CN104535409B - A kind of multiphase coupled dynamic test system and method for more of true triaxial - Google Patents

A kind of multiphase coupled dynamic test system and method for more of true triaxial Download PDF

Info

Publication number
CN104535409B
CN104535409B CN201510010360.4A CN201510010360A CN104535409B CN 104535409 B CN104535409 B CN 104535409B CN 201510010360 A CN201510010360 A CN 201510010360A CN 104535409 B CN104535409 B CN 104535409B
Authority
CN
China
Prior art keywords
rock sample
test
rock
pressure
data processing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201510010360.4A
Other languages
Chinese (zh)
Other versions
CN104535409A (en
Inventor
马占国
杨凯
罗宁
唐芙蓉
王建国
沈晓明
魏明
张帆
李冲
刘道平
崔楠
郭树海
王志强
王宇
杨党委
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China University of Mining and Technology CUMT
Original Assignee
China University of Mining and Technology CUMT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China University of Mining and Technology CUMT filed Critical China University of Mining and Technology CUMT
Priority to CN201510010360.4A priority Critical patent/CN104535409B/en
Publication of CN104535409A publication Critical patent/CN104535409A/en
Priority to PCT/CN2015/082590 priority patent/WO2016110067A1/en
Application granted granted Critical
Publication of CN104535409B publication Critical patent/CN104535409B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

本发明公开了一种真三轴多场多相耦合动力学试验系统及方法,入射杆的一端与透射杆的一端分别与三轴加载装置的两端固定;所述的三轴加载装置为六面体,包括三组两两相对设置的压力装置;能对岩石试样各个面单独控制加压和卸载,并可任意改变六个油缸预应力加载值,入射杆和透射杆上装有应变片,便于测量岩石试样冲击时的力学性能;另外增加了温度效应试验系统和化学效应试验系统,通过调节系统的温度及注入各种不同的化学溶剂和各种气体,改变岩样所处的温度场、化学场,同时结合岩样所受的应力场,从而得到岩样在应力场、温度场、化学场、固、液、气等多场多相耦合作用下的力学特征,为后续的研究提供数据和理论支持。

The invention discloses a true three-axis multi-field multi-phase coupling dynamics test system and method, one end of the incident rod and one end of the transmission rod are respectively fixed to the two ends of the three-axis loading device; the three-axis loading device is a hexahedron , including three groups of pressure devices arranged in pairs; it can independently control the pressure and unloading of each surface of the rock sample, and can arbitrarily change the prestress loading value of the six oil cylinders. The incident rod and the transmission rod are equipped with strain gauges for easy measurement The mechanical properties of the rock sample during impact; in addition, a temperature effect test system and a chemical effect test system are added. By adjusting the temperature of the system and injecting various chemical solvents and various gases, the temperature field and chemical properties of the rock sample can be changed. field, combined with the stress field suffered by the rock sample, so as to obtain the mechanical characteristics of the rock sample under the multi-phase coupling action of stress field, temperature field, chemical field, solid, liquid, gas, etc., to provide data and information for subsequent research. theoretical support.

Description

一种真三轴多场多相耦合动力学试验系统及方法A true three-axis multi-field multi-phase coupling dynamics test system and method

技术领域technical field

本发明涉及一种真三轴多场多相耦合动力学试验系统及方法,属于力学性能测试技术领域。The invention relates to a true three-axis multi-field multi-phase coupling dynamics test system and method, belonging to the technical field of mechanical performance testing.

背景技术Background technique

岩石材料的三维动力特性试验研究是岩石冲击动力学中很重要的一个领域,也是目前研究的一个热点。通过总结三轴SHPB(霍普金森压杆)岩石力学试验机的研制情况,并对各类试验机的特点进行了比较。综合分析了三轴SHPB试验相关研究文献,总结了一些共有规律:①在围压一定的情况下,岩石的动态抗压强度会随着应变率的增加而增加,呈现出线性函数或者指数函数增加形式,并且脆性减弱,塑性显著增加;②在应变率一定的情况下,岩石抗压强度会随着围压的增大而增大,线性关系比较显著;③岩石动静组合加载时,在轴压一定时,岩石的动静组合抗压强度会随着围压的增大而增大,呈现出近似线性增加趋势;在围压固定时,抗压强度随着轴向静压的增大呈现出先增大后减小的趋势。由于SHPB试验装置和岩石材料本身的特点,目前在一些基本问题上,如加载应力波形、试样尺寸要求等方面,还没有统一的试验规范要求,很多试验结果只能进行定性比较,无法在统一尺度上进行定量分析。The experimental research on the three-dimensional dynamic characteristics of rock materials is a very important field in rock impact dynamics, and it is also a hot spot in current research. By summarizing the development of the three-axis SHPB (Hopkinson pressure bar) rock mechanics testing machine, and comparing the characteristics of various testing machines. Comprehensively analyzed the research literature related to the triaxial SHPB test, and summarized some common rules: ① Under a certain confining pressure, the dynamic compressive strength of the rock will increase with the increase of the strain rate, showing a linear function or an exponential function increase form, and the brittleness is weakened, and the plasticity is significantly increased; ②Under the condition of a certain strain rate, the compressive strength of the rock will increase with the increase of the confining pressure, and the linear relationship is more obvious; When the confining pressure is constant, the dynamic and static combined compressive strength of the rock will increase with the increase of the confining pressure, showing an approximately linear increase trend; when the confining pressure is fixed, the compressive strength will first increase with the increase of the axial static pressure. trend of decreasing after increasing. Due to the characteristics of the SHPB test device and the rock material itself, there is no unified test specification requirement for some basic issues, such as loading stress waveform, sample size requirements, etc. Many test results can only be compared qualitatively and cannot be unified. Quantitative analysis on scale.

目前,分离式Hopkinson压杆(SHPB)装置仍是研究应变率段101-103s-1岩石类材料动态性能的经典测试系统。该装置最初由B.Hopkinson提出,后经Davis和Kolsky完善,逐渐形成了现代常用的SHPB系统。常用的SHPB装置主要用于材料的单轴动态抗压性能的测试。但在大多数情况下,岩石以及其他工程材料往往处于多向受力状态。因此,在SHPB装置上研究岩石类材料的三维动力特性很有必要。At present, the split Hopkinson pressure bar (SHPB) device is still a classic test system for studying the dynamic performance of rock-like materials in the strain rate range of 10 1 -10 3 s -1 . The device was first proposed by B.Hopkinson, and then perfected by Davis and Kolsky, and gradually formed the modern commonly used SHPB system. The commonly used SHPB device is mainly used for testing the uniaxial dynamic compressive performance of materials. But in most cases, rocks and other engineering materials are often under multi-directional stress. Therefore, it is necessary to study the three-dimensional dynamic characteristics of rock materials on the SHPB device.

现有常规三轴SHPB试验机为参照静态试验机的工作原理设计的,即在普通SHPB试验机的基础上,设计一个加围压的装置,施加围压后进行冲击试验,这种方式称为假三轴岩石动力学试验装置,其所施加的围压在两个轴向上的压力都是相同的,且围压卸载也是同时卸载;但是这只是理想情况,和矿下的实际情况相差比较大,矿井下大部分情况岩石在各个方向受到的力是不同的,且压力释放时各个方向一般也不会同时卸载,这样会导致试样试验与实际差距较大,使得试验测量的不全面,无法为后续研究提供数据支持。另外矿井下的岩石其力学性能与所处的环境也有密切关系,如温度、湿度、气体的浓度,液体PH值等都会影响岩石的力学性能,只有接近矿井下实际情况才能真正的测量到所需的岩石力学数据,便于后续岩石所受到的冲击地压的防护研究。因此如何能在模拟更真实的矿井下环境进行岩石动力学试验是本行业亟需解决的问题。The existing conventional three-axis SHPB testing machine is designed with reference to the working principle of the static testing machine, that is, on the basis of the ordinary SHPB testing machine, a device for adding confining pressure is designed, and the impact test is performed after applying the confining pressure. This method is called In the pseudo-triaxial rock dynamics test device, the applied confining pressure is the same in both axial directions, and the unloading of the confining pressure is also unloaded at the same time; but this is only an ideal situation, compared with the actual situation in the mine Large, in most cases in mines, rocks are subjected to different forces in all directions, and when the pressure is released, all directions will not be unloaded at the same time, which will lead to a large gap between the sample test and the actual situation, making the test measurement incomplete. Unable to provide data support for follow-up research. In addition, the mechanical properties of rocks in underground mines are also closely related to the environment in which they live, such as temperature, humidity, gas concentration, and liquid PH value, etc. will affect the mechanical properties of rocks. The rock mechanics data is convenient for subsequent research on the protection of rock bursts. Therefore, how to conduct rock dynamics tests in a more realistic mine environment is an urgent problem to be solved in this industry.

