CN104529458B - The manufacture method of high-performance SiC ceramic based composites blade of aviation engine - Google Patents
The manufacture method of high-performance SiC ceramic based composites blade of aviation engine Download PDFInfo
- Publication number
- CN104529458B CN104529458B CN201410721023.1A CN201410721023A CN104529458B CN 104529458 B CN104529458 B CN 104529458B CN 201410721023 A CN201410721023 A CN 201410721023A CN 104529458 B CN104529458 B CN 104529458B
- Authority
- CN
- China
- Prior art keywords
- sic
- pcs
- blade
- sic ceramic
- carbon fiber
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000000919 ceramic Substances 0.000 title claims abstract description 39
- 238000000034 method Methods 0.000 title claims abstract description 36
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 18
- 239000002131 composite material Substances 0.000 title claims abstract description 13
- 229920000049 Carbon (fiber) Polymers 0.000 claims abstract description 36
- 239000004917 carbon fiber Substances 0.000 claims abstract description 36
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 claims abstract description 25
- 238000005238 degreasing Methods 0.000 claims abstract description 18
- 238000005516 engineering process Methods 0.000 claims abstract description 10
- 238000000280 densification Methods 0.000 claims abstract description 6
- 238000001035 drying Methods 0.000 claims abstract description 5
- 230000008014 freezing Effects 0.000 claims abstract description 4
- 238000007710 freezing Methods 0.000 claims abstract description 4
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 claims description 36
- 239000002002 slurry Substances 0.000 claims description 28
- 239000008096 xylene Substances 0.000 claims description 28
- 239000007788 liquid Substances 0.000 claims description 25
- 239000002245 particle Substances 0.000 claims description 24
- 238000010438 heat treatment Methods 0.000 claims description 21
- 239000000843 powder Substances 0.000 claims description 21
- 239000011248 coating agent Substances 0.000 claims description 19
- 238000000576 coating method Methods 0.000 claims description 19
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 claims description 16
- 239000011347 resin Substances 0.000 claims description 16
- 229920005989 resin Polymers 0.000 claims description 16
- 239000007790 solid phase Substances 0.000 claims description 16
- 238000002360 preparation method Methods 0.000 claims description 14
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 12
- 238000004132 cross linking Methods 0.000 claims description 12
- 238000003756 stirring Methods 0.000 claims description 12
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 12
- 238000005336 cracking Methods 0.000 claims description 11
- 239000007789 gas Substances 0.000 claims description 11
- 239000011812 mixed powder Substances 0.000 claims description 11
- 239000003054 catalyst Substances 0.000 claims description 10
- 239000003999 initiator Substances 0.000 claims description 10
- 238000005245 sintering Methods 0.000 claims description 10
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 9
- 239000003795 chemical substances by application Substances 0.000 claims description 9
- 238000007598 dipping method Methods 0.000 claims description 9
- 239000010439 graphite Substances 0.000 claims description 9
- 229910002804 graphite Inorganic materials 0.000 claims description 9
- 239000011268 mixed slurry Substances 0.000 claims description 9
- 239000000178 monomer Substances 0.000 claims description 9
- ROOXNKNUYICQNP-UHFFFAOYSA-N ammonium persulfate Chemical compound [NH4+].[NH4+].[O-]S(=O)(=O)OOS([O-])(=O)=O ROOXNKNUYICQNP-UHFFFAOYSA-N 0.000 claims description 8
- 229910052786 argon Inorganic materials 0.000 claims description 8
- 239000002270 dispersing agent Substances 0.000 claims description 6
- 229910052757 nitrogen Inorganic materials 0.000 claims description 6
- HRPVXLWXLXDGHG-UHFFFAOYSA-N Acrylamide Chemical compound NC(=O)C=C HRPVXLWXLXDGHG-UHFFFAOYSA-N 0.000 claims description 5
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 5
- 239000003431 cross linking reagent Substances 0.000 claims description 5
- 239000008367 deionised water Substances 0.000 claims description 5
- 229910021641 deionized water Inorganic materials 0.000 claims description 5
- 238000004108 freeze drying Methods 0.000 claims description 5
- ZIUHHBKFKCYYJD-UHFFFAOYSA-N n,n'-methylenebisacrylamide Chemical compound C=CC(=O)NCNC(=O)C=C ZIUHHBKFKCYYJD-UHFFFAOYSA-N 0.000 claims description 5
- 230000003647 oxidation Effects 0.000 claims description 5
- 238000007254 oxidation reaction Methods 0.000 claims description 5
- 239000001301 oxygen Substances 0.000 claims description 5
- 229910052760 oxygen Inorganic materials 0.000 claims description 5
- 229910001870 ammonium persulfate Inorganic materials 0.000 claims description 4
- 230000005540 biological transmission Effects 0.000 claims description 4
- 230000003197 catalytic effect Effects 0.000 claims description 4
- 239000002105 nanoparticle Substances 0.000 claims description 4
- 229920001495 poly(sodium acrylate) polymer Polymers 0.000 claims description 4
- 230000001681 protective effect Effects 0.000 claims description 4
- NNMHYFLPFNGQFZ-UHFFFAOYSA-M sodium polyacrylate Chemical compound [Na+].[O-]C(=O)C=C NNMHYFLPFNGQFZ-UHFFFAOYSA-M 0.000 claims description 4
- 238000007711 solidification Methods 0.000 claims description 4
- 230000008023 solidification Effects 0.000 claims description 4
- KWYHDKDOAIKMQN-UHFFFAOYSA-N N,N,N',N'-tetramethylethylenediamine Chemical compound CN(C)CCN(C)C KWYHDKDOAIKMQN-UHFFFAOYSA-N 0.000 claims description 3
- 238000002156 mixing Methods 0.000 claims description 3
- 238000002679 ablation Methods 0.000 claims description 2
- 238000000462 isostatic pressing Methods 0.000 claims description 2
- 239000005416 organic matter Substances 0.000 claims description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims 6
