - ( 4 )
其中,MIi表示北斗浮动车的当前坐标与候选路段Pi的匹配指数,di表示当前坐标与候选路段Pi之间的距离,d表示预设的北斗数据距离偏差阈值常数,一般设置为10米,θi表示北斗浮动车的当前方向角与候选路段Pi的方向角之间的偏差,θ表示预设的北斗数据方向角偏差阈值常数,一般设置为30度;
MIi越大,表示北斗浮动车的当前坐标与候选路段Pi的匹配度越高,因此,选取匹配指数最大的候选路段作为与北斗浮动车的当前坐标相匹配的路段。
S4、对北斗浮动车的行车路线进行推测:
加载城市路网基础模块,主要包括各个结点集合、路段集合、路由集合以及网格集合的信息,读取与某辆北斗浮动车前后两相邻坐标各自相匹配的路段,分别作为该北斗浮动车的起点路段和终点路段;
基于北斗浮动车的起点路段和终点路段信息,搜索北斗浮动车的拓展路段集,拓展路段指的是当车辆行驶到某个路段的终点时,其接下来可能选择行驶的路段,构建城市路网车辆路径规划模型:
g(p,b)=d(p,b)+f(b,q) (5)
lp = < n 1 , n 2 , B > = ( x 1 - x 2 ) 2 + ( y 1 - y 2 ) 2 + ( z 1 - z 2 ) 2 - - - ( 6 )
lb = < n 2 , n 3 , B > = ( x 2 - x 3 ) 2 + ( y 2 - y 3 ) 2 + ( z 2 - z 3 ) 2 - - - ( 7 )
lq = < n n - 1 , n n , B > = ( x n - 1 - x n ) 2 + ( y n - 1 - y n ) 2 + ( z n - 1 - z n ) 2 - - - ( 8 )
f ( b , q ) = < n 3 , n n - 1 , B > = ( x 3 - x n - 1 ) 2 + ( y 3 - y n - 1 ) 2 + ( z 3 - z n - 1 ) 2 - - - ( 9 )
d(p,b)=∑1pi+1b (10)
其中,1p为起点路段p的长度,n1=(x1,y1,z1)、n2=(x2,y2,z2)分别为起点路段p的两个结点,1q为终点路段q的长度,
nn-1=(xn-1,yn-1,zn-1)、nn=(xn,yn,zn)分别为终点路段q的两个结点,b为起点路段p的拓展路段,n2=(x2,y2,z2)、n3=(x3,y3,z3)分别为拓展路段b的两个结点,f(b,q)为估价距离,一般为拓展路段b与终点路段q之间的欧几里得距离,∑1pi为已走过的路径距离,1b为拓展路段b的长度,g(p,b)为拓展路段b的距离权重值;
利用城市路网车辆路径规划模型,计算出拓展路段集中各个拓展路段的距离权重值,距离权重值越小,代表路径越优,该拓展路段是真实行驶路段的概率就越大,通过判定最大概率行驶路段,最终实现车辆真实行驶路径的推演。
如图2所示,起点路段为p,终点路段为q,起点路段p的拓展路段为b1、b2、b3,根据上述公式计算,得出拓展路段b1的距离权重值最小,因此,将拓展路段b1作为新的起点路段,并找出其相应的拓展路段,按照上述公式计算,从新的起点路段b1的拓展路段中再找出距离权重值最小的路段作为新的起点路段,依次循环,直至在拓展路段中找到终点路段q为止,从而确定北斗浮动车的起点路段与终点路段之间的各个真实行驶路段,形成北斗浮动车的真实行驶路径轨迹。
S5、对城市路网中各个路段的校正平均旅行速度进行计算:
假设某辆北斗浮动车在前后两相邻坐标之间的真实行驶路径为{Pi,i=1,2,…,n},其中,Pi为该北斗浮动车所经过的第i个路段的ID号;
根据下式求出该北斗浮动车通过路段Pi的旅行时间:
t ij = &Delta; t j * l i &Delta; d j - - - ( 11 )
其中,tij为北斗浮动车j在路段Pi上的旅行时间,Δdj为北斗浮动车j行驶路径的长度,Δtj为北斗浮动车j前后两相邻采样时刻的时间差,li为路段Pi的长度;
采用下式计算得到路段Pi的平均旅行速度:
v i = l i * n i &Sigma; j = 1 n i t ij , n i &NotEqual; 0 - - - ( 12 )