发明内容Contents of the invention

针对上述现有技术存在的问题,本发明提供一种真三轴多场多相耦合动力学试验系统及方法,不仅对岩石试样各个面的预应力的加载可单独控制加压和卸载,同时能使岩石试样处于模拟矿井下的环境进行试验,使试验的情况与实际情况相似,提高试验试样所得数据与矿下实际情况得到的数据更接近。Aiming at the problems existing in the above-mentioned prior art, the present invention provides a true triaxial multi-field multi-phase coupling dynamics test system and method, which not only can control the prestressing and unloading of each surface of the rock sample separately, but also The rock sample can be tested in the simulated underground environment, so that the test situation is similar to the actual situation, and the data obtained by the test sample is closer to the data obtained by the actual situation in the mine.

为了实现上述目的,本发明采用的技术方案是:该种真三轴多场多相耦合动力学试验系统,包括试验轴、液压系统、子弹、红外测速仪、动态应变仪、数字示波器和数据处理系统,子弹与试验轴处于同一轴线上,所述的试验轴包括三轴加载装置、入射杆、透射杆、吸收杆和吸收器,入射杆的一端与透射杆的一端分别与三轴加载装置的两端固定;透射杆的另一端依次与吸收杆和吸收器压紧并与吸收杆和吸收器处于同一轴线上;所述的三轴加载装置为六面体,包括三组两两相对设置的压力装置;所述的六个压力装置全部或部分覆盖岩石试样,全部覆盖的压力装置给岩石试样施加的是预应压力,而部分覆盖的压力装置给岩石试样施加的是预应剪切力;每个压力装置分别设有一个电磁控制阀并与液压系统连接,电磁控制阀与数据处理系统连接;红外测速仪设置在子弹与入射杆之间,入射杆和透射杆上装有应变片,应变片与动态应变仪连接,数字示波器分别与红外测速仪、动态应变仪和数据处理系统连接;所述的试验轴共三个,分别为X轴、Y轴和Z轴。In order to achieve the above object, the technical solution adopted by the present invention is: this kind of true three-axis multi-field multi-phase coupling dynamics test system, including test shaft, hydraulic system, bullet, infrared velocimeter, dynamic strain gauge, digital oscilloscope and data processing system, the bullet and the test shaft are on the same axis, and the test shaft includes a triaxial loading device, an incident rod, a transmission rod, an absorption rod and an absorber, and one end of the incident rod and one end of the transmission rod are connected with the triaxial loading device respectively. Both ends are fixed; the other end of the transmission rod is sequentially pressed against the absorption rod and the absorber and is on the same axis as the absorption rod and the absorber; the three-axis loading device is a hexahedron, including three sets of pressure devices arranged in pairs ; All or part of the six pressure devices covered the rock sample, and the pressure device that was fully covered applied a prestressed pressure to the rock sample, while the partially covered pressure device applied a prestressed shear force to the rock sample ;Each pressure device is provided with an electromagnetic control valve and is connected with the hydraulic system, and the electromagnetic control valve is connected with the data processing system; The film is connected with the dynamic strain gauge, and the digital oscilloscope is respectively connected with the infrared velocimeter, the dynamic strain gauge and the data processing system; there are three test axes, which are X axis, Y axis and Z axis respectively.

进一步,还包括温度效应试验系统,所述的温度效应试验系统包括保温箱体、温度传感器和热电偶,温度传感器和热电偶分别与数据处理系统连接。增加温度效应试验系统能保证岩石试样处于各种温度下进行试验,得出相应的数据。Further, a temperature effect test system is also included, and the temperature effect test system includes an insulated box, a temperature sensor and a thermocouple, and the temperature sensor and the thermocouple are respectively connected to the data processing system. Adding the temperature effect test system can ensure that the rock samples are tested at various temperatures, and the corresponding data can be obtained.

进一步,还包括化学效应试验系统,所述的化学效应试验系统包括防腐蚀箱体和PH值检测装置,所述的PH值检测装置设置在防腐蚀箱体内,PH值检测装置与数据处理系统连接。增加化学效应试验系统可使岩石试样处于各种PH不同的溶液下进行试验,然后得出相应的数据。Further, it also includes a chemical effect test system, the chemical effect test system includes an anti-corrosion box and a pH value detection device, the pH value detection device is arranged in the anti-corrosion box, and the pH value detection device is connected to the data processing system . Adding the chemical effect test system can make the rock sample test under various solutions with different pH, and then get the corresponding data.

进一步,所述的化学效应试验系统中的防腐蚀箱体设有进气口和出气口,在进气口和出气口处各设有一个气体流量检测装置,防腐蚀箱体内部设有气体浓度检测装置,所述的气体流量检测装置和气体浓度检测装置分别与数据处理系统连接。增加进气口和出气口,可使岩石试样处于各种气体情况下进行试验,然后得出相应的数据。Further, the anti-corrosion box in the chemical effect test system is provided with an air inlet and an air outlet, and a gas flow detection device is respectively provided at the air inlet and the air outlet, and a gas concentration detection device is provided inside the anti-corrosion box. The detection device, the gas flow detection device and the gas concentration detection device are respectively connected with the data processing system. Adding the gas inlet and the gas outlet can make the rock sample test under various gas conditions, and then obtain the corresponding data.

进一步,还包括光谱分析仪、质谱分析仪和衍射分析仪,光谱分析仪、质谱分析仪和衍射分析仪与数据处理系统连接。便于采集的岩石试样进行组分测定,并进行分类处理。Further, it also includes a spectrum analyzer, a mass spectrum analyzer and a diffraction analyzer, and the spectrum analyzer, the mass spectrum analyzer and the diffraction analyzer are connected with the data processing system. The conveniently collected rock samples are used for component determination and classification.

进一步,所述的压力装置为一个或多个液压油缸。Further, the pressure device is one or more hydraulic cylinders.

进一步,所述的液压系统包括六个液压泵,每个液压泵分别与一个压力装置连接;使用六个液压泵保证每个液压泵供给一个压力装置,便于压力装置的单独控制。Further, the hydraulic system includes six hydraulic pumps, and each hydraulic pump is connected to a pressure device; using six hydraulic pumps ensures that each hydraulic pump supplies a pressure device, which facilitates the individual control of the pressure device.

一种真三轴多场多相耦合动力学试验方法,具体步骤为:A true triaxial multi-field multi-phase coupling dynamics test method, the specific steps are:

Ⅰ、岩石试样冲击试验:Ⅰ. Rock sample impact test:

A.通过光谱分析仪、质谱分析仪和衍射分析仪对采集的岩石试样进行分析,确定各个岩石试样中各种物质的组分,然后进行分类;由于岩石试样中各种物质的组分不同会影响岩石试样的力学性能,通过光谱分析仪、质谱分析仪和衍射分析仪分析测定后,划分组分范围,对岩石试样进行分类,分别进行岩石试样的试验,提高试验精确度;A. Analyze the collected rock samples by spectrometer, mass spectrometer and diffraction analyzer, determine the components of various substances in each rock sample, and then classify; due to the composition of various substances in the rock sample The different components will affect the mechanical properties of rock samples. After analysis and measurement by spectrum analyzer, mass spectrometer and diffraction analyzer, the range of components is divided, the rock samples are classified, and the rock samples are tested separately to improve the accuracy of the test. Spend;

B.将分类后的岩石试样放置在三轴加载装置中,然后调节三轴之间的角度后固定;可任意调节所需的冲击角度,便于测量各个方向上对岩石试样的冲击后的力学性能;B. Place the classified rock samples in the three-axis loading device, and then adjust the angle between the three axes and then fix it; the required impact angle can be adjusted arbitrarily, which is convenient for measuring the impact of the rock samples in all directions. mechanical properties;

C.通过数据处理系统控制三轴加载装置上各个压力装置对岩石试样施加预应力;由于采用单独控制,这样就可以控制每个压力装置的压力值及施压预应力的时间,同时可单独进行压力的卸载;C. Control each pressure device on the triaxial loading device to apply prestress to the rock sample through the data processing system; due to the use of separate control, the pressure value of each pressure device and the time of pressure prestress can be controlled, and at the same time can be independently Unload the pressure;

D.设定一个或多个子弹的入射方向,对岩石试样进行冲击试验,红外测速仪采集到的数据、动态应变仪采集到的数据及液压系统中各个压力装置的压力值传送给数据处理系统进行分析处理,并将结果通过显示装置进行显示;通过一个或多个子弹的冲击,模拟了岩石试样受到一个方向的冲击或多个方向冲击时,其力学性能的情况;D. Set the incident direction of one or more bullets, perform an impact test on the rock sample, and transmit the data collected by the infrared velocimeter, the data collected by the dynamic strain gauge and the pressure values of each pressure device in the hydraulic system to the data processing The system performs analysis and processing, and displays the results through the display device; through the impact of one or more bullets, it simulates the mechanical properties of the rock sample when it is impacted in one direction or in multiple directions;