- 150000004767 nitrides Chemical class 0.000 claims 6
- 235000015895 biscuits Nutrition 0.000 claims 4
- 238000002803 maceration Methods 0.000 claims 4
- 238000010792 warming Methods 0.000 claims 4
- 235000013312 flour Nutrition 0.000 claims 3
- 239000000377 silicon dioxide Substances 0.000 claims 3
- 238000004513 sizing Methods 0.000 claims 3
- 238000002425 crystallisation Methods 0.000 claims 2
- 230000008025 crystallization Effects 0.000 claims 2
- 238000009413 insulation Methods 0.000 claims 2
- 239000000758 substrate Substances 0.000 claims 2
- 230000014759 maintenance of location Effects 0.000 claims 1
- 238000007168 polymer infiltration and pyrolysis Methods 0.000 claims 1
- 239000011153 ceramic matrix composite Substances 0.000 abstract description 18
- 238000001746 injection moulding Methods 0.000 abstract description 8
- 239000000463 material Substances 0.000 abstract description 8
- 239000002243 precursor Substances 0.000 abstract description 6
- 238000010146 3D printing Methods 0.000 abstract description 3
- 239000011148 porous material Substances 0.000 abstract description 3
- 239000000956 alloy Substances 0.000 abstract 1
- 229910045601 alloy Inorganic materials 0.000 abstract 1
- 238000003825 pressing Methods 0.000 abstract 1
- 229910010271 silicon carbide Inorganic materials 0.000 description 79
- 229920003257 polycarbosilane Polymers 0.000 description 39
- 239000000243 solution Substances 0.000 description 27
- 239000000725 suspension Substances 0.000 description 12
- 238000005470 impregnation Methods 0.000 description 10
- 238000001513 hot isostatic pressing Methods 0.000 description 8
- 239000011863 silicon-based powder Substances 0.000 description 6
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 5
- 239000013078 crystal Substances 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- 229910021431 alpha silicon carbide Inorganic materials 0.000 description 3
- 239000000835 fiber Substances 0.000 description 3
- 230000001590 oxidative effect Effects 0.000 description 3
- 239000007787 solid Substances 0.000 description 3
- 238000009210 therapy by ultrasound Methods 0.000 description 3
- 238000001132 ultrasonic dispersion Methods 0.000 description 3
- 238000005452 bending Methods 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 238000011049 filling Methods 0.000 description 2
- 230000008676 import Effects 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- 238000000197 pyrolysis Methods 0.000 description 2
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- QDOXWKRWXJOMAK-UHFFFAOYSA-N dichromium trioxide Chemical compound O=[Cr]O[Cr]=O QDOXWKRWXJOMAK-UHFFFAOYSA-N 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000001879 gelation Methods 0.000 description 1
- KFIGICHILYTCJF-UHFFFAOYSA-N n'-methylethane-1,2-diamine Chemical compound CNCCN KFIGICHILYTCJF-UHFFFAOYSA-N 0.000 description 1
- 229910000601 superalloy Inorganic materials 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/60—Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
- C04B2235/602—Making the green bodies or pre-forms by moulding
- C04B2235/6026—Computer aided shaping, e.g. rapid prototyping
Landscapes
- Ceramic Products (AREA)
Abstract
本发明公开一种高性能SiC陶瓷基复合材料航空发动机叶片的制造方法,采用3D打印技术制备了航空发动机叶片模具,再通过凝胶注模法制备出加入碳纤维的SiC陶瓷素坯件,经过冷冻干燥、脱脂等工艺得到多孔SiC陶瓷预制件,然后多次浸渍裂解有机物前驱体,利用裂解产物填充预制件的孔隙,使其达到初步致密,为了保证制件强度与致密度,最终使用热等静压方法制造出高性能SiC陶瓷基复合材料航空发动机叶片。该方法结合多种近净成型技术克服了SiC材料加工困难等缺点,与传统的合金叶片相比较,SiC陶瓷基复合材料航空发动机叶片具有质量轻、耐高温的优势,是未来航空发动机叶片发展的趋势。The invention discloses a method for manufacturing a high-performance SiC ceramic-based composite material aero-engine blade. The aero-engine blade mold is prepared by using 3D printing technology, and then a SiC ceramic blank with carbon fiber is prepared by gel injection molding. After freezing Porous SiC ceramic preforms are obtained by drying, degreasing and other processes, and then the organic precursor is impregnated and cracked multiple times, and the cracked products are used to fill the pores of the preforms to achieve initial densification. In order to ensure the strength and density of the parts, hot isostatic High-performance SiC ceramic matrix composite aeroengine blades were manufactured by pressing method. This method combines a variety of near-net shape technologies to overcome the shortcomings of SiC material processing difficulties. Compared with traditional alloy blades, SiC ceramic matrix composite aero-engine blades have the advantages of light weight and high temperature resistance, and are the future development of aero-engine blades. trend.
Description
【技术领域】【Technical field】
本发明属于陶瓷基复合材料复杂零件制造技术领域,涉及一种高性能SiC陶瓷基复合材料航空发动机叶片的制造方法。The invention belongs to the technical field of manufacturing complex parts of ceramic matrix composite materials, and relates to a method for manufacturing high-performance SiC ceramic matrix composite material aeroengine blades.
【背景技术】【Background technique】
叶片是航空发动机的关键部件,为了不断提高航空发动机的综合性能,则需要提高航空发动机的燃气温度,这就要求叶片有足够高的承热能力。传统采用的高温合金使用温度有限,且密度较高(8.03-8.06g/cm3),制约了航空发动机性能的进一步提升。Blades are the key components of aero-engines. In order to continuously improve the overall performance of aero-engines, it is necessary to increase the gas temperature of aero-engines, which requires the blades to have a high enough heat-bearing capacity. Traditionally used superalloys have limited service temperature and high density (8.03-8.06g/cm 3 ), which restricts the further improvement of aero-engine performance.
【发明内容】【Content of invention】
本发明的目的在于提供一种高性能SiC陶瓷基复合材料航空发动机叶片的制造方法,该方法基于3D打印技术,经过凝胶注模、热等静压工艺制造出高性能SiC陶瓷基复合材料航空发动机叶片,该叶片耐高温且密度低,有利于提高航空发动机的综合性能。The purpose of the present invention is to provide a method for manufacturing high-performance SiC ceramic matrix composite aeroengine blades. The method is based on 3D printing technology and produces high-performance SiC ceramic matrix composite aviation Engine blades, which are high-temperature-resistant and low-density, are conducive to improving the overall performance of the aero-engine.
