CN104548103B - 氧化石墨烯和氯霉素直接结合的复合物的制备方法 - Google Patents
氧化石墨烯和氯霉素直接结合的复合物的制备方法 Download PDFInfo
- Publication number
- CN104548103B CN104548103B CN201310511540.1A CN201310511540A CN104548103B CN 104548103 B CN104548103 B CN 104548103B CN 201310511540 A CN201310511540 A CN 201310511540A CN 104548103 B CN104548103 B CN 104548103B
- Authority
- CN
- China
- Prior art keywords
- hours
- chloramphenicol
- add
- conjunction
- grams
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
Abstract
一种氧化石墨烯和氯霉素直接结合的复合物的制备方法,其中将石墨粉和硝酸钠加入到浓硫酸中,加高锰酸钾,冰浴反应,然后于30℃‑60℃水浴中继续搅拌,加去离子水,搅拌,加双氧水,搅拌,抽滤,用盐酸以及去离子水洗涤,加β‑环糊精,搅拌,抽滤,用去离子水洗涤,置真空冷冻干燥,称取干燥物,加去离子水超声,加氢氧化钠后继续超声,加盐酸,加磷酸盐或硼酸盐缓冲溶液配制的氯霉素液,振荡,置真空冷冻干燥,得氧化石墨烯和氯霉素直接结合的复合物。
Description
技术领域
本发明属于氧化石墨烯应用领域,具体涉及一种氧化石墨烯和氟尿嘧啶或氯霉素直接结合为复合物的制备方法。
背景技术
氧化石墨烯和药物直接结合是一种可以增加药物稳定性或降低药物不良反应的方法。氟尿嘧啶是抗代谢抗肿瘤药物,能在分子水平上代替正常代谢物尿嘧啶,抑制胸腺嘧啶合成酶使其失活,从而抑制DNA的合成,最后导致肿瘤细胞死亡。氟尿嘧啶的抗瘤谱比较广,是临床治疗实体肿瘤的首选药物,但是氟尿嘧啶的不良反应比较多,常见有:胃肠道反应、骨髓抑制、脱发等。
氯霉素主要作用于细胞核糖体50S亚基,能特异性地阻止mRNA与核糖体结合,从而阻止细菌蛋白质的合成;主要对革兰阴性菌和革兰阳性菌都有抑制作用,临床上主要用于治疗伤寒、沙眼、结膜炎等;氯霉素在干燥状态下可保持抗菌活性5年以上,但是其水溶液不稳定,容易分解为无效物。
石墨烯是由只有一个原子直径厚度的碳原子,以sp2杂化连接的单原子层构成的二维原子晶体,碳原子排列呈蜂窝状。石墨烯是构成其他维度碳材料的基本单元,它可以折叠成零维的富勒烯,卷曲成一维的碳纳米管和堆垛成三维的石墨,其理论厚度仅为0.35nm,是目前所发现的最薄的二维材料,也是目前最理想的二维纳米材料。氧化石墨烯是石墨烯的含氧衍生物,它的结构与石墨烯大体相同,只是在其表面上连有大量羟基、羰基等亲水性含氧官能团。这些含氧官能团的存在使氧化石墨烯更容易进行结构改造和功能化,比石墨烯更适于生物医药方面的应用。氧化石墨烯具有单原子层厚度,其两个基面都可以吸附药物,所以具有其他纳米材料无可比拟的超高载药率。将氟尿嘧啶或氯霉素分别和氧化石墨烯直接结合,形成氧化石墨烯和药物的复合物。基于氧化石墨烯具有较高的载药量、分别和氟尿嘧啶或氯霉素结合为复合物,有望在临床上降低氟尿嘧啶的不良反应,或者是提高氯霉素水溶液的稳定性。
发明内容
本发明的目的在于制备氧化石墨烯和氟尿嘧啶直接结合为复合物的制备方法。氧化石墨烯具有很大的比表面积,可以通过非共价键作用吸附氟尿嘧啶从而形成氧化石墨烯和氟尿嘧啶复合物。该复合物有望在临床上把氟尿嘧啶传递到肿瘤靶器官发挥作用,减少其他组织的氟尿嘧啶存在,降低氟尿嘧啶的不良反应。
本发明的另一目在于制备氧化石墨烯和氯霉素直接结合为复合物的制备方法。氯霉素的化学结构为D-苏式-(-)-N-[α-羟基甲基)-β-羟基-对硝基苯乙基]-2,2二氯乙酰胺。在滴眼液、滴耳液等水溶液中氯霉素容易被水解、二醇物含量增加,缩短了氯霉素的保质期。利用氧化石墨烯很大的比表面积和氯霉素直接结合为复合物,通过非共价键作用保护氯霉素的结构稳定,提高氯霉素水溶液的稳定性。
具体实施方式
实施例1:
本实施例是氧化石墨烯和氟尿嘧啶直接结合为复合物的制备方法。将 10克石墨粉和3克-8克硝酸钠加入到冷却了的浓硫酸中,缓慢加入高锰酸钾 20克-40克,于冰浴中反应2小时-5小时,然后于30℃-60℃水浴中继续搅拌12小时-24小时,加入去离子水,搅拌30分钟后,加入500毫升30%的双氧水,搅拌,抽滤,并用一定浓度的盐酸洗涤,再用去离子水洗涤,加入1.5%β-环糊精1—100毫升,搅拌,抽滤,用去离子水洗涤,置冷冻干燥机中真空条件下冷冻干燥24小时-48小时,得干燥物,称取0.2克干燥物加入到50毫升去离子水中超声2小时,加入2mol/L的氢氧化钠溶液50毫升后继续超声振荡3小时,之后加入盐酸,再加入磷酸盐缓冲溶液配制的氟尿嘧啶液,充分振荡1小时-2小时,置冷冻干燥机中真空冷冻干燥24小时-48小时,得氧化石墨烯和氟尿嘧啶直接结合的复合物。