E.在子弹对岩石试样进行冲击试验时,将各个压力装置对岩石试样施加预应力进行一个或多个卸载,然后再通过红外测速仪采集到的数据、动态应变仪采集到的数据及液压系统中各个压力装置的压力值传送给数据处理系统进行分析处理;通过对压力装置一个或多个的卸载,可模拟岩石试样在一个方向的地压被释放或多个方向的地压被释放时,其力学性能的情况;E. When the bullet impacts the rock sample, each pressure device applies prestress to the rock sample for one or more unloading, and then the data collected by the infrared velocimeter, the data collected by the dynamic strain gauge and the The pressure value of each pressure device in the hydraulic system is transmitted to the data processing system for analysis and processing; by unloading one or more pressure devices, it can be simulated that the ground pressure of the rock sample is released in one direction or the ground pressure in multiple directions is released. When released, its mechanical properties;

F.重复上述步骤B~E,可调整三轴之间的角度值、各个压力装置对岩石施加的预应力值、一个或两个或三个子弹的入射速度及在试验时各个压力装置卸载压力的数量,最后通过数据处理系统得出各种不同情况下各种组分不同的岩石试样的力学性能参数,其包括对岩石试样的拉力、压力、扭力、剪切力及弯曲力的测定;F. Repeat the above steps B~E to adjust the angle value between the three axes, the prestress value exerted by each pressure device on the rock, the incident velocity of one or two or three bullets and the unloading pressure of each pressure device during the test Finally, through the data processing system, the mechanical performance parameters of rock samples with different components in various situations are obtained, including the determination of tensile force, pressure, torsion, shear force and bending force of rock samples ;

Ⅱ、在化学效应系统中岩石试样冲击试验:Ⅱ. Rock sample impact test in chemical effect system:

a.将试验装置放置在化学效应系统中,通过对岩石试样浸泡在不同PH值的溶液后进行步骤Ⅰ中的岩石试样冲击试验,通过PH检测装置将实时的PH值传递给数据处理系统,进而得出在各个PH值溶液下岩石试样的力学性能参数;a. Place the test device in the chemical effect system, conduct the rock sample impact test in step I after soaking the rock sample in solutions with different pH values, and transmit the real-time pH value to the data processing system through the pH detection device , and then obtain the mechanical property parameters of the rock sample under each pH value solution;

b.将试验装置浸泡在化学效应系统中的溶液时,通过进气口对溶液箱体内注入各种气体后进行步骤Ⅰ中的岩石试样冲击试验,通过设置在进气口和出气口的气体流量检测装置记录注入气体和排除气体的流量值,气体浓度检测装置实时检测容器箱体内的气体浓度值,将上述测量的数据均传递给数据处理系统,进而得出在各种气体及其不同的浓度的情况和通过进出口的流量大小情况得出岩石试样对各种气体的吸收情况下的岩石试样的力学性能参数;注入的气体可以为甲烷、瓦斯、氮气和氧气等,由于岩石试样对各种气体会有吸收作用,其吸收后的力学性能会变化,这样可以得出各种情况下岩石试样的力学性能;b. When the test device is immersed in the solution of the chemical effect system, various gases are injected into the solution box through the air inlet, and then the impact test of the rock sample in step I is carried out. The flow detection device records the flow values of injected gas and exhausted gas, and the gas concentration detection device detects the gas concentration value in the container box in real time, and transmits the above-mentioned measured data to the data processing system, and then obtains the flow rate of various gases and their different Concentration and the flow rate through the inlet and outlet to obtain the mechanical performance parameters of the rock sample under the condition of the rock sample absorbing various gases; the injected gas can be methane, gas, nitrogen and oxygen, etc., due to the rock test The sample will absorb various gases, and its mechanical properties will change after absorption, so that the mechanical properties of rock samples under various conditions can be obtained;

Ⅲ、在温度效应系统中岩石试样冲击试验:将试验装置放置在温度效应系统中,通过数据处理系统控制热电偶加热,使岩石试样处于各种不同的温度下进行步骤Ⅰ中的岩石试样冲击试验,得出在各种温度情况下岩石试样的力学性能参数;Ⅲ. Rock sample impact test in the temperature effect system: place the test device in the temperature effect system, control the thermocouple heating through the data processing system, and make the rock sample at various temperatures for the rock test in step Ⅰ Sample impact test to obtain the mechanical performance parameters of rock samples under various temperature conditions;

Ⅳ、综合环境下岩石试样冲击试验:将试验装置放置在温度效应系统和化学效应系统中,可模拟最接近矿井下环境的情况下进行步骤Ⅰ中的岩石试样冲击试验,可综合得出在上述各种情况下岩石试样的力学性能参数;若测量数值异常,可通过数据处理系统中的报警装置,提示相关人员进行及时处理;Ⅳ. Rock sample impact test in comprehensive environment: the test device is placed in the temperature effect system and chemical effect system, and the rock sample impact test in step Ⅰ can be simulated under the condition closest to the mine underground environment, and it can be obtained comprehensively The mechanical performance parameters of the rock sample in the above-mentioned various situations; if the measured value is abnormal, the alarm device in the data processing system can be used to prompt the relevant personnel to deal with it in time;

Ⅴ、综合分析处理:将上述各个步骤得出的各种数据进行综合汇总,然后分析对比岩石试样在各个环境中所得出的力学性能参数,得出各种环境下对岩石试样力学性能的影响情况。V. Comprehensive analysis and processing: the various data obtained in the above steps are comprehensively summarized, and then the mechanical performance parameters obtained by comparing the rock samples in various environments are analyzed and compared, and the mechanical properties of the rock samples in various environments are obtained. affect the situation.

与现有技术相比,本发明采用三轴加载装置、数据处理系统、化学效应试验系统和温度效应试样系统相结合,实现了真三轴的加载过程,传统的霍普金森系统只能够对一维或者围压的情况下进行实验,但这做不到真三轴加载,本系统能够不仅实现X轴、Y轴和Z轴三个轴向的独立加载,而且能够实现同一轴向不同方向的独立加载过程,从而实现了真三轴的加载;另外传统的装置只能够一个方向的冲击,本发明能够三个轴向的同时冲击,且三个轴向的角度可根据需要任意调节;通过把反向共轴加载改为非共轴反向加载从而能够进行压、剪、弯、扭等与冲击结合,能使岩石试样处于模拟矿井下的环境进行试验,使试验的情况与实际情况相似,提高试验试样所得数据与矿下实际情况得到的数据更接近。Compared with the prior art, the present invention combines a triaxial loading device, a data processing system, a chemical effect test system and a temperature effect sample system to realize a true triaxial loading process. The traditional Hopkinson system can only Experiments are carried out under one-dimensional or confining pressure conditions, but this cannot achieve true three-axis loading. This system can not only realize independent loading in the three axes of X-axis, Y-axis and Z-axis, but also realize the same axis in different directions. The independent loading process realizes the true three-axis loading; in addition, the traditional device can only impact in one direction, but the present invention can simultaneously impact in three axes, and the angles of the three axes can be adjusted arbitrarily according to needs; through Change the reverse coaxial loading to non-coaxial reverse loading so as to be able to combine compression, shearing, bending, torsion, etc. Similarly, the data obtained by increasing the test sample is closer to the data obtained by the actual situation in the mine.

附图说明Description of drawings

图1是本发明的结构示意图;Fig. 1 is a structural representation of the present invention;

图2是本发明的试验轴的电原理图;Fig. 2 is the electric schematic diagram of test shaft of the present invention;

图3是本发明中三轴加载装置全部覆盖的结构示意图;Fig. 3 is a schematic structural view of the entire coverage of the three-axis loading device in the present invention;

图4是本发明中三轴加载装置部分覆盖的结构示意图;Fig. 4 is a schematic structural view of the partial coverage of the triaxial loading device in the present invention;

图5是本发明中温度效应系统的结构示意图;Fig. 5 is the structural representation of temperature effect system among the present invention;

图6是本发明中化学效应系统的结构示意图;Fig. 6 is a schematic structural view of the chemical effect system in the present invention;

图7是本发明的整体电原理图。Fig. 7 is an overall electrical principle diagram of the present invention.

图中:1、子弹,2、入射杆,3、三轴加载装置,4、透射杆,5、吸收杆,6、吸收器,7、保温箱体,8、温度传感器,9、热电偶,10、防腐蚀箱体,11、气体浓度检测装置,12、气体流量检测装置,13、PH值检测装置。In the figure: 1. bullet, 2. incident rod, 3. three-axis loading device, 4. transmission rod, 5. absorption rod, 6. absorber, 7. insulation box, 8. temperature sensor, 9. thermocouple, 10. Anti-corrosion box, 11. Gas concentration detection device, 12. Gas flow detection device, 13. PH value detection device.

具体实施方式detailed description

下面结合附图对本发明作进一步说明。The present invention will be further described below in conjunction with accompanying drawing.