为了实现上述目的,本发明采用如下技术方案:In order to achieve the above object, the present invention adopts the following technical solutions:
高性能SiC陶瓷基复合材料航空发动机叶片的制造方法,包括以下步骤:A method for manufacturing a high-performance SiC ceramic matrix composite aeroengine blade, comprising the following steps:
1)制备航空发动机叶片的树脂模具;1) Prepare a resin mold for an aeroengine blade;
2)制备固相颗粒分散均匀的SiC悬浮浆料;2) preparing a SiC suspension slurry in which the solid phase particles are uniformly dispersed;
3)采用真空注型技术将SiC悬浮浆料浇入树脂模具内,得到SiC陶瓷素坯;3) Pouring the SiC suspension slurry into the resin mold by vacuum injection molding technology to obtain the SiC ceramic green body;
4)将得到的SiC陶瓷素坯进行冷冻干燥处理,去除坯体内的结晶水得到干燥的生坯;并使用液氮将其树脂模具去除;4) subjecting the obtained SiC ceramic green body to freeze-drying treatment, removing crystal water in the green body to obtain a dried green body; and using liquid nitrogen to remove the resin mold;
5)在气氛保护下对干燥的生坯进行脱脂工艺,将坯体内部有机物烧蚀,得到多孔的SiC陶瓷叶片;5) Degreasing the dried green body under the protection of the atmosphere, ablation of the organic matter inside the green body to obtain porous SiC ceramic blades;
6)通过进行多次前驱体浸渍裂解工艺,将多孔的SiC陶瓷叶片初步致密化;6) Preliminary densification of porous SiC ceramic blades by performing multiple precursor dipping and cracking processes;
7)利用等静压技术,将初步致密化的SiC陶瓷叶片烧结,最终制造出致密度大于或等于95%的SiC陶瓷基复合材料叶片。7) Using isostatic pressing technology to sinter the pre-densified SiC ceramic blade, and finally manufacture a SiC ceramic matrix composite material blade with a density greater than or equal to 95%.
优选的,步骤2)具体包括:Preferably, step 2) specifically includes:
2.1)按照具有PCS涂层的松散单丝短碳纤维:纳米SiC:预混液=1:(5~15):45的体积比将具有PCS涂层的松散单丝短碳纤维和纳米SiC加入到配置好的预混液当中,并进行超声分散得到分散好的预混液;2.1) Add the loose monofilament short carbon fiber with PCS coating and nano SiC to the configured Among the premixed liquids, ultrasonic dispersion is carried out to obtain dispersed premixed liquids;
2.2)将微米SiC混合粉末加入步骤2.1)分散好的预混液中得到混合浆料,然后加入混合浆料中固相成分0.5~2wt%的聚丙烯酸钠作为分散剂;然后把混合浆料置入机械搅拌器内搅拌均匀,最终得到固相颗粒分散均匀的SiC悬浮浆料;其中,微米SiC混合粉末的加入量与步骤2.1)中所使用的预混液的体积比为(39~49):45;2.2) Add the micron SiC mixed powder into the dispersed premix in step 2.1) to obtain a mixed slurry, then add sodium polyacrylate with a solid phase content of 0.5 to 2wt% in the mixed slurry as a dispersant; then put the mixed slurry into Stir evenly in a mechanical stirrer, and finally obtain a SiC suspension slurry with uniformly dispersed solid phase particles; wherein, the volume ratio of the added amount of micron SiC mixed powder to the premixed liquid used in step 2.1) is (39-49):45 ;
所述预混液的制备方法为:将有机单体丙烯酰胺和交联剂N,N′-亚甲基双丙烯酰胺,按照质量比(6~24):1混合,然后在室温下溶解到去离子水中,配制成质量分数为15~25%的预混液;The preparation method of the premixed solution is as follows: the organic monomer acrylamide and the crosslinking agent N,N'-methylenebisacrylamide are mixed according to the mass ratio (6-24): 1, and then dissolved at room temperature until In deionized water, prepare a premix solution with a mass fraction of 15-25%;
所述具有PCS涂层的松散单丝短碳纤维的制备方法为:将固态PCS研磨成粉末,溶于二甲苯中,配制成质量分数的20wt%~25wt%的PCS/Xylene浸渍液;将长度为0.5~4mm短碳纤维加入浸渍液中,超声波处理排除短碳纤维表面沟壑中的气泡;静置1h后取出,于140℃保温8h使PCS与空气中的氧发生氧化自交联反应;然后将完成交联的短碳纤维在二甲苯中超声分散5min,取出后烘干;循环上述操作1~2次,得到表面具有均匀而光滑的PCS涂层的松散单丝短碳纤维;The preparation method of the loose monofilament short carbon fiber with PCS coating is: solid PCS is ground into powder, is dissolved in xylene, is mixed with the PCS/Xylene dipping liquid of 20wt%~25wt% of mass fraction; 0.5-4mm short carbon fibers are added to the impregnating solution, and the air bubbles in the surface grooves of the short carbon fibers are removed by ultrasonic treatment; they are taken out after standing for 1 hour, and kept at 140°C for 8 hours to allow the oxidation and self-crosslinking reaction of PCS and oxygen in the air to occur; then the crosslinking is completed The combined short carbon fibers were ultrasonically dispersed in xylene for 5 minutes, taken out and then dried; the above operation was repeated 1 to 2 times to obtain loose monofilament short carbon fibers with a uniform and smooth PCS coating on the surface;
微米SiC混合粉末由粗SiC粉和细SiC粉以质量比(3~5):1混合而成,所述粗SiC粉的粒径为40~60um,细SiC粉的粒径为2~10μm。The micron SiC mixed powder is formed by mixing coarse SiC powder and fine SiC powder at a mass ratio (3-5): 1, the particle size of the coarse SiC powder is 40-60um, and the particle size of the fine SiC powder is 2-10μm.
优选的,步骤3)具体包括以下步骤:将SiC悬浮浆料置入真空注型机内,先后加入催化量的催化剂和引发剂,搅拌均匀后开始向树脂模具内浇注悬浮浆料,同时开启振动台,排尽树脂模具内气泡;待真空浇注完成后,在大气环境常温静置彻底完成单体交联固化得到凝胶后的叶片素坯;其中,所述催化剂为质量分数为25%的四甲基乙二胺溶,所述引发剂为质量分数为30%过硫酸铵溶液,催化剂的质量与引发剂的质量比为1:6-7。Preferably, step 3) specifically includes the following steps: placing the SiC suspension slurry into a vacuum injection molding machine, adding catalytic amounts of catalyst and initiator successively, stirring evenly and starting to pour the suspension slurry into the resin mold, and simultaneously starting the vibration platform to exhaust the air bubbles in the resin mold; after the vacuum pouring is completed, stand at room temperature in the atmospheric environment to completely complete the monomer cross-linking and solidification to obtain the green blade green body after the gel; wherein the catalyst is 25% four Methylethylenediamine is dissolved, the initiator is ammonium persulfate solution with a mass fraction of 30%, and the mass ratio of the catalyst mass to the initiator is 1:6-7.