取氧化石墨烯和氟尿嘧啶直接结合的复合物用磷酸盐缓冲溶液溶解,然后用高速离心机以12000rpm离心10分钟,以265nm作为检测波长,按分光光度法测定上清液的吸光度,计算载药量。
实施例2:
本实施例是氧化石墨烯和氯霉素直接结合为复合物的制备方法。将10 克石墨粉和3克-8克硝酸钠加入到冷却了的浓硫酸中,缓慢加入高锰酸钾20 克-40克,于冰浴中反应2小时-5小时,然后于30℃-60℃水浴中继续搅拌 12小时-24小时,加入去离子水,搅拌30分钟后,加入500毫升30%的双氧水,搅拌,抽滤,并用一定浓度的盐酸洗涤,再用去离子水洗涤,加入1.5%β- 环糊精1-100毫升,搅拌,抽滤,用去离子水洗涤,置冷冻干燥机中真空条件下冷冻干燥24小时-48小时,得干燥物,称取0.2克干燥物加入到50毫升去离子水中超声2小时,加入2mol/L的氢氧化钠溶液50毫升后继续超声振荡3 小时,之后加入盐酸,再加入硼酸盐缓冲溶液配制的氯霉素液,充分振荡1小时-2小时,置冷冻干燥机中真空冷冻干燥24小时-48小时,得氧化石墨烯和氯霉素直接结合的复合物。
取氧化石墨烯和氯霉素直接结合的复合物用硼酸盐缓冲溶液溶解,然后用高速离心机以12000rpm离心10分钟,以278nm作为检测波长,按分光光度法测定上清液的吸光度,计算载药量。
Claims (1)
1.氧化石墨烯和氯霉素直接结合的 复合物的制备方法:将10克石墨粉和3克-8克硝酸钠加入到冷却了的浓硫酸中,缓慢加入高锰酸钾20克-40克,于冰浴中反应2小时-5小时,然后于30℃-60℃水浴中继续搅拌12小时-24小时,加入去离子水,搅拌30分钟后,加入500毫升30%的双氧水,搅拌,抽滤,并用一定浓度的盐酸洗涤,再用去离子水洗涤,加入1.5%β-环糊精1-100毫升,搅拌,抽滤,用去离子水洗涤,置冷冻干燥机中真空条件下冷冻干燥24小时-48小时,得干燥物,称取0.2克干燥物加入到50毫升去离子水中超声2小时,加入2mol/L的氢氧化钠溶液50毫升后继续超声振荡3小时,之后加入盐酸,再加入硼酸盐缓冲溶液配制的氯霉素液,充分振荡1小时-2小时,置冷冻干燥机中真空冷冻干燥24小时-48小时,得氧化石墨烯和氯霉素直接结合的复合物。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310511540.1A CN104548103B (zh) | 2013-10-17 | 2013-10-17 | 氧化石墨烯和氯霉素直接结合的复合物的制备方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310511540.1A CN104548103B (zh) | 2013-10-17 | 2013-10-17 | 氧化石墨烯和氯霉素直接结合的复合物的制备方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN104548103A CN104548103A (zh) | 2015-04-29 |
CN104548103B true CN104548103B (zh) | 2018-04-10 |
Family
ID=53065869
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201310511540.1A Expired - Fee Related CN104548103B (zh) | 2013-10-17 | 2013-10-17 | 氧化石墨烯和氯霉素直接结合的复合物的制备方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN104548103B (zh) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105125478A (zh) * | 2015-08-26 | 2015-12-09 | 金陵科技学院 | 一种具有pH敏感特性的可注射性的纳米复合水凝胶 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101455630A (zh) * | 2009-01-09 | 2009-06-17 | 沈阳药科大学 | 含磺丁基醚-β-环糊精的氯霉素滴眼液及其制备方法 |
CN101461795A (zh) * | 2007-12-17 | 2009-06-24 | 吴文耀 | 氯霉素眼用制剂及其制备方法 |
CN101565384A (zh) * | 2008-12-23 | 2009-10-28 | 南开大学 | 环糊精修饰单层石墨及其超分子复合物和制备方法及用途 |
CN101657203A (zh) * | 2007-03-02 | 2010-02-24 | 卧龙岗大学 | 抗癌药的组合物及递送方法 |
CN102183557A (zh) * | 2011-01-22 | 2011-09-14 | 青岛大学 | 一种环糊精功能化石墨烯的制备方法 |