如图1至图7所示,本发明包括试验轴、液压系统、子弹1、红外测速仪、动态应变仪、数字示波器和数据处理系统,子弹1与试验轴处于同一轴线上,所述的试验轴包括三轴加载装置3、入射杆2、透射杆4、吸收杆5和吸收器6,入射杆2的一端与透射杆4的一端分别与三轴加载装置3的两端固定;透射杆4的另一端依次与吸收杆5和吸收器6压紧并与吸收杆5和吸收器6处于同一轴线上;所述的三轴加载装置3为六面体,包括三组两两相对设置的压力装置;所述的六个压力装置全部或部分覆盖岩石试样,每个压力装置分别设有一个电磁控制阀并与液压系统连接,电磁控制阀与数据处理系统连接;红外测速仪设置在子弹1与入射杆2之间,入射杆2和透射杆4上装有应变片,应变片与动态应变仪连接,数字示波器分别与红外测速仪、动态应变仪和数据处理系统连接;所述的试验轴共三个,分别为X轴、Y轴和Z轴。As shown in Figures 1 to 7, the present invention includes a test shaft, a hydraulic system, a bullet 1, an infrared velocimeter, a dynamic strain gauge, a digital oscilloscope and a data processing system, and the bullet 1 is on the same axis as the test shaft, and the described test The axis includes a triaxial loading device 3, an incident rod 2, a transmission rod 4, an absorption rod 5 and an absorber 6, and one end of the incident rod 2 and one end of the transmission rod 4 are respectively fixed to the two ends of the triaxial loading device 3; the transmission rod 4 The other end of the other end is compressed with the absorption rod 5 and the absorber 6 in turn and is on the same axis with the absorption rod 5 and the absorber 6; the triaxial loading device 3 is a hexahedron, including three groups of pressure devices arranged in pairs; All or part of the six pressure devices cover the rock sample, each pressure device is provided with an electromagnetic control valve and connected to the hydraulic system, and the electromagnetic control valve is connected to the data processing system; Between the rods 2, the incident rod 2 and the transmission rod 4 are equipped with strain gauges, the strain gauges are connected with the dynamic strain gauge, and the digital oscilloscope is respectively connected with the infrared velocimeter, the dynamic strain gauge and the data processing system; there are three test axes , which are the X-axis, Y-axis and Z-axis respectively.

进一步,还包括温度效应试验系统,所述的温度效应试验系统包括保温箱体7、温度传感器8和热电偶9,温度传感器8和热电偶9分别与数据处理系统连接。增加温度效应试验系统能保证岩石试样处于各种温度下进行试验,得出相应的数据。Further, a temperature effect test system is also included, and the temperature effect test system includes an insulated box 7, a temperature sensor 8 and a thermocouple 9, and the temperature sensor 8 and the thermocouple 9 are respectively connected to the data processing system. Adding the temperature effect test system can ensure that the rock samples are tested at various temperatures, and the corresponding data can be obtained.

进一步,还包括化学效应试验系统,所述的化学效应试验系统包括防腐蚀箱体10和PH值检测装置13,所述的PH值检测装置13设置在防腐蚀箱体10内,PH值检测装置13与数据处理系统连接。增加化学效应试验系统可使岩石试样处于各种PH不同的溶液下进行试验,然后得出相应的数据。Further, a chemical effect test system is also included, and the chemical effect test system includes an anti-corrosion cabinet 10 and a pH value detection device 13, and the pH value detection device 13 is arranged in the anti-corrosion cabinet 10, and the pH value detection device 13 is connected with the data processing system. Adding the chemical effect test system can make the rock sample test under various solutions with different pH, and then get the corresponding data.

进一步,所述的化学效应试验系统中的防腐蚀箱体10设有进气口和出气口,在进气口和出气口处各设有一个气体流量检测装置12,防腐蚀箱体10内部设有气体浓度检测装置11,所述的气体流量检测装置12和气体浓度检测装置11分别与数据处理系统连接。增加进气口和出气口,可使岩石试样处于各种气体情况下进行试验,然后得出相应的数据。Further, the anti-corrosion box 10 in the chemical effect test system is provided with an air inlet and an air outlet, and a gas flow detection device 12 is respectively provided at the air inlet and the air outlet, and the inside of the anti-corrosion box 10 is provided with There is a gas concentration detection device 11, and the gas flow detection device 12 and the gas concentration detection device 11 are respectively connected to the data processing system. Adding the gas inlet and the gas outlet can make the rock sample test under various gas conditions, and then obtain the corresponding data.

进一步,还包括光谱分析仪、质谱分析仪和衍射分析仪,光谱分析仪、质谱分析仪和衍射分析仪与数据处理系统连接。便于采集的岩石试样进行组分测定,并进行分类处理。Further, it also includes a spectrum analyzer, a mass spectrum analyzer and a diffraction analyzer, and the spectrum analyzer, the mass spectrum analyzer and the diffraction analyzer are connected with the data processing system. The conveniently collected rock samples are used for component determination and classification.

进一步,所述的压力装置为一个或多个液压油缸。Further, the pressure device is one or more hydraulic cylinders.

进一步,所述的液压系统包括六个液压泵,每个液压泵分别与一个压力装置连接;使用六个液压泵保证每个液压泵供给一个压力装置,便于压力装置的单独控制。Further, the hydraulic system includes six hydraulic pumps, and each hydraulic pump is connected to a pressure device; using six hydraulic pumps ensures that each hydraulic pump supplies a pressure device, which facilitates the individual control of the pressure device.

一种真三轴多场多相耦合动力学试验方法,具体步骤为:A true triaxial multi-field multi-phase coupling dynamics test method, the specific steps are:

Ⅰ、岩石试样冲击试验:Ⅰ. Rock sample impact test:

A.通过光谱分析仪、质谱分析仪和衍射分析仪对采集的岩石试样进行分析,确定各个岩石试样中各种物质的组分,然后进行分类;由于岩石试样中各种物质的组分不同会影响岩石试样的力学性能,通过光谱分析仪、质谱分析仪和衍射分析仪分析测定后,划分组分范围,对岩石试样进行分类,分别进行岩石试样的试验,提高试验精确度;A. Analyze the collected rock samples by spectrometer, mass spectrometer and diffraction analyzer, determine the components of various substances in each rock sample, and then classify; due to the composition of various substances in the rock sample The different components will affect the mechanical properties of rock samples. After analysis and measurement by spectrum analyzer, mass spectrometer and diffraction analyzer, the range of components is divided, the rock samples are classified, and the rock samples are tested separately to improve the accuracy of the test. Spend;

B.将分类后的岩石试样放置在三轴加载装置3中,然后调节三轴之间的角度后固定;可任意调节所需的冲击角度,便于测量各个方向上对岩石试样的冲击后的力学性能;B. Place the classified rock samples in the triaxial loading device 3, then adjust the angle between the three axes and then fix them; the required impact angle can be adjusted arbitrarily, which is convenient for measuring the impact on the rock samples in all directions mechanical properties;

C.通过数据处理系统控制三轴加载装置3上各个压力装置对岩石试样施加预应力;由于采用单独控制,这样就可以控制每个压力装置的压力值及施压预应力的时间,同时可单独进行压力的卸载;C. each pressure device on the triaxial loading device 3 is controlled by the data processing system to apply prestress to the rock sample; due to the use of separate control, the pressure value of each pressure device and the time of applying pressure prestress can be controlled like this, and simultaneously Separate pressure unloading;

D.设定一个或多个子弹1的入射方向,对岩石试样进行冲击试验,红外测速仪采集到的数据、动态应变仪采集到的数据及液压系统中各个压力装置的压力值传送给数据处理系统进行分析处理,并将结果通过显示装置进行显示;通过一个或多个子弹的冲击,模拟了岩石试样受到一个方向的冲击或多个方向冲击时,其力学性能的情况;D. Set the incident direction of one or more bullets 1, and perform an impact test on the rock sample. The data collected by the infrared velocimeter, the data collected by the dynamic strain gauge and the pressure value of each pressure device in the hydraulic system are transmitted to the data The processing system performs analysis and processing, and displays the results through the display device; through the impact of one or more bullets, it simulates the mechanical properties of the rock sample when it is impacted in one direction or multiple directions;

E.在子弹1对岩石试样进行冲击试验时,将各个压力装置对岩石试样施加预应力进行一个或多个卸载,然后再通过红外测速仪采集到的数据、动态应变仪采集到的数据及液压系统中各个压力装置的压力值传送给数据处理系统进行分析处理;通过对压力装置一个或多个的卸载,可模拟岩石试样在一个方向的地压被释放或多个方向的地压被释放时,其力学性能的情况;E. When the bullet 1 performs an impact test on the rock sample, each pressure device applies prestress to the rock sample for one or more unloading, and then the data collected by the infrared velocimeter and the data collected by the dynamic strain gauge And the pressure value of each pressure device in the hydraulic system is sent to the data processing system for analysis and processing; by unloading one or more pressure devices, the rock sample can be simulated that the ground pressure in one direction is released or the ground pressure in multiple directions When released, its mechanical properties;