优选的,步骤4)具体包括:将凝胶后的叶片素坯放置于-60℃冻柜内,冷冻3~5h,使生坯中的水分完全冷冻结晶;然后使用液氮剥离树脂模具,再将生坯放入冷冻干燥机的真空负压舱内,持续抽真空至真空度保持在0.1Pa~10Pa,使得生坯内的结晶水完全升华得到干燥的生坯。Preferably, step 4) specifically includes: placing the gelled blade blank in a freezer at -60°C, freezing for 3 to 5 hours, so that the water in the green blank is completely frozen and crystallized; then using liquid nitrogen to peel off the resin mold, and then Put the green body into the vacuum negative pressure chamber of the freeze dryer, and continue to vacuum until the vacuum degree is kept at 0.1Pa-10Pa, so that the crystal water in the green body is completely sublimated to obtain a dried green body.
优选的,步骤5)具体包括:将干燥的生坯在气氛箱式炉内完成脱脂工艺,以氩气为保护气体,脱脂升温工艺:以5℃/min的升温速率从室温升温至200℃,然后以1℃/min的升温速率从200℃升温至700℃,然后以2℃/min的升温速率从700℃升温至~900℃并保温1h;脱脂后,得到多孔的SiC陶瓷叶片。Preferably, step 5) specifically includes: completing the degreasing process of the dried green body in an atmosphere box furnace, using argon as a protective gas, and the degreasing and heating process: raising the temperature from room temperature to 200 °C at a heating rate of 5 °C/min, Then the temperature was raised from 200°C to 700°C at a heating rate of 1°C/min, and then from 700°C to ~900°C at a heating rate of 2°C/min and kept for 1 hour; after degreasing, porous SiC ceramic blades were obtained.
优选的,步骤6)具体包括:将得到的多孔的SiC陶瓷叶片放置真空罐内,抽真空后吸入SiC/PCS/xylene浸渍浆料,真空度为8×10-2,保压浸渍30min;将浸渍后的制件,于80℃下干燥2~4h,然后升温到150℃完成氧化交联;然后在Ar气保护下,以5℃/min的速度升温至1300℃进行裂解,并在1300℃保温1~1.5h;然后将浸渍剂更换为PCS/xylene溶液,重复上述浸渍裂解工艺得到初步致密化的SiC陶瓷叶片;SiC/PCS/xylene浸渍浆料中SiC的质量分数为10%,PCS的质量分数为40%,SiC为纳米颗粒;PCS/xylene浸渍浆料中PCS的质量分数为40%。Preferably, step 6) specifically includes: placing the obtained porous SiC ceramic blade in a vacuum tank, sucking in the SiC/PCS/xylene impregnation slurry after vacuuming, with a vacuum degree of 8×10 -2 , and impregnating for 30 minutes under pressure; The impregnated parts are dried at 80°C for 2 to 4 hours, and then heated to 150°C to complete oxidative cross-linking; then under the protection of Ar gas, the temperature is raised to 1300°C at a speed of 5°C/min for cracking, and at 1300°C Insulate for 1 to 1.5 hours; then replace the impregnating agent with PCS/xylene solution, repeat the above dipping and cracking process to obtain a preliminary densified SiC ceramic blade; the mass fraction of SiC in the SiC/PCS/xylene impregnating slurry is 10%, and the The mass fraction is 40%, and SiC is nanoparticles; the mass fraction of PCS in the PCS/xylene impregnation slurry is 40%.
优选的,步骤7)具体包括:将初步致密化的SiC陶瓷叶片从室温以5℃/min的升温速率进行升温至1500℃,并在1500℃保温时间1.5~2h进行热等静压烧结,热等静压烧结以氩气为传压介质,压力100MPa;热等静压烧结完成后随炉冷却至室温,得到所要制备的高性能SiC陶瓷基复合材料航空发动机叶片。Preferably, step 7) specifically includes: heating the pre-densified SiC ceramic blade from room temperature to 1500°C at a heating rate of 5°C/min, and performing hot isostatic pressing sintering at 1500°C for 1.5-2 hours. The isostatic sintering uses argon as the pressure transmission medium, and the pressure is 100 MPa; after the hot isostatic sintering is completed, it is cooled to room temperature with the furnace to obtain the high-performance SiC ceramic matrix composite aero-engine blade to be prepared.