其中,vi为路段Pi的平均旅行速度,ni为路段Pi上参与计算的北斗浮动车总数;当ni=0,即路段Pi上没有采样数据覆盖时,需要用历史数据进行补充处理,详见步骤S6;
采用以下公式计算得到路段Pi的校正平均旅行速度:
V i = k 1 V i &OverBar; + ( 1 - k 1 ) v i - - - ( 13 )
其中,Vi为路段Pi的校正平均旅行速度,为路段Pi的若干历史同期校正平均旅行速度的平均值,k1为大于0且小于1的系数;
采用以下公式对路段Pi的若干历史同期校正平均旅行速度的平均值和最近一次计算的路段Pi的校正平均旅行速度进行更新:
V &OverBar; i &prime; = k 2 V i &OverBar; + ( 1 - k 2 ) V i - - - ( 14 )
Vi′=Vi (15)
其中,为更新后的路段Pi的若干历史同期校正平均旅行速度的平均值,k2为大于0且小于1的系数,V′i为最近一次计算的路段Pi的校正平均旅行速度。
S6、利用交通状态的周期相似理论,结合邻近时间段的交通状态,对没有采样数据覆盖或者采样样本数较少的道路进行历史补充。
历史补充模型是对北斗浮动车的当前采样数据的校正,可以提高数据的准确度,数据补充的功能包括以下两个方面:
(1)当路段Pi上没有采样数据覆盖或者采样样本数较少时,通过路段Pi的若干历史同期校正平均旅行速度的平均值和最近一次计算的路段Pi的校正平均旅行速度V′i,补充得到路段Pi的校正平均旅行速度Vi,数据补充过程如下:
V i = k 3 V i &OverBar; + ( 1 - k 3 ) V i &prime; - - - ( 16 )
其中,Vi为路段Pi的校正平均旅行速度,为路段Pi的若干历史同期校正平均旅行速度的平均值,V′i为最近一次计算的路段Pi的校正平均旅行速度,k3为大于0且小于1的系数。
(2)当路段Pi上有采样数据覆盖且采样样本数符合要求时,首先计算路段Pi的校正平均旅行速度Vi,然后用Vi更新最近一次计算的路段Pi的校正平均旅行速度V′i,同时将路段Pi的若干历史同期校正平均旅行速度的平均值更新为数据更新过程参见公式(13)~(15)。
S7、基于各个路段的校正平均旅行速度,构建路段交通运行指数模型,根据计算得到的路段交通运行指数,对城市路网中各个路段的交通状态进行感知判定;
道路交通运行指数RTPI(Road Traffic Performance Index)是对道路交通运行状态的评价指标,基于路段的校正平均旅行速度Vi的RTPI计算模型如下:
RTPI i = 10 - 2 * V i &alpha; ( 0 &le; V i &le; &alpha; ) 2 + 2 * V i - &alpha; &beta; - &alpha; ( &alpha; < V i &le; &beta; ) 4 + 2 * V i - &beta; &lambda; - &beta; ( &beta; < V i &le; &lambda; ) 6 + 2 * V i - &lambda; p - &lambda; ( &lambda; < V i &le; p ) 8 + 2 * V i - p m - p ( p < V i &le; p ) 10 ( V i > m ) - - - ( 17 )
其中,α、β、λ、p、m为道路交通拥堵感受优化参数,需要利用调查问卷和数据分析拟合计算,而且不同的道路等级,参数大小也不相同。
道路交通运行指示模型参数的参考值如表1所示:
表1
根据交通运行指数的大小,判定当前路段的交通运行状态等级,状态判定区间如表2所示:
交通运行指数 [0,2] (2,4] (4,6] (6,8] (8,10]
状态评价等级 非常畅通 畅通 缓行 拥挤 拥堵
表2
以上所述实施方式仅仅是对本发明的优选实施方式进行描述,并非对本发明的范围进行限定,在不脱离本发明设计精神的前提下,本领域普通技术人员对本发明的技术方案作出的各种变形和改进,均应落入本发明的权利要求书确定的保护范围内。