F.重复上述步骤B~E,可调整三轴之间的角度值、各个压力装置对岩石施加的预应力值、一个或两个或三个子弹1的入射速度及在试验时各个压力装置卸载压力的数量,最后通过数据处理系统得出各种不同情况下各种组分不同的岩石试样的力学性能参数,其包括对岩石试样的拉力、压力、扭力、剪切力及弯曲力的测定;F. Repeat steps B to E above to adjust the angle value between the three axes, the prestress value exerted by each pressure device on the rock, the incident velocity of one or two or three bullets 1 and the unloading of each pressure device during the test Finally, through the data processing system, the mechanical performance parameters of rock samples with different components in various situations are obtained, including the tensile force, pressure, torsion, shear force and bending force of the rock sample. Determination;

Ⅱ、在化学效应系统中岩石试样冲击试验:Ⅱ. Rock sample impact test in chemical effect system:

a.将试验装置放置在化学效应系统中,通过对岩石试样浸泡在不同PH值的溶液后进行步骤Ⅰ中的岩石试样冲击试验,通过PH检测装置13将实时的PH值传递给数据处理系统,进而得出在各个PH值溶液下岩石试样的力学性能参数;a. Place the test device in the chemical effect system, perform the rock sample impact test in step I after soaking the rock sample in solutions of different pH values, and pass the real-time pH value to the data processing through the pH detection device 13 System, and then obtain the mechanical performance parameters of rock samples under various pH value solutions;

b.将试验装置浸泡在化学效应系统中的溶液时,通过进气口对溶液箱体内注入各种气体后进行步骤Ⅰ中的岩石试样冲击试验,通过设置在进气口和出气口的气体流量检测装置12记录注入气体和排除气体的流量值,气体浓度检测装置11实时检测容器箱体内的气体浓度值,将上述测量的数据均传递给数据处理系统,进而得出在各种气体及其不同的浓度的情况和通过进出口的流量的情况得出岩石试样对各种气体的吸收情况下的岩石试样的力学性能参数;注入的气体可以为甲烷、瓦斯、氮气和氧气等,由于岩石试样对各种气体会有吸收作用,其吸收后的力学性能会变化,这样可以得出各种情况下岩石试样的力学性能;b. When the test device is immersed in the solution of the chemical effect system, various gases are injected into the solution box through the air inlet, and then the impact test of the rock sample in step I is carried out. The flow detection device 12 records the flow values of injected gas and exhaust gas, and the gas concentration detection device 11 detects the gas concentration value in the container box in real time, and transmits the above-mentioned measured data to the data processing system, and then obtains the flow rate of various gases and their The conditions of different concentrations and the flow rate through the inlet and outlet can be used to obtain the mechanical performance parameters of the rock sample under the condition of the rock sample absorbing various gases; the injected gas can be methane, gas, nitrogen and oxygen, etc., because Rock samples will absorb various gases, and their mechanical properties will change after absorption, so that the mechanical properties of rock samples under various conditions can be obtained;

Ⅲ、在温度效应系统中岩石试样冲击试验:将试验装置放置在温度效应系统中,通过数据处理系统控制热电偶9加热,使岩石试样处于各种不同的温度下进行步骤Ⅰ中的岩石试样冲击试验,得出在各种温度情况下岩石试样的力学性能参数;Ⅲ. Rock sample impact test in the temperature effect system: place the test device in the temperature effect system, control the heating of the thermocouple 9 through the data processing system, and make the rock sample at various temperatures to carry out the rock test in step Ⅰ Specimen impact test, to obtain the mechanical performance parameters of rock samples under various temperature conditions;

Ⅳ、综合环境下岩石试样冲击试验:将试验装置放置在温度效应系统和化学效应系统中,可模拟最接近矿井下环境的情况下进行步骤Ⅰ中的岩石试样冲击试验,可综合得出在上述各种情况下岩石试样的力学性能参数;若测量数值异常,可通过数据处理系统中的报警装置,提示相关人员进行及时处理;Ⅳ. Rock sample impact test in comprehensive environment: the test device is placed in the temperature effect system and chemical effect system, and the rock sample impact test in step Ⅰ can be simulated under the condition closest to the mine underground environment, and it can be obtained comprehensively The mechanical performance parameters of the rock sample in the above-mentioned various situations; if the measured value is abnormal, the alarm device in the data processing system can be used to prompt the relevant personnel to deal with it in time;

Ⅴ、综合分析处理:将上述各个步骤得出的各种数据进行综合汇总,然后分析对比岩石试样在各个环境中所得出的力学性能参数,得出各种环境下对岩石试样力学性能的影响情况。V. Comprehensive analysis and processing: the various data obtained in the above steps are comprehensively summarized, and then the mechanical performance parameters obtained by comparing the rock samples in various environments are analyzed and compared, and the mechanical properties of the rock samples in various environments are obtained. affect the situation.

Claims (5)