优选的,步骤2)具体包括:Preferably, step 2) specifically includes:
2.1)按照具有PCS涂层的松散单丝短碳纤维:预混液=(5~15):45的体积比将具有PCS涂层的松散单丝短碳纤维加入到配置好的预混液当中,并进行超声分散得到分散好的预混液;2.1) According to the volume ratio of loose monofilament short carbon fiber with PCS coating: premix solution = (5 ~ 15): 45, add loose monofilament short carbon fiber with PCS coating into the prepared premix solution, and perform ultrasonic Disperse to obtain a dispersed premix;
2.2)再以石墨:硅粉:SiC:预混液=6:14:(20~30):45的体积将石墨、硅粉和SiC粉末加入分散好的预混液中得到混合浆料,然后加入混合浆料中固相成分0.5~2wt%的分散剂;然后把浆料置入机械搅拌器内搅拌均匀,最终得到固相颗粒分散均匀的SiC悬浮浆料;石墨粒径为15~25um,硅粉粒径为5um,SiC粉末粒径为40~60um;2.2) Then add graphite, silicon powder and SiC powder into the dispersed premix with the volume of graphite: silicon powder: SiC: premix = 6: 14: (20-30): 45 to obtain a mixed slurry, then add and mix A dispersant with 0.5-2wt% solid phase component in the slurry; then put the slurry into a mechanical stirrer and stir evenly, and finally obtain a SiC suspension slurry with uniformly dispersed solid phase particles; graphite particle size is 15-25um, silicon powder The particle size is 5um, and the SiC powder particle size is 40-60um;
所述预混液的制备方法为:将有机单体丙烯酰胺和交联剂N,N′-亚甲基双丙烯酰胺,按照质量比(6~24):1混合,然后在室温下溶解到去离子水中,配制成质量分数为15~25%的预混液;The preparation method of the premixed solution is as follows: the organic monomer acrylamide and the crosslinking agent N,N'-methylenebisacrylamide are mixed according to the mass ratio (6-24): 1, and then dissolved at room temperature until In deionized water, prepare a premix solution with a mass fraction of 15-25%;
所述具有PCS涂层的松散单丝短碳纤维的制备方法为:将固态PCS研磨成粉末,溶于二甲苯中,配制成质量分数的20wt%~25wt%的PCS/Xylene浸渍液;将长度为0.5~4mm短碳纤维加入浸渍液中,超声波处理排除短碳纤维表面沟壑中的气泡;静置1h后取出,于140℃保温8h使PCS与空气中的氧发生氧化自交联反应;然后将完成交联的短碳纤维在二甲苯中超声分散5min,取出后烘干;循环上述操作1~2次,得到表面具有均匀而光滑的PCS涂层的松散单丝短碳纤维。The preparation method of the loose monofilament short carbon fiber with PCS coating is: solid PCS is ground into powder, is dissolved in xylene, is mixed with the PCS/Xylene dipping liquid of 20wt%~25wt% of mass fraction; 0.5-4mm short carbon fibers are added to the impregnating solution, and the air bubbles in the surface grooves of the short carbon fibers are removed by ultrasonic treatment; they are taken out after standing for 1 hour, and kept at 140°C for 8 hours to allow the oxidation and self-crosslinking reaction of PCS and oxygen in the air to occur; then the crosslinking is completed The linked short carbon fibers were ultrasonically dispersed in xylene for 5 minutes, taken out and then dried; the above operation was repeated 1 to 2 times to obtain loose monofilament short carbon fibers with a uniform and smooth PCS coating on the surface.
优选的,步骤1)具体包括:使用三维建模软件构建航空发动机叶片三维原型,然后对原型抽壳得到叶片模具,将其导出为stl格式,再将其导入分层软件Magics中,对叶片模具模型进行分层处理;将Magics处理数据导入光固化快速成型机中,启动程序,完成叶片光固化树脂模具的制造;扫描参数:光斑大小为0.14mm,激光功率为300mw,扫描速度为5500mm/s,层厚0.1mm。Preferably, step 1) specifically includes: using 3D modeling software to build a 3D prototype of an aeroengine blade, then extracting the shell of the prototype to obtain a blade mold, exporting it to stl format, and then importing it into the layered software Magics, and then performing the blade mold The model is layered and processed; the Magics processing data is imported into the light-cured rapid prototyping machine, and the program is started to complete the manufacture of the blade light-cured resin mold; scanning parameters: the spot size is 0.14mm, the laser power is 300mw, and the scanning speed is 5500mm/s , layer thickness 0.1mm.
与现有技术相比,本发明具有以下有益的技术效果:Compared with the prior art, the present invention has the following beneficial technical effects:
本发明提供一种高性能SiC陶瓷基复合材料航空发动机叶片的制造方法,采用3D打印技术制备出光固化叶片负型模具,使用凝胶注模法得到SiC陶瓷素坯,然后经过冷冻干燥、脱脂等工艺得到的SiC零件,然而其致密度低,难以实现SiC陶瓷在高性能航空发动机上的应用。本发明结合先驱体浸渍裂解法和热等静压技术克服了其致密度低的缺陷,得到了韧性、结构性好,致密度高SiC陶瓷基航空发动机叶片。The invention provides a method for manufacturing a high-performance SiC ceramic-based composite material aeroengine blade, which uses 3D printing technology to prepare a light-cured blade negative mold, uses a gel injection molding method to obtain a SiC ceramic green body, and then undergoes freeze-drying, degreasing, etc. However, the SiC parts obtained by the process have low density, which makes it difficult to realize the application of SiC ceramics in high-performance aero-engines. The invention combines the precursor impregnation cracking method and the hot isostatic pressing technology to overcome the defect of low density, and obtains SiC ceramic-based aeroengine blades with good toughness and structure and high density.
本发明制造的SiC陶瓷基复合材料航空发动机叶片,采用浸渍先驱体(聚碳硅烷),在纤维表面裂解生成表面完整SiC界面层,有效防止纤维与基体反应,并提高了其与陶瓷基体的结合强度。The SiC ceramic matrix composite aero-engine blade manufactured by the present invention adopts the impregnated precursor (polycarbosilane) to crack and generate a complete SiC interface layer on the surface of the fiber, effectively preventing the fiber from reacting with the matrix, and improving its bonding with the ceramic matrix strength.
【具体实施方式】【detailed description】
下面结合具体的实施例对本发明做进一步的详细说明,所述是对本发明的解释而不是限定。The present invention will be further described in detail below in conjunction with specific embodiments, which are explanations of the present invention rather than limitations.
下面具体以航空发动机叶片的制备来进行具体的说明。The preparation of an aeroengine blade will be specifically described below.
实施例1Example 1
一种高性能SiC陶瓷基复合材料航空发动机叶片的制备方法,包括以下步骤:A method for preparing a high-performance SiC ceramic matrix composite material aeroengine blade, comprising the following steps:
1.航空发动机叶片负型模具设计与制造1. Design and manufacture of aero-engine blade negative mold
1.1使用三维建模软件(UG、ProE等)构建航空发动机叶片三维原型,然后对原型抽壳(抽壳厚度为0.5-1.0mm)得到叶片模具,将其导出为stl格式,再将其导入分层软件Magics中,对叶片模具模型进行分层处理。1.1 Use 3D modeling software (UG, ProE, etc.) to build a 3D prototype of an aero-engine blade, then shell the prototype (the thickness of the shell is 0.5-1.0mm) to get the blade mold, export it to stl format, and then import it into the In the layer software Magics, the blade mold model is layered.