CN102949727A (zh) * | 2012-12-12 | 2013-03-06 | 天津医科大学 | 靶向性抗肿瘤药物和基因共载载体材料及制备和应用 |
-
2013
- 2013-10-17 CN CN201310511540.1A patent/CN104548103B/zh not_active Expired - Fee Related
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101657203A (zh) * | 2007-03-02 | 2010-02-24 | 卧龙岗大学 | 抗癌药的组合物及递送方法 |
CN101461795A (zh) * | 2007-12-17 | 2009-06-24 | 吴文耀 | 氯霉素眼用制剂及其制备方法 |
CN101565384A (zh) * | 2008-12-23 | 2009-10-28 | 南开大学 | 环糊精修饰单层石墨及其超分子复合物和制备方法及用途 |
CN101455630A (zh) * | 2009-01-09 | 2009-06-17 | 沈阳药科大学 | 含磺丁基醚-β-环糊精的氯霉素滴眼液及其制备方法 |
CN102183557A (zh) * | 2011-01-22 | 2011-09-14 | 青岛大学 | 一种环糊精功能化石墨烯的制备方法 |
CN102949727A (zh) * | 2012-12-12 | 2013-03-06 | 天津医科大学 | 靶向性抗肿瘤药物和基因共载载体材料及制备和应用 |
Non-Patent Citations (3)
Title |
---|
功能化氧化石墨烯作为基因和抗肿瘤药物纳米载体的制备及性能研究;曹秀芬等;《天津医科大学学报》;20130531;第19卷(第3期);第178-181页 * |
环糊精-石墨烯超分子体系;孙涛等;《中国有机化学》;20120613;第32卷;2054-2062 * |
石墨烯的氧化还原法制备与表征;苏静;《河北化工》;20130430;第36卷(第4期);17-19页 * |
Also Published As
Publication number | Publication date |
---|---|
CN104548103A (zh) | 2015-04-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Qin et al. | Nanodiamonds: Synthesis, properties, and applications in nanomedicine | |
Some et al. | Dual functions of highly potent graphene derivative–poly-l-lysine composites to inhibit bacteria and support human cells | |
Sagbas et al. | Carbon dots: preparation, properties, and application | |
Dong et al. | A versatile multicomponent assembly via β‐cyclodextrin host–guest chemistry on graphene for biomedical applications | |
Rabiee et al. | Bioactive hybrid metal-organic framework (MOF)-based nanosensors for optical detection of recombinant SARS-CoV-2 spike antigen | |
Zheng et al. | Post-graphene 2D materials-based antimicrobial agents: focus on fabrication strategies and biosafety assessments | |
Zhang et al. | Gold/chitosan nanocomposites with specific near infrared absorption for photothermal therapy applications | |
Eivazzadeh-Keihan et al. | Functionalized graphene oxide nanosheets with folic acid and silk fibroin as a novel nanobiocomposite for biomedical applications | |