1.一种真三轴多场多相耦合动力学试验方法,采用的动力学试验系统包括试验轴、液压系统、子弹(1)、红外测速仪、动态应变仪、数字示波器、光谱分析仪、质谱分析仪、衍射分析仪和数据处理系统,子弹(1)与试验轴处于同一轴线上,所述的试验轴包括三轴加载装置(3)、入射杆(2)、透射杆(4)、吸收杆(5)和吸收器(6),入射杆(2)的一端与透射杆(4)的一端分别与三轴加载装置(3)的两端固定;透射杆(4)的另一端依次与吸收杆(5)和吸收器(6)压紧并与吸收杆(5)和吸收器(6)处于同一轴线上;所述的三轴加载装置(3)为六面体,包括三组两两相对设置的压力装置;所述的六个压力装置全部或部分覆盖岩石试样,每个压力装置分别设有一个电磁控制阀并与液压系统连接,电磁控制阀与数据处理系统连接,所述的压力装置为一个或多个液压油缸;红外测速仪设置在子弹(1)与入射杆(2)之间,入射杆(2)和透射杆(4)上装有应变片,应变片与动态应变仪连接,数字示波器分别与红外测速仪、动态应变仪和数据处理系统连接;光谱分析仪、质谱分析仪和衍射分析仪与数据处理系统连接,所述的试验轴共三个,分别为X轴、Y轴和Z轴,其特征在于,具体步骤为:1. A true three-axis multi-field multi-phase coupling dynamics test method, the dynamics test system used includes a test shaft, a hydraulic system, a bullet (1), an infrared velocimeter, a dynamic strain gauge, a digital oscilloscope, a spectrum analyzer, Mass spectrometer, diffraction analyzer and data processing system, the bullet (1) is on the same axis as the test axis, and the test axis includes a three-axis loading device (3), an incident rod (2), a transmission rod (4), The absorption rod (5) and the absorber (6), one end of the incident rod (2) and one end of the transmission rod (4) are respectively fixed to the two ends of the three-axis loading device (3); the other end of the transmission rod (4) is sequentially Compressed with the absorption rod (5) and the absorber (6) and on the same axis with the absorption rod (5) and the absorber (6); the three-axis loading device (3) is a hexahedron, including three groups of two Relatively arranged pressure devices; all or part of the six pressure devices cover the rock sample, each pressure device is respectively equipped with an electromagnetic control valve and connected to the hydraulic system, the electromagnetic control valve is connected to the data processing system, the described The pressure device is one or more hydraulic cylinders; the infrared velocimeter is set between the bullet (1) and the incident rod (2), and the incident rod (2) and the transmission rod (4) are equipped with strain gauges, and the strain gauge and the dynamic strain gauge Connection, the digital oscilloscope is connected with the infrared velocimeter, the dynamic strain gauge and the data processing system respectively; Y-axis and Z-axis, characterized in that the specific steps are: Ⅰ、岩石试样冲击试验:Ⅰ. Rock sample impact test: A.通过光谱分析仪、质谱分析仪和衍射分析仪对采集的岩石试样进行分析,确定各个岩石试样中各种物质的组分,然后进行分类; A. Analyze the collected rock samples by spectrometer, mass spectrometer and diffraction analyzer, determine the components of various substances in each rock sample, and then classify them; B.将分类后的岩石试样放置在三轴加载装置(3)中,然后调节三轴之间的角度后固定;B. The classified rock samples are placed in the triaxial loading device (3), and then fixed after adjusting the angle between the three axes; C.通过数据处理系统控制三轴加载装置(3)上各个压力装置对岩石试样施加预应力;C. Applying prestress to the rock sample by controlling each pressure device on the triaxial loading device (3) through the data processing system; D.设定一个或多个子弹(1)的入射方向,对岩石试样进行冲击试验,红外测速仪采集到的数据、动态应变仪采集到的数据及液压系统中各个压力装置的压力值传送给数据处理系统进行分析处理,并将结果通过显示装置进行显示;D. Set the incident direction of one or more bullets (1), carry out the impact test on the rock sample, the data collected by the infrared velocimeter, the data collected by the dynamic strain gauge and the pressure value of each pressure device in the hydraulic system are transmitted to the data The processing system performs analysis and processing, and displays the result through the display device; E.在子弹对岩石试样进行冲击试验时,将各个压力装置对岩石试样施加预应力进行一个或多个卸载,然后再通过红外测速仪采集到的数据、动态应变仪采集到的数据及液压系统中各个压力装置的压力值传送给数据处理系统进行分析处理;E. When the bullet impacts the rock sample, each pressure device applies prestress to the rock sample for one or more unloading, and then through the data collected by the infrared velocimeter, the data collected by the dynamic strain gauge and the hydraulic system The pressure value of each pressure device in the system is transmitted to the data processing system for analysis and processing; F.重复上述步骤B~E,调整三轴之间的角度值、各个压力装置对岩石施加的预应力值、一个或两个或三个子弹(1)的入射速度及在试验时各个压力装置卸载压力的数量,最后通过数据处理系统得出各种不同情况下各种组分不同的岩石试样的力学性能参数,其包括对岩石试样的拉力、压力、扭力、剪切力及弯曲力的测定;F. Repeat the above steps B~E, adjust the angle value between the three axes, the prestress value exerted by each pressure device on the rock, the incident velocity of one or two or three bullets (1) and the unloading pressure of each pressure device during the test Finally, through the data processing system, the mechanical performance parameters of rock samples with different components in various situations are obtained, including the determination of tensile force, pressure, torsion, shear force and bending force of rock samples ; Ⅱ、在化学效应系统中岩石试样冲击试验:Ⅱ. Rock sample impact test in chemical effect system: a. 将试验系统放置在化学效应系统中,通过对岩石试样浸泡在不同PH值的溶液后进行步骤Ⅰ中的岩石试样冲击试验,通过PH检测装置(13)将实时的PH值传递给数据处理系统,进而得出在各个PH值溶液下岩石试样的力学性能参数;a. Place the test system in the chemical effect system, perform the rock sample impact test in step I after soaking the rock sample in solutions with different pH values, and transmit the real-time pH value to Data processing system, and then obtain the mechanical performance parameters of rock samples under various pH value solutions; b. 将试验系统浸泡在化学效应系统中的溶液时,通过进气口对防腐蚀箱体(10)内注入各种气体后进行步骤Ⅰ中的岩石试样冲击试验,通过设置在进气口和出气口的气体流量检测装置(12)记录注入气体和排除气体的流量值,气体浓度检测装置(11)实时检测防腐蚀箱体(10)内的气体浓度值,将上述测量的数据均传递给数据处理系统,进而得出在各种气体及其不同的浓度的情况和通过进出口的流量情况得出岩石试样对各种气体的吸收情况下的岩石试样的力学性能参数;b. When the test system is soaked in the solution of the chemical effect system, various gases are injected into the anti-corrosion box (10) through the air inlet, and then the rock sample impact test in step I is performed. and the gas flow detection device (12) at the gas outlet to record the flow values of injected gas and exhaust gas, and the gas concentration detection device (11) detects the gas concentration value in the anti-corrosion box (10) in real time, and transmits the above-mentioned measured data Give the data processing system, and then obtain the mechanical performance parameters of the rock sample under the condition of various gases and their different concentrations and the flow conditions through the inlet and outlet to obtain the rock sample's absorption of various gases; Ⅲ、在温度效应系统中岩石试样冲击试验:Ⅲ. Impact test of rock samples in temperature effect system: 将试验系统放置在温度效应系统中,通过数据处理系统控制热电偶(9)加热,使岩石试样处于各种不同的温度下进行步骤Ⅰ中的岩石试样冲击试验,得出在各种温度情况下岩石试样的力学性能参数;Place the test system in the temperature effect system, control the heating of the thermocouple (9) through the data processing system, and make the rock sample at various temperatures to perform the rock sample impact test in step I. The mechanical property parameters of the rock sample under the condition of Ⅳ、综合环境下岩石试样冲击试验:Ⅳ. Impact test of rock samples under comprehensive environment: 将试验系统放置在温度效应系统和化学效应系统中,模拟最接近矿井下环境的情况下进行步骤Ⅰ中的岩石试样冲击试验,综合得出在上述各种情况下岩石试样的力学性能参数;若测量数值异常,通过数据处理系统中的报警装置,提示相关人员进行及时处理;Place the test system in the temperature effect system and the chemical effect system, simulate the impact test of the rock sample in step I under the condition closest to the underground environment of the mine, and comprehensively obtain the mechanical performance parameters of the rock sample under the above-mentioned various conditions ; If the measured value is abnormal, the alarm device in the data processing system will prompt the relevant personnel to deal with it in time; Ⅴ、综合分析处理:将上述各个步骤得出的各种数据进行综合汇总,然后分析对比岩石试样在各个环境中所得出的力学性能参数,得出各种环境下对岩石试样力学性能的影响情况。V. Comprehensive analysis and processing: the various data obtained in the above steps are comprehensively summarized, and then the mechanical performance parameters obtained by comparing the rock samples in various environments are analyzed and compared, and the mechanical properties of the rock samples in various environments are obtained. affect the situation. 2. 根据权利要求1 所述的一种真三轴多场多相耦合动力学试验方法,其特征在于,所述的温度效应系统包括保温箱体(7)、温度传感器(8)和热电偶(9),温度传感器(8)和热电偶(9)分别与数据处理系统连接。2. A true triaxial multi-field multi-phase coupling dynamics test method according to claim 1, characterized in that the temperature effect system includes an insulated box (7), a temperature sensor (8) and a thermocouple (9), the temperature sensor (8) and the thermocouple (9) are respectively connected with the data processing system. 3. 根据权利要求1 所述的一种真三轴多场多相耦合动力学试验方法,其特征在于,所述的化学效应系统包括防腐蚀箱体(10)和PH值检测装置(13),所述的PH值检测装置(13)设置在防腐蚀箱体(10)内,PH值检测装置(13)与数据处理系统连接。3. A true triaxial multi-field multi-phase coupling dynamics test method according to claim 1, characterized in that the chemical effect system includes an anti-corrosion box (10) and a pH value detection device (13) , the pH value detection device (13) is arranged in the anti-corrosion box (10), and the pH value detection device (13) is connected with the data processing system. 4.根据权利要求3所述的一种真三轴多场多相耦合动力学试验方法,其特征在于,所述的化学效应系统中的防腐蚀箱体(10)设有进气口和出气口,在进气口和出气口处各设有一个气体流量检测装置(12),防腐蚀箱体(10)内部设有气体浓度检测装置(11),所述的气体流量检测装置(12)和气体浓度检测装置(11)分别与数据处理系统连接。4. A true three-axis multi-field multi-phase coupling dynamics test method according to claim 3, characterized in that the anti-corrosion box (10) in the chemical effect system is provided with an air inlet and an outlet The air port is provided with a gas flow detection device (12) at the air inlet and the gas outlet respectively, and a gas concentration detection device (11) is provided inside the anti-corrosion box (10). The gas flow detection device (12) and the gas concentration detection device (11) are respectively connected with the data processing system. 5. 根据权利要求1 所述的一种真三轴多场多相耦合动力学试验方法,其特征在于,所述的液压系统包括六个液压泵,每个液压泵分别与一个压力装置连接。5. A true three-axis multi-field multi-phase coupling dynamics test method according to claim 1, wherein the hydraulic system includes six hydraulic pumps, and each hydraulic pump is connected to a pressure device respectively.
CN201510010360.4A 2015-01-08 2015-01-08 A kind of multiphase coupled dynamic test system and method for more of true triaxial Active CN104535409B (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201510010360.4A CN104535409B (en) 2015-01-08 2015-01-08 A kind of multiphase coupled dynamic test system and method for more of true triaxial
PCT/CN2015/082590 WO2016110067A1 (en) 2015-01-08 2015-06-29 True triaxial multi-field multi-phase coupling dynamic test system and method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510010360.4A CN104535409B (en) 2015-01-08 2015-01-08 A kind of multiphase coupled dynamic test system and method for more of true triaxial

Publications (2)

Publication Number Publication Date
CN104535409A CN104535409A (en) 2015-04-22
CN104535409B true CN104535409B (en) 2017-12-08

Family

ID=52850983

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510010360.4A Active CN104535409B (en) 2015-01-08 2015-01-08 A kind of multiphase coupled dynamic test system and method for more of true triaxial

Country Status (2)

Country Link
CN (1) CN104535409B (en)
WO (1) WO2016110067A1 (en)