1.2将Magics处理数据导入光固化快速成型机(SPS600)RP制造程序内,启动程序,完成叶片光固化树脂模具的制造。扫描参数:光斑大小为0.14mm,激光功率为300mw,扫描速度为5500mm/s,层厚0.1mm。1.2 Import the Magics processing data into the RP manufacturing program of the light-curing rapid prototyping machine (SPS600), start the program, and complete the manufacture of the blade light-curing resin mold. Scanning parameters: the spot size is 0.14mm, the laser power is 300mw, the scanning speed is 5500mm/s, and the layer thickness is 0.1mm.
2.浆料的制备2. Preparation of Slurry
2.1预混液的制备2.1 Preparation of master mix
将有机单体丙烯酰胺AM和交联剂N,N′-亚甲基双丙烯酰胺MBAM,按照质量比(6~24):1混合,然后在室温下(25℃)溶解到去离子水中,配制成质量分数为15~25%的预混液。The organic monomer acrylamide AM and the crosslinking agent N,N'-methylenebisacrylamide MBAM are mixed according to the mass ratio (6~24): 1, and then dissolved in deionized water at room temperature (25°C), Prepare a premix solution with a mass fraction of 15-25%.
2.2纤维涂层制备2.2 Fiber coating preparation
将固态PCS(聚碳硅烷)研磨成粉末,溶于二甲苯(Xylene)中,配制成质量分数的20wt%~25wt%的PCS/Xylene浸渍液。将长度为0.5~4mm短碳纤维加入浸渍液中,超声波处理(28Hz)30min,以排除短碳纤维表面沟壑中的气泡。静置1h,取出后于140℃保温8h使PCS与空气中的氧发生氧化自交联反应;然后将完成交联的短碳纤维在二甲苯中超声分散5min,取出后烘干。循环上述操作1~2次,即可得到表面具有均匀而光滑的PCS涂层的松散单丝短碳纤维。Solid PCS (polycarbosilane) is ground into powder, dissolved in xylene (Xylene), and prepared into a PCS/Xylene impregnating solution with a mass fraction of 20wt%-25wt%. Add short carbon fibers with a length of 0.5 to 4 mm into the impregnation solution, and perform ultrasonic treatment (28Hz) for 30 minutes to remove air bubbles in the grooves on the surface of the short carbon fibers. Let it stand for 1 hour, take it out and keep it warm at 140°C for 8 hours to make PCS oxidize and self-crosslink with the oxygen in the air; then ultrasonically disperse the crosslinked short carbon fiber in xylene for 5 minutes, take it out and dry it. By repeating the above operation for 1-2 times, the loose monofilament short carbon fiber with a uniform and smooth PCS coating on the surface can be obtained.
2.3固相组分制备2.3 Preparation of solid phase components
固相成份为:步骤2.2制备的具有PCS涂层的松散单丝短碳纤维、纳米SiC(平均粒径50nm,形状为球形)和微米级α-SiC混合粉末;其中微米级α-SiC混合粉末的纯度99.8%,并由粗SiC和细SiC组成,粗SiC粉的粒径为40~60um、细SiC粉的粒径为2~10μm,粗SiC:细SiC的质量比为(3~5):1,混合均匀形成微米级α-SiC混合粉末。The solid phase components are: the loose monofilament short carbon fiber with PCS coating prepared in step 2.2, nano-SiC (average particle diameter 50nm, spherical shape) and micron α-SiC mixed powder; wherein the micron α-SiC mixed powder The purity is 99.8%, and it is composed of coarse SiC and fine SiC. The particle size of coarse SiC powder is 40-60um, the particle size of fine SiC powder is 2-10μm, and the mass ratio of coarse SiC: fine SiC is (3-5): 1. Mix evenly to form micron-sized α-SiC mixed powder.
2.3.1按照具有PCS涂层的松散单丝短碳纤维:纳米SiC:预混液=1:(5~15):45的体积比将上述短碳纤维和纳米SiC加入到配置好的预混液当中,并进行5min的超声分散得到分散好的预混液。2.3.1 According to the volume ratio of PCS-coated loose monofilament short carbon fiber: nano-SiC: premix solution = 1: (5-15): 45, add the above-mentioned short carbon fiber and nano-SiC into the prepared premix solution, and Ultrasonic dispersion was carried out for 5 min to obtain a well-dispersed premix.
2.3.2将微米SiC混合粉末加入步骤2.3.1分散好的预混液中,然后加入固相成分0.5~2wt%的聚丙烯酸钠作为分散剂。然后把浆料置入机械搅拌器内搅拌,搅拌时间设定为20~45min,最终得到固相颗粒分散均匀的SiC悬浮浆料。微米SiC混合粉末的加入量与步骤2.3.1中所使用的预混液的体积比为(39~49):45。2.3.2 Add the micron SiC mixed powder into the premix solution dispersed in step 2.3.1, and then add 0.5-2 wt% sodium polyacrylate as a dispersant in the solid phase. Then put the slurry into a mechanical stirrer and stir, the stirring time is set at 20-45min, and finally obtain the SiC suspension slurry with uniformly dispersed solid phase particles. The volume ratio of the added amount of micron SiC mixed powder to the premix solution used in step 2.3.1 is (39-49):45.
3.凝胶注模成型3. Gel injection molding
将SiC悬浮浆料置入真空注型机内(真空度为8×10-2),先后加入催化量的催化剂(质量分数为25%的四甲基乙二胺溶液)和引发剂(质量分数为30%过硫酸铵溶液),继续搅拌。1min后开始向叶片模具内浇注悬浮浆料,同时开启振动台,排尽模具内气泡保证充型完整。待真空浇注完成后,在大气环境常温静置30min彻底完成单体交联固化得到凝胶后的叶片素坯。其中,催化剂的质量与引发剂的质量比为1:6-7。Put the SiC suspension slurry into a vacuum injection molding machine (vacuum degree is 8×10 -2 ), and add a catalytic amount of catalyst (a solution of tetramethylethylenediamine with a mass fraction of 25%) and an initiator (mass fraction 30% ammonium persulfate solution), continue stirring. After 1 minute, start pouring the suspension slurry into the blade mold, and at the same time turn on the vibrating table to exhaust the air bubbles in the mold to ensure the complete filling. After the vacuum pouring is completed, stand still at room temperature in the atmosphere for 30 minutes to completely complete the monomer cross-linking and solidification to obtain the green blade green body after gelation. Wherein, the mass ratio of the mass of the catalyst to the initiator is 1:6-7.