Claims (7)

1.一种基于北斗的城市大面积路网交通感知方法,其特征在于,包括以下步骤:
(1)获取城市路网中所有北斗浮动车的动态参数,包括时间、坐标和方向角数据,对获取的数据进行预处理,排除异常数据;
(2)构建城市路网基础模型,加载城市路网结点集合、路段集合和路由集合,对城市路网地图进行网格化处理,将城市路网中所有路段编号与网格编号进行关联绑定;
(3)基于北斗浮动车的当前坐标,确定其所在的网格,以该网格为中心,以周围九宫格为半径,将九宫格中处于北斗定位误差范围内的路段作为候选路段,得到候选路段集;计算出北斗浮动车的当前坐标与候选路段集中各个候选路段之间的距离,结合北斗浮动车的当前方向角与候选路段集中各个候选路段方向角之间的偏差,构建城市路网车辆坐标匹配指数模型,得到与北斗浮动车的当前坐标相匹配的路段;
(4)读取与北斗浮动车前后两相邻坐标各自相匹配的路段,分别作为该北斗浮动车的起点路段和终点路段,基于北斗浮动车的起点路段和终点路段信息,搜索北斗浮动车的拓展路段集,构建城市路网车辆路径规划模型,计算出拓展路段集中各个拓展路段的距离权重值,确定北斗浮动车的起点路段与终点路段之间的真实行驶路径轨迹;
(5)基于北斗浮动车的真实行驶路径,综合分析得到各个路段的平均旅行时间,再结合各个路段的长度,计算得到各个路段的平均旅行速度,并利用各个路段的历史同期校正平均旅行速度,计算得到各个路段的校正平均旅行速度;
(6)对于没有采样数据覆盖或者采样样本数低于预设阈值的路段,基于交通状态的周期相似理论,利用该路段的历史同期校正平均旅行速度,结合该路段在邻近时间段的校正平均旅行速度,补充得到该路段的校正平均旅行速度信息;
(7)基于各个路段的校正平均旅行速度,构建路段交通运行指数模型,根据计算得到的路段交通运行指数,对城市路网中各个路段的交通状态进行感知判定;
所述步骤(1)中,对获取的数据进行预处理,排除异常数据,具体包括:
(11)采用以下公式计算北斗浮动车的旅行速度:
其中,v表示北斗浮动车的旅行速度,dab表示北斗浮动车前后两相邻坐标之间的距离,ta、tb分别表示北斗浮动车前后两相邻坐标的采样时刻;
(12)判断北斗浮动车的旅行速度v是否满足:1≤v≤f*vmax,若是,则判定该北斗浮动车的采样数据为有效数据,若否,则对该北斗浮动车的采样数据进行筛选或剔除;其中,vmax表示道路允许的车辆最大行驶速度,单位:km/h,f表示修正系数;
(13)对旅行速度小于1km/h的北斗浮动车的采样数据进行判定:
a、按照路段编号、车辆编号和采样时刻三个条件对所有北斗浮动车在统计时间内的采样数据进行排列;
b、设同一辆北斗浮动车在同一路段的采样样本数为N,若N≤3,则判定该北斗浮动车的采样数据为有效数据;
c、若N>3,则提取该北斗浮动车在该路段的各个采样时刻,并将第一个采样时刻存入第一缓存区,将第二个采样时刻存入第二缓存区,将第三个采样时刻存入第三缓存区;
判断该北斗浮动车的第三个坐标与第二个坐标之间的距离,若距离等于0,则将该北斗浮动车的第三个采样时刻存入第二缓存区;再判断该北斗浮动车的第四个坐标与第三个坐标之间的距离,若距离等于0,则将该北斗浮动车的第四个采样时刻存入第三缓存区;
以此类推,不断更新缓存区,直至处理完该北斗浮动车在该路段上的所有采样样本;处理结束后,将第一缓存区、第二缓存区、第三缓存 区中存储的采样时刻依次记为T1、T2、T3
若T3-T1>600s且T3-T2>300s,则判定该北斗浮动车为异常停车,其采样数据为无效数据。
2.根据权利要求1所述的基于北斗的城市大面积路网交通感知方法,其特征在于,所述步骤(2)具体包括:
(21)在城市路网基础上,覆盖网格化处理层,确定每个网格的编号和边界范围,网格大小的基本单位为25米*25米;
(22)基于城市路网中所有路段的起点和终点坐标信息,对路段与网格进行关联绑定。
3.根据权利要求1所述的基于北斗的城市大面积路网交通感知方法,其特征在于,所述步骤(3)中,构建城市路网车辆坐标匹配指数模型,得到与北斗浮动车的当前坐标相匹配的路段,具体包括:
(31)获取候选路段集中各个候选路段信息,包括候选路段编号、候选路段起点坐标、候选路段终点坐标和候选路段方向角;
(32)根据候选路段起点坐标和候选路段终点坐标,得到候选路段线性函数;