Families Citing this family (78)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104535409B (en) * 2015-01-08 2017-12-08 中国矿业大学 A kind of multiphase coupled dynamic test system and method for more of true triaxial
CN104897458B (en) * 2015-04-30 2019-09-27 中国矿业大学 A multi-phase multi-field coupled anchor combined deformation testing method
CN106198354B (en) * 2016-08-19 2023-12-05 中国华电科工集团有限公司 Seepage, stress and temperature coupling testing machine
CN106289993B (en) * 2016-09-22 2023-07-07 合肥工业大学 Rock disintegration test device and test method under combined action of dry and wet alternation and stress
CN108072467B (en) * 2016-11-14 2023-11-24 中国矿业大学(北京) Method for measuring internal stress field of discontinuous structure
CN106525292B (en) * 2016-11-24 2018-12-21 中国矿业大学 The adjustable surrouding rock stress measuring device of a kind of state
CN106442736B (en) * 2016-12-06 2023-04-07 河南理工大学 Testing device, testing system and testing method for uniaxial compression measurement of impact tendency index and acoustic characteristic of gas-containing coal
CN106770658B (en) * 2016-12-27 2023-04-18 中国科学院武汉岩土力学研究所 Shear wave propagation and joint dynamic shear experimental system based on plane fluctuation
CN106680103B (en) * 2017-02-14 2024-01-09 南京泰克奥科技有限公司 Rock-soil temperature-permeation-stress-chemical coupling multifunctional test system and operation method thereof
CN107014689A (en) * 2017-03-20 2017-08-04 中国矿业大学 A kind of combination of true triaxial sound plus unloading test system based on Hopkinson pressure bar
CN107014690B (en) * 2017-03-24 2021-05-28 东北大学 A low-frequency disturbance and high-speed impact type high-voltage true triaxial test device and method
US10324014B2 (en) 2017-03-24 2019-06-18 Northeastern University Low-frequency disturbance and high-speed impact type high-pressure true triaxial test apparatus and method
CN107703002B (en) * 2017-10-17 2024-01-23 中国科学院武汉岩土力学研究所 Multi-phase medium interaction test analysis system of composite liner system
CN107907428A (en) * 2018-01-02 2018-04-13 吉林大学 Carry the square core hydraulic fracturing experimental rig of semi open model of heating function
CN108414365B (en) * 2018-04-09 2024-03-15 郑州大学 Full curve testing device for destructive stress-strain of concrete under action of natural force
CN108519317B (en) * 2018-04-24 2023-10-31 北部湾大学 Rock stress-seepage coupling test device under direct tensile load
CN108333055A (en) * 2018-05-07 2018-07-27 中国科学院武汉岩土力学研究所 Wheeled rock mechanics triaxial tester, pilot system and test method
CN108645562B (en) * 2018-05-09 2020-09-22 西北工业大学 Three-axis Hopkinson bar synchronous dynamic calibration device and method for three-dimensional impact force sensor
CN110470547B (en) * 2018-05-10 2023-05-23 中国电力科学研究院有限公司 A test device for wire monofilament
CN108414349B (en) * 2018-06-19 2023-08-29 贵州省质安交通工程监控检测中心有限责任公司 True triaxial test machine
CN108982206B (en) * 2018-08-27 2020-09-25 北京工业大学 Strain-controlled tension-torsion thermal mechanical fatigue test method
CN109668775B (en) * 2018-12-26 2021-03-23 深圳大学 Positioning and centering system and method of true triaxial Hopkinson pressure bar
CN109406313B (en) * 2018-12-26 2021-08-31 深圳大学 Dynamic test system for Hopkinson beam bar
CN109406312B (en) * 2018-12-26 2021-03-23 深圳大学 True triaxial Hopkinson rod solid dynamic damage and ultrasonic propagation test method
CN109406310A (en) * 2018-12-26 2019-03-01 深圳大学 The Dynamic And Static Loads synchronous servo control system of three axis six-way Hopkinson pressure bars
CN109406311A (en) * 2018-12-26 2019-03-01 深圳大学 The temperature control system and method for true triaxial coupled static-dynamic loadingi Hopkinson pressure bar
US11703433B2 (en) 2018-12-26 2023-07-18 Shenzhen University Dynamic true triaxial electromagnetic Hopkinson bar system and testing method
US11988645B2 (en) * 2018-12-26 2024-05-21 Shenzhen University Dynamic true triaxial electromagnetic Hopkinson bar system
CN109520842B (en) * 2019-01-02 2023-08-22 安徽理工大学 Dynamic and static load and fracture pressure coupling fractured rock mechanical test device and method thereof
CN109520843B (en) * 2019-01-17 2024-03-08 湖南科技大学 Device for measuring surrounding rock crushing degrees with different depths and use method
CN110044952B (en) * 2019-04-29 2024-05-10 中国地质大学(武汉) Carbon dioxide phase-change explosion venting temperature and pressure testing system and testing method thereof
CN110296904A (en) * 2019-07-03 2019-10-01 太原理工大学 Three axis loading device of servo and method under a kind of coal and rock percussion
CN110441170B (en) * 2019-07-17 2023-12-22 深圳大学 Single-shaft bidirectional synchronous control electromagnetic loading dynamic shear test device and test method
US11921088B2 (en) * 2019-08-01 2024-03-05 Shenzhen University Thermal-stress-pore pressure coupled electromagnetic loading triaxial Hopkinson bar system and test method
CN110595918B (en) * 2019-10-25 2024-03-29 安徽理工大学 Dynamic and static coupling loading anchor body test device
CN110823796A (en) * 2019-11-27 2020-02-21 中国矿业大学 A real-time chemical corrosion device and method for impact test
CN110940578A (en) * 2019-12-24 2020-03-31 南京理工大学 True triaxial loading test device for large-size frozen soil
CN111208047B (en) * 2020-01-10 2020-11-06 中国矿业大学 A test method for permeability of broken rock mass that can simulate complex disturbance conditions
CN111189706A (en) * 2020-01-16 2020-05-22 南京卡恩姆航空科技有限公司 System and method applied to small sample mechanical property test
CN113720662A (en) * 2020-05-25 2021-11-30 中国石油化工股份有限公司 Sample structure, sample preparation method and test system for rock three-dimensional permeability test
CN111735699A (en) * 2020-07-14 2020-10-02 沈阳建筑大学 A prefabricated quasi-static test device under the action of multi-field coupling under environmental load
CN112033827B (en) * 2020-09-11 2023-10-03 黄山学院 Low-temperature impact test device of split Hopkinson pressure bar
CN112504847B (en) * 2020-10-30 2022-02-22 中国科学院武汉岩土力学研究所 Rock dynamic and static true/normal triaxial shear rheological THMC multi-field coupling test device
CN112326476B (en) * 2020-11-02 2025-01-03 武汉科技大学 A method and equipment for testing multi-field coupled rheological tests of rocks under dynamic loads
CN112834320B (en) * 2020-11-03 2022-11-29 贵州大学 A dry-wet cycle triaxial testing machine and its use method
CN112485295A (en) * 2020-11-09 2021-03-12 广东电网有限责任公司广州供电局 Integrated test platform for fire resistance of external heat source of oil-immersed transformer
CN112362485A (en) * 2020-11-09 2021-02-12 中国石油大学(华东) Multifunctional comprehensive test system and test method for hydrate sediments
CN112629785A (en) * 2020-12-02 2021-04-09 中国航空工业集团公司沈阳飞机设计研究所 Multi-field coupling load test device
CN112697572B (en) * 2020-12-18 2023-08-29 浙江华东工程咨询有限公司 Indoor test method suitable for crushing argillaceous siltstone
CN112858024B (en) * 2021-01-27 2023-09-22 天津大学 Device and method for measuring dynamic performance of deep rock under hydraulic coupling effect
CN113310825B (en) * 2021-05-28 2024-03-19 沈阳工业大学 Carbonate corrosion-shearing interaction test system and test method
CN113432992B (en) * 2021-06-08 2022-11-01 太原理工大学 Water-gas-temperature multi-field coupling Hopkinson pressure bar test loading system and method
CN113237760B (en) * 2021-06-16 2024-08-20 安徽理工大学 Multi-field coupling true triaxial dynamic and static load rock test device
CN113588460B (en) * 2021-07-27 2022-09-16 中南大学 High-temperature triaxial SHPB device for rock and assembling method and testing method thereof
CN113776769B (en) * 2021-09-28 2023-06-06 重庆三峡学院 Hammer testing machine capable of generating rock accumulated damage
CN113804389B (en) * 2021-09-29 2024-03-19 广州计测检测技术股份有限公司 Impact test detection method
CN113984523B (en) * 2021-10-28 2022-09-09 中国矿业大学 Test device and test method for dynamic and static combined loading strength of rock simulation material
CN114137012B (en) * 2021-10-29 2022-11-15 合肥综合性国家科学中心能源研究院(安徽省能源实验室) A true triaxial experimental magnetic signal capture device and application method
CN114509366B (en) * 2022-02-28 2024-04-09 东北大学 A performance evaluation method for rock true triaxial testing machine
CN114544373B (en) * 2022-02-28 2025-03-18 安徽理工大学 A prototype simulation remodeling frozen soil true triaxial test loading device and its operation method
CN114923793B (en) * 2022-04-19 2025-02-18 武汉理工大学 Water-mechanical coupling loading device and test method suitable for true triaxial Hopkinson pressure bar test
CN114966114B (en) * 2022-04-19 2023-05-05 北京理工大学 Multi-component impact calibration device and continuous multi-loading synchronous calibration method
CN114965072B (en) * 2022-04-21 2024-07-19 重庆大学 Simulating brine and supercritical CO in the state of raw rock2System and method for soaking salt rock
CN114813011B (en) * 2022-04-25 2023-04-14 山西大学 A test device for testing the mechanical degradation behavior of materials under the coupling of impact and transient high temperature
CN115290433B (en) * 2022-08-05 2024-08-27 西南石油大学 High-temperature high-pressure single-tooth impact rock breaking test device and method based on vertical SHPB system
CN115266424B (en) * 2022-08-11 2024-12-27 中国电建集团成都勘测设计研究院有限公司 Rock dynamic impact test system and test method
CN115308058A (en) * 2022-10-11 2022-11-08 中国矿业大学(北京) Underground engineering support system high strain rate dynamic test and evaluation system and method
CN116593280B (en) * 2023-06-20 2024-06-14 天津大学 Confining pressure loading device based on Hopkinson bar
CN116773328B (en) * 2023-06-25 2024-07-12 中国地质大学(北京) True triaxial hopkinson pressure bar test device
CN117266799B (en) * 2023-10-15 2024-03-01 东北石油大学 A horizontal well multi-angle, multi-hole dense spiral perforation testing device and testing method
CN117288669B (en) * 2023-11-24 2024-02-02 深圳市通泰盈科技股份有限公司 Acid, alkali and salt corrosion resistance test device and method for adhesive tape
CN117470639B (en) * 2023-12-22 2024-04-09 深圳大学 Energy absorption buffer device and method applied to dynamic true triaxial electromagnetic Hopkinson bar
CN117907125B (en) * 2024-01-22 2024-07-05 中山大学·深圳 Rock high temperature and shock wave coupling test device and method based on superconducting technology
CN117606936B (en) * 2024-01-23 2024-04-09 成都理工大学 Rock stress corrosion test device and method thereof
CN118090435A (en) * 2024-03-05 2024-05-28 北京中科创世科技发展有限公司 Testing device for mechanical properties of steel structure nodes and application method thereof
CN118758695B (en) * 2024-07-17 2025-02-11 天津大学 A method for preparing and dynamically testing frozen gravel samples in combination with DIC technology
CN118533674B (en) * 2024-07-22 2024-09-24 深圳大学 In-situ rock seawater corrosion and dynamic disturbance coupling loading test device and method
CN118688006B (en) * 2024-08-26 2024-10-22 山东黄金矿业科技有限公司充填工程实验室分公司 Mine exploitation filling body maintenance environment simulation test device and method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102169069A (en) * 2011-05-30 2011-08-31 浣石 Three-dimensional impact loading experiment device
CN202101910U (en) * 2011-06-10 2012-01-04 中国矿业大学 Triaxial impact dynamic load and dead load combined tester
CN102735532A (en) * 2012-06-29 2012-10-17 东北大学 Rock true triaxial pressure chamber with changeable principal stress direction when unloading
CN103257072A (en) * 2013-04-28 2013-08-21 中国矿业大学 Three-dimensional visual true triaxial simulation test bed
CN103728184A (en) * 2012-10-16 2014-04-16 中国石油化工股份有限公司 Stress-strain testing system and stress-strain testing method capable of simulating reservoir environment
CN103852373A (en) * 2014-03-20 2014-06-11 中国人民解放军理工大学 Three-way confining pressure and temperature combined loading device for Hopkinson compression bar impact test