4.冷冻干燥4. Freeze drying
将凝胶后的叶片素坯放置于-60℃冻柜内,冷冻3~5h,使生坯中的水分完全冷冻结晶。然后使用液氮将生坯的树脂模具剥离,再将其放入冷冻干燥机的真空负压舱内,持续抽真空(真空度保持在0.1Pa~10Pa),使得生坯内的结晶水完全升华,从而达到干燥的目的以得到干燥的生坯。Place the gelled leaf green body in a freezer at -60°C for 3-5 hours, so that the moisture in the green body is completely frozen and crystallized. Then use liquid nitrogen to peel off the resin mold of the green body, then put it into the vacuum negative pressure chamber of the freeze dryer, and keep vacuuming (the vacuum degree is kept at 0.1Pa ~ 10Pa), so that the crystal water in the green body is completely sublimated , so as to achieve the purpose of drying to obtain a dry green body.
5.真空脱脂5. Vacuum degreasing
将干燥的生坯在气氛箱式炉内完成脱脂工艺,以氩气为保护气体,脱脂升温工艺:室温~200℃(升温速率5℃/min);200~700℃(升温速率1℃/min);700~900℃(升温速率2℃/min);900℃保温1h。脱脂后,得到孔径在5um左右的多孔SiC陶瓷基复合材料叶片。Complete the degreasing process of the dried green body in the atmosphere box furnace, using argon as the protective gas, degreasing and heating process: room temperature ~ 200 ° C (heating rate 5 ° C / min); 200 ~ 700 ° C (heating rate 1 ° C / min ); 700~900°C (heating rate 2°C/min); keep at 900°C for 1h. After degreasing, a porous SiC ceramic matrix composite material blade with a pore diameter of about 5um is obtained.
6.有机物前驱体的浸渍与裂解6. Impregnation and pyrolysis of organic precursors
6.1配制两种浸渍剂:配置SiC/PCS/xylene浆料(浆料中SiC的质量分数为10%,PCS的质量分数为40%,SiC为纳米颗粒)与PCS/xylene溶液(PCS的质量分数为40%)。6.1 Prepare two kinds of impregnating agents: configure SiC/PCS/xylene slurry (the mass fraction of SiC in the slurry is 10%, the mass fraction of PCS is 40%, and SiC is nanoparticles) and PCS/xylene solution (the mass fraction of PCS is 40%).
6.2将得到的多孔SiC陶瓷预制件放置真空罐内,抽真空后吸入SiC/PCS/xylene浸渍浆料。真空度为8×10-2,保压浸渍30min。将浸渍后的制件,于80℃下干燥2~4h,升温到150℃完成氧化交联。在Ar气保护下,以5℃/min的速度升温至1300℃进行裂解,并在1300℃保温1~1.5h。然后将浸渍剂更换为PCS/xylene溶液,重复浸渍-裂解工艺。待裂解工艺完成后得到致密度较高的SiC陶瓷基复合材料航空发动机叶片(其致密度可达85%~90%)。6.2 Place the obtained porous SiC ceramic preform in a vacuum tank, and suck the SiC/PCS/xylene impregnation slurry after vacuuming. The vacuum degree is 8×10 -2 , and the impregnation is held for 30 minutes. Dry the impregnated article at 80°C for 2-4 hours, then raise the temperature to 150°C to complete oxidative cross-linking. Under the protection of Ar gas, the temperature was raised to 1300°C at a rate of 5°C/min for cracking, and the temperature was kept at 1300°C for 1-1.5h. Then the impregnating agent was replaced with PCS/xylene solution, and the impregnating-cracking process was repeated. After the cracking process is completed, a SiC ceramic matrix composite material aero-engine blade with higher density (the density can reach 85% to 90%) is obtained.
7.热等静压7. Hot isostatic pressing
将步骤6.2制备的SiC陶瓷基复合材料航空发动机叶片从室温以5℃/min的升温速率进行升温至1500℃,并在1500℃保温时间1.5~2h进行热等静压烧结,热等静压烧结以氩气为传压介质,压力100MPa。热等静压烧结完成后随炉冷却至室温,取出样件,最终得到密度为2.75-2.82g/cm3,高温(1300℃)抗弯强度为270MPa的SiC陶瓷基复合材料航空发动机叶片。Heat the SiC ceramic matrix composite aero-engine blade prepared in step 6.2 from room temperature to 1500°C at a heating rate of 5°C/min, and conduct hot isostatic pressing sintering at 1500°C for 1.5 to 2 hours. Argon is used as the pressure transmission medium, and the pressure is 100MPa. After the hot isostatic pressing sintering is completed, the furnace is cooled to room temperature, and the sample is taken out to obtain a SiC ceramic matrix composite aero-engine blade with a density of 2.75-2.82g/cm 3 and a high-temperature (1300°C) bending strength of 270MPa.
实施例2Example 2
一种高性能SiC陶瓷基复合材料航空发动机叶片的制备方法,包括以下步骤:A method for preparing a high-performance SiC ceramic matrix composite material aeroengine blade, comprising the following steps:
1.与实例1的步骤1相同;1. Same as Step 1 of Example 1;
2.浆料的配制2. Preparation of slurry
2.1.与实例1步骤2.1相同2.1. Same as Step 2.1 of Example 1
2.2.与实例1步骤2.2相同2.2. Same as Step 2.2 of Example 1
2.3.按照具有PCS涂层的松散单丝短碳纤维:预混液=(5~15):45的体积比将其混合,并进行5min的超声分散。再以石墨:硅粉:SiC:预混液=6:14:(20~30):45的体积将石墨、硅粉和SiC粉末加入分散好的预混液中,然后加入整个固相成分0.5~2wt%的聚丙烯酸钠作为分散剂。然后把浆料置入机械搅拌器内搅拌,搅拌时间设定为20~45min,最终得到固相颗粒分散均匀的SiC悬浮浆料。石墨粒径为15~25um,Si粉粒径为5um,SiC粉末粒径为40~60um。2.3. Mix them according to the volume ratio of loose monofilament short carbon fibers with PCS coating: premix solution = (5-15): 45, and perform ultrasonic dispersion for 5 minutes. Then add graphite, silicon powder and SiC powder into the dispersed premix with the volume of graphite: silicon powder: SiC: premix = 6:14: (20-30): 45, and then add 0.5-2wt of the entire solid phase component % sodium polyacrylate as a dispersant. Then put the slurry into a mechanical stirrer and stir, the stirring time is set at 20-45min, and finally obtain the SiC suspension slurry with uniformly dispersed solid phase particles. The graphite particle size is 15-25um, the Si powder particle size is 5um, and the SiC powder particle size is 40-60um.