(33)设北斗浮动车的当前坐标为(x0,y0,z0),候选路段Pi的直线方程为Aix+Biy+Ciz+Di=0,则采用以下公式计算出(x0,y0,z0)与Pi之间的距离di
(34)构建城市路网车辆坐标匹配指数模型:
其中,MIi表示北斗浮动车的当前坐标与候选路段Pi的匹配指数,di表示当前坐标与候选路段Pi之间的距离,d表示北斗数据距离偏差阈值,θi表示北斗浮动车的当前方向角与候选路段Pi的方向角之间的偏差,θ表示北斗数据方向角偏差阈值;
(35)选取匹配指数最大的候选路段作为与北斗浮动车的当前坐标相匹配的路段。
4.根据权利要求1所述的基于北斗的城市大面积路网交通感知方法,其特征在于,所述步骤(4)中,构建城市路网车辆路径规划模型,计算出拓展路段集中各个拓展路段的距离权重值,确定北斗浮动车的起点路段与终点路段之间的真实行驶路径轨迹,具体包括:
(41)构建城市路网车辆路径规划模型:
g(p,b)=d(p,b)+f(b,q)
其中,p表示起点路段,q表示终点路段,b表示起点路段p的拓展路段,g(p,b)表示拓展路段b的距离权重值,d(p,b)表示当选择拓展路段b时,在其上行驶结束时,北斗浮动车总计已经行驶的路径距离,f(b,q)表示拓展路段b与终点路段q之间的欧几里得距离;
(42)基于城市路网车辆路径规划模型,计算出起点路段的各个拓展路段的距离权重值,并将距离权重值最小的拓展路段选为北斗浮动车的真实行驶路段;
(43)将选中的拓展路段作为新的起点路段,重复步骤(52),直至在拓展路段中找到终点路段。
5.根据权利要求1所述的基于北斗的城市大面积路网交通感知方法,其特征在于,所述步骤(5)具体包括:
(51)设某辆北斗浮动车在前后两相邻坐标之间的真实行驶路径为{Pi,i=1,2,…,n},其中,Pi表示该北斗浮动车所经过的第i个路段的ID号;
(52)采用以下公式计算出该北斗浮动车通过路段Pi的旅行时间:
其中,tij表示北斗浮动车j在路段Pi上的旅行时间,Δdj表示北斗浮动车j行驶路径的长度,Δtj表示北斗浮动车j前后两相邻采样时刻的时间差,li表示路段Pi的长度;
(53)采用以下公式计算得到路段Pi的平均旅行速度:
其中,vi表示路段Pi的平均旅行速度,ni表示路段Pi上参与计算的北斗浮动车总数;
(54)采用以下公式计算得到路段Pi的校正平均旅行速度:
其中,Vi表示路段Pi的校正平均旅行速度,表示路段Pi的若干历史同期校正平均旅行速度的平均值,k1为大于0且小于1的系数;
(55)采用以下公式对路段Pi的若干历史同期校正平均旅行速度的平均值和最近一次计算的路段Pi的校正平均旅行速度进行更新:
V′i=Vi
其中,表示更新后的路段Pi的若干历史同期校正平均旅行速度的平均值,k2为大于0且小于1的系数,V′i表示最近一次计算的路段Pi的校正平均旅行速度。
6.根据权利要求1所述的基于北斗的城市大面积路网交通感知方法,其特征在于,所述步骤(6)具体为:
采用以下公式补充得到该路段的校正平均旅行速度:
其中,Vi表示该路段的校正平均旅行速度,表示该路段的若干历史同期校正平均旅行速度的平均值,V′i表示最近一次计算的该路段的校正平均旅行速度,k3为大于0且小于1的系数。
7.根据权利要求1所述的基于北斗的城市大面积路网交通感知方法,其特征在于,所述步骤(7)中,构建路段交通运行指数模型,具体为:
其中,RTPIi表示某路段的交通运行指数,Vi表示该路段的校正平均旅行速度,α、β、λ、p、m为道路交通拥堵感受优化参数。
CN201510018571.2A 2015-01-14 2015-01-14 一种基于北斗的城市大面积路网交通感知方法 Active CN104574967B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510018571.2A CN104574967B (zh) 2015-01-14 2015-01-14 一种基于北斗的城市大面积路网交通感知方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510018571.2A CN104574967B (zh) 2015-01-14 2015-01-14 一种基于北斗的城市大面积路网交通感知方法