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3485841B2 (en) * 1999-07-02 2004-01-13 紀壽 中川 Viscoelastic property value measuring device and viscoelastic property value measuring method
JP3958666B2 (en) * 2002-10-11 2007-08-15 Sriスポーツ株式会社 Method for calculating energy loss in viscoelastic material, and method for evaluating energy loss of golf ball using the method
CN202145186U (en) * 2011-07-07 2012-02-15 中国人民解放军空军工程大学 Incident wave reshaping mechanism for active ambient pressure SHPB (split hopkinson pressure bar) test
KR20130034321A (en) * 2011-09-28 2013-04-05 한국건설기술연구원 Concrete tension test and method for split hopkinson tension bar
CN103674738B (en) * 2013-12-13 2015-12-30 中国人民解放军理工大学 Under hot conditions, SHPB is automatically to bar impact loading experiment device
CN104535409B (en) * 2015-01-08 2017-12-08 中国矿业大学 A kind of multiphase coupled dynamic test system and method for more of true triaxial

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102169069A (en) * 2011-05-30 2011-08-31 浣石 Three-dimensional impact loading experiment device
CN202101910U (en) * 2011-06-10 2012-01-04 中国矿业大学 Triaxial impact dynamic load and dead load combined tester
CN102735532A (en) * 2012-06-29 2012-10-17 东北大学 Rock true triaxial pressure chamber with changeable principal stress direction when unloading
CN103728184A (en) * 2012-10-16 2014-04-16 中国石油化工股份有限公司 Stress-strain testing system and stress-strain testing method capable of simulating reservoir environment
CN103257072A (en) * 2013-04-28 2013-08-21 中国矿业大学 Three-dimensional visual true triaxial simulation test bed
CN103852373A (en) * 2014-03-20 2014-06-11 中国人民解放军理工大学 Three-way confining pressure and temperature combined loading device for Hopkinson compression bar impact test

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
三维SHPB装置设计及原理研究 等;黄永辉;《北京理工大学学报》;20141031;第34卷(第10期);第1024-1027 *
三轴SHPB岩石材料动力学特性试验研究的现状和发展趋势;宫凤强 等;《科技导报》;20091231;第27卷(第18期);第106-111页 *
混凝土类材料霍普金森压杆实验若干问题研究;方秦 等;《第22届去昂国结构工程学术会议论文集第I册》;20130609;第I042-I060页 *

Also Published As

Publication number Publication date
CN104535409A (en) 2015-04-22
WO2016110067A1 (en) 2016-07-14

Similar Documents

Publication Publication Date Title
CN104535409B (en) A kind of multiphase coupled dynamic test system and method for more of true triaxial
CN104897458B (en) A multi-phase multi-field coupled anchor combined deformation testing method
Wei et al. An analytical method for free vibration analysis of functionally graded beams with edge cracks
Wu et al. Experimental and numerical investigation on the dynamic tensile strength of concrete
Zhao et al. Study on failure characteristic of rock‐like materials with an open‐hole under uniaxial compression
CN104849153B (en) A test device for spallation strength of underground space and application of the device
Shin et al. Variation in strength and creep life of six Japanese rocks
Millon et al. Analysis of the behavior of sedimentary rocks under impact loading
CN103760044A (en) Device and method for dynamic splitting tensile mechanical property test of cement-based material
Mirfatah et al. Size-dependent dynamic stability of nanocomposite enriched micro-shell panels in thermal environment using the modified couple stress theory
CN112285159B (en) Method for measuring instantaneous oxygen concentration for explosive explosion suffocation effect evaluation
Chen et al. A dynamic hydraulic fracturing test technology based on split Hopkinson pressure bar system
CN204679401U (en) A kind of experimental facilities studied humidity and friction test is affected
Zhang et al. Experimental and theoretical study on cyclic fatigue damage evolution of sandstone based on acoustic emission monitoring and resistivity measuring
Wang et al. Frequency spectrum and damage characteristics of saturated and dry red sandstone subject to shear test
CN114996914A (en) Method for identifying fatigue damage of metal component based on cross-point frequency response inherent damping characteristics
CN114509366A (en) A method for evaluating the performance of a true triaxial rock testing machine
CN108061686B (en) Measuring method and measuring instrument for simultaneously obtaining change rule of rock cohesion and internal friction angle
CN108444842A (en) A kind of method for building up of material during tensile-torsion combined deformation strength condition
Avrigean et al. Study of the cardan cross using the experimental and analytical method
Khan et al. Development of tensile split Hopkinson pressure bar technique for studying the dynamic behaviour of metals
CN101244397B (en) Assembled constant humidity and constant temperature closed similar material simulation laboratory and its experimental method
Matache et al. Determination of a methodology for formulating constituent models of high entropy alloys
Forth et al. Anomalous fatigue crack growth data generated using the ASTM standards
Urbahs et al. The characteristic features of composite materials specimen’s static fracture investigated by the acoustic emission method

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
CB03 Change of inventor or designer information

Inventor after: Ma Zhanguo

Inventor after: Liu Daoping

Inventor after: Cui Nan

Inventor after: Guo Shuhai

Inventor after: Wang Zhiqiang

Inventor after: Wang Yu

Inventor after: Yang Dangwei

Inventor after: Yang Kai

Inventor after: Luo Ning

Inventor after: Tang Furong

Inventor after: Wang Jianguo

Inventor after: Shen Xiaoming

Inventor after: Wei Ming

Inventor after: Zhang Fan

Inventor after: Li Chong

Inventor before: Ma Zhanguo

Inventor before: Wei Ming

Inventor before: Luo Ning

Inventor before: Wang Qiang

Inventor before: Wang Yu

Inventor before: Yang Dangwei

COR Change of bibliographic data
GR01 Patent grant
GR01 Patent grant