3.凝胶注模成型3. Gel injection molding
将SiC悬浮浆料置入真空注型机内(真空度为8×10-2),先后加催化量的催化剂(质量分数为25%的四甲基乙二胺溶液)和引发剂(质量分数为30%过硫酸铵溶液),继续搅拌。1min后开始向叶片模具内浇注悬浮浆料,同时开启振动台,排尽模具内气泡以保证充型完整。待真空浇注完成后,在大气环境常温静置30min彻底完成单体交联固化得到凝胶后的叶片制件。其中,催化剂的质量与引发剂的质量比为1:6-7。Put the SiC suspension slurry into a vacuum injection molding machine (vacuum degree is 8×10 -2 ), add a catalytic amount of catalyst (a solution of tetramethylethylenediamine with a mass fraction of 25%) and an initiator (mass fraction 30% ammonium persulfate solution), continue stirring. After 1 minute, start pouring the suspension slurry into the blade mold, and at the same time turn on the vibrating table to exhaust the air bubbles in the mold to ensure the complete filling. After the vacuum pouring is completed, let it stand at room temperature in the atmosphere for 30 minutes to completely complete the monomer cross-linking and solidification to obtain the gelled blade parts. Wherein, the mass ratio of the mass of the catalyst to the initiator is 1:6-7.
4.冷冻干燥4. Freeze drying
将凝胶后的叶片制件放置于-60℃冻柜内,冷冻3~5h,使生坯中的水分完全冷冻结晶。然后使用液氮将生坯的树脂模具剥离,再将其放入冷冻干燥机的真空负压舱内,持续抽真空(真空度保持在0.1Pa~10Pa),使得生坯内的结晶水完全升华,从而达到干燥的目的,以得到干燥的生坯。Place the gelled leaf parts in a -60°C freezer and freeze for 3 to 5 hours to completely freeze and crystallize the moisture in the green body. Then use liquid nitrogen to peel off the resin mold of the green body, then put it into the vacuum negative pressure chamber of the freeze dryer, and keep vacuuming (the vacuum degree is kept at 0.1Pa ~ 10Pa), so that the crystal water in the green body is completely sublimated , so as to achieve the purpose of drying to obtain a dry green body.
5.真空脱脂5. Vacuum degreasing
在气氛箱式炉内完成脱脂工艺,以氩气为保护气体,脱脂升温工艺:室温~200℃(升温速率5℃/min);200~700℃(升温速率1℃/min);700~900℃(升温速率2℃/min);900℃保温1h。脱脂后,得到孔径在5um左右的多孔SiC陶瓷。The degreasing process is completed in the atmosphere box furnace, with argon as the protective gas, and the degreasing heating process: room temperature ~ 200 ° C (heating rate 5 ° C / min); 200 ~ 700 ° C (heating rate 1 ° C / min); 700 ~ 900 °C (heating rate 2 °C/min); keep at 900 °C for 1 h. After degreasing, a porous SiC ceramic with a pore size of about 5um is obtained.
6.有机物前驱体的浸渍与裂解6. Impregnation and pyrolysis of organic precursors
6.1配制两种浸渍剂,配置SiC/PCS/xylene浆料(浆料中SiC的质量分数为10%,PCS的质量分数为40%,SiC为纳米颗粒)与PCS/xylene溶液(PCS的质量分数为40%)。6.1 Prepare two kinds of impregnating agents, configure SiC/PCS/xylene slurry (the mass fraction of SiC in the slurry is 10%, the mass fraction of PCS is 40%, and SiC is nanoparticles) and PCS/xylene solution (the mass fraction of PCS is 40%).
6.2将得到的多孔SiC陶瓷预制件放置真空罐内,抽真空后吸入SiC/PCS/xylene浸渍浆料。真空度为8×10-2,保压浸渍30min。将浸渍后的制件,于80℃下干燥2~4h,升温到150℃完成氧化交联。在Ar气保护下,以5℃/min的速度从室温升温至1300℃进行裂解,并在1300℃保温1~1.5h。然后将浸渍剂更换为PCS/xylene溶液,重复浸渍-裂解工艺。待裂解工艺完成后得到致密度较高的SiC复合材料叶片。6.2 Place the obtained porous SiC ceramic preform in a vacuum tank, and suck the SiC/PCS/xylene impregnation slurry after vacuuming. The vacuum degree is 8×10 -2 , and the impregnation is held for 30 minutes. Dry the impregnated article at 80°C for 2-4 hours, then raise the temperature to 150°C to complete oxidative cross-linking. Under the protection of Ar gas, the temperature was raised from room temperature to 1300°C at a rate of 5°C/min for cracking, and kept at 1300°C for 1-1.5h. Then the impregnating agent was replaced with PCS/xylene solution, and the impregnating-cracking process was repeated. After the cracking process is completed, a SiC composite material blade with higher density is obtained.
7.热等静压7. Hot isostatic pressing
将步骤6.2制备的SiC陶瓷基复合材料航空发动机叶片从室温以5℃/min的升温速率进行升温至1500℃,并在1500℃保温时间1.5~2h进行热等静压烧结,热等静压烧结以氩气为传压介质,压力100MPa。热等静压烧结完成后随炉冷却至室温,取出样件,最终得到密度为2.75-2.82g/cm3,高温(1300℃)抗弯强度为270MPa的SiC陶瓷基复合材料航空发动机叶片。Heat the SiC ceramic matrix composite aero-engine blade prepared in step 6.2 from room temperature to 1500°C at a heating rate of 5°C/min, and conduct hot isostatic pressing sintering at 1500°C for 1.5 to 2 hours. Argon is used as the pressure transmission medium, and the pressure is 100MPa. After the hot isostatic pressing sintering is completed, the furnace is cooled to room temperature, and the sample is taken out to obtain a SiC ceramic matrix composite aero-engine blade with a density of 2.75-2.82g/cm 3 and a high-temperature (1300°C) bending strength of 270MPa.
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410721023.1A CN104529458B (en) | 2014-12-01 | 2014-12-01 | The manufacture method of high-performance SiC ceramic based composites blade of aviation engine |