Publications (2)

Publication Number Publication Date
CN104574967A CN104574967A (zh) 2015-04-29
CN104574967B true CN104574967B (zh) 2016-08-24

Family

ID=53090910

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510018571.2A Active CN104574967B (zh) 2015-01-14 2015-01-14 一种基于北斗的城市大面积路网交通感知方法

Country Status (1)

Country Link
CN (1) CN104574967B (zh)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105261210B (zh) * 2015-07-23 2017-11-10 合肥革绿信息科技有限公司 一种基于北斗装备的路段交通拥堵指数计算方法
CN105371857B (zh) * 2015-10-14 2018-05-22 山东大学 一种基于公交车gnss时空轨迹数据建构路网拓扑的装置及方法
CN105303832B (zh) * 2015-11-05 2018-01-19 安徽四创电子股份有限公司 基于微波车辆检测器的高架桥路段交通拥堵指数计算方法
CN105547316B (zh) * 2015-12-28 2018-09-04 北京握奇智能科技有限公司 一种浮动车车载终端的路径搜索方法及系统
CN105509753B (zh) * 2015-12-28 2019-01-25 北京握奇智能科技有限公司 一种基于浮动车卫星定位数据的地图匹配方法及系统
CN105628043B (zh) * 2015-12-28 2018-09-04 北京握奇智能科技有限公司 一种浮动车车载终端的最优路径搜索方法及系统
CN105489008B (zh) * 2015-12-28 2018-10-19 北京握奇智能科技有限公司 基于浮动车卫星定位数据的城市道路拥堵计算方法及系统
WO2018002386A1 (es) * 2016-06-30 2018-01-04 Dirección General De Tráfico Procedimiento para determinar un índice que permita establecer y evaluar políticas de vigilancia de la velocidad, en las vías de circulación de un territorio.
CN106297285B (zh) * 2016-08-17 2018-09-21 重庆大学 基于动态权重的高速公路交通运行状态模糊综合评价方法
CN107393301B (zh) * 2017-07-25 2019-09-27 重庆市市政设计研究院 一种基于rfid数据的车辆轨迹识别方法
CN108346299B (zh) * 2018-01-09 2020-07-10 北京荣之联科技股份有限公司 车辆速度评估方法及装置
CN109215338B (zh) * 2018-06-27 2020-05-29 杭州叙简科技股份有限公司 一种基于网格化的北斗gps车辆轨迹管理系统及其方法
CN109345838B (zh) * 2018-10-21 2020-11-17 浙江浙大中控信息技术有限公司 基于完整地图信息的计算子路段行程车速的方法
CN109215347B (zh) * 2018-10-22 2020-10-09 北京航空航天大学 一种基于众包轨迹数据的交通数据质量控制方法
CN110969857B (zh) * 2019-12-27 2021-11-19 华为技术有限公司 一种交通信息处理方法及装置
CN111798660B (zh) * 2020-06-30 2021-12-07 腾讯科技(深圳)有限公司 车辆信息显示、获取方法及装置以及相关设备
CN112598238B (zh) * 2020-12-14 2022-07-01 青岛大学 一种城市特种车辆服务真空区域智能识别方法
CN113778987B (zh) * 2021-08-20 2023-10-17 江西省军民融合研究院 基于北斗位置服务平台的路网查询方法
CN114743379B (zh) * 2022-06-13 2022-09-06 广东邦盛北斗科技股份公司 基于北斗的城市大面积路网交通感知方法、系统及云平台