Zhao et al. | 2D Piezoelectric BiVO4 artificial nanozyme with adjustable vanadium vacancy for ultrasound enhanced piezoelectric/sonodynamic therapy | |
WO2019181018A1 (ja) | ホウ素同位体を含有するナノシリカ粒子のホウ素中性子捕捉剤 | |
US20190358345A1 (en) | Amphiphilic nonsteroid anti-inflammatory platinum nanoparticles and preparation methods therefor | |
He et al. | Spatiotemporally controlled O 2 and singlet oxygen self-sufficient nanophotosensitizers enable the in vivo high-yield synthesis of drugs and efficient hypoxic tumor therapy | |
CN104189917A (zh) | 一种含阿霉素的氧化石墨烯载药复合材料的制备方法 | |
Ranjbari et al. | Application of MXene in the diagnosis and treatment of breast cancer: A critical overview | |
Lu et al. | Emerging metallenes: synthesis strategies, biological effects and biomedical applications | |
CN104548103B (zh) | 氧化石墨烯和氯霉素直接结合的复合物的制备方法 | |
Naskar et al. | Black phosphorus-based CuS nanoplatform: Near-infrared-responsive and reactive oxygen species-generating agent against environmental bacterial pathogens | |
Lv et al. | Polyoxometalate-based heterojunction with NIR light-facilitated photocatalytic W6+/W5+ redox cycling for enhanced bacteria-infected wound healing | |
Li et al. | Emerging 2D pnictogens for biomedical applications | |
Wang et al. | Synergistic H2O2 self-supplying and NIR-responsive drug delivery nanoplatform for chemodynamic-photothermal-chemotherapy | |
Zhong et al. | Right once for all: Zinc-modulated highly stable iron-based ROS generator under physiological conditions for promoting bacteria-infected wound healing | |
Fadhil et al. | Synthesis, characterization, and in vitro study of novel modified reduced graphene oxide (RGO) containing heterocyclic compounds as anti-breast cancer | |
Karunakaran et al. | Ligand-mediated exfoliation and antibacterial activity of 2H transition-metal dichalcogenides | |
Gao et al. | Prussian Blue Nanoparticle: From a Photothermal Conversion Agent and a Drug Delivery System, to a Bioactive Drug | |
Karki et al. | Synergistic effect of avidin/biotin system with biofunctionalized graphene oxide based nanocarrier in targeted co‐delivery of hydrophobic anticancer drug SN‐38 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20180410 Termination date: 20211017 |