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101270997A (zh) * 2007-03-21 2008-09-24 北京交通发展研究中心 基于gps数据的浮动车动态实时交通信息处理方法
CN102637357A (zh) * 2012-03-27 2012-08-15 山东大学 一种区域交通状态评价方法
CN102692227A (zh) * 2011-03-22 2012-09-26 北京四维图新科技股份有限公司 进行路径匹配的方法和装置
CN102810251A (zh) * 2012-08-01 2012-12-05 重庆大学 基于gps终端的面向简化路网模型的实时路况信息采集系统
EP2599072B1 (en) * 2010-07-29 2013-10-23 Toyota Jidosha Kabushiki Kaisha Traffic control system, vehicle control system, traffic regulation system, and traffic control method
CN103761430A (zh) * 2014-01-10 2014-04-30 安徽科力信息产业有限责任公司 一种基于浮动车的路网高峰时段识别方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101270997A (zh) * 2007-03-21 2008-09-24 北京交通发展研究中心 基于gps数据的浮动车动态实时交通信息处理方法
EP2599072B1 (en) * 2010-07-29 2013-10-23 Toyota Jidosha Kabushiki Kaisha Traffic control system, vehicle control system, traffic regulation system, and traffic control method
CN102692227A (zh) * 2011-03-22 2012-09-26 北京四维图新科技股份有限公司 进行路径匹配的方法和装置
CN102637357A (zh) * 2012-03-27 2012-08-15 山东大学 一种区域交通状态评价方法
CN102810251A (zh) * 2012-08-01 2012-12-05 重庆大学 基于gps终端的面向简化路网模型的实时路况信息采集系统
CN103761430A (zh) * 2014-01-10 2014-04-30 安徽科力信息产业有限责任公司 一种基于浮动车的路网高峰时段识别方法

Also Published As

Publication number Publication date
CN104574967A (zh) 2015-04-29

Similar Documents

Publication Publication Date Title
CN104574967B (zh) 一种基于北斗的城市大面积路网交通感知方法
CN104567906B (zh) 一种基于北斗的城市路网车辆路径规划方法及装置
Zhao et al. Truck traffic speed prediction under non-recurrent congestion: Based on optimized deep learning algorithms and GPS data
CN109035784B (zh) 基于多源异构数据的动态车流od估计方法
CN101246514B (zh) 城市快速路互通立交仿真设计系统及建立设计模型的方法
CN104731963A (zh) 一种基于车联网的网格化路径推荐方法及系统
CN104575075B (zh) 一种基于北斗的城市路网车辆坐标校正方法及装置
CN107016851A (zh) 一种量化分析城市建成环境对道路行程时间影响的方法
CN107919014B (zh) 面向多载客里程的出租车运行线路优化方法
CN104573116B (zh) 基于出租车gps数据挖掘的交通异常识别方法
CN106251625A (zh) 大数据环境下立体城市交通路网全局状态预测方法
CN104575085B (zh) 一种基于浮动车的公交车到站动态诱导方法
CN106197460B (zh) 一种应用gps出行数据进行出行目的地预测的方法
CN101246513A (zh) 城市快速路互通立交仿真设计系统及选型方法
CN105868861A (zh) 一种基于时空数据融合的公交客流演化分析方法
CN105809292A (zh) 公交ic卡乘客下车站点推算方法
CN105551239B (zh) 旅行时间预测方法及装置
CN102044149A (zh) 一种基于时变客流的城市公交运营协调方法与装置
CN107195180A (zh) 一种基于电警数据的交通出行轨迹提取方法和装置
CN102592447A (zh) 一种基于fcm的区域路网的道路交通状态判别方法
CN113724489B (zh) 基于多源数据的交通拥堵溯源方法
CN104900057A (zh) 一种城市快速路主辅道的浮动车地图匹配方法
CN106097717A (zh) 基于两类浮动车数据融合的信号交叉口平均通行时间估计方法
CN104406590B (zh) 一种基于道路等级的最短路径规划方法
CN114139251B (zh) 一种边境地区陆路口岸整体布局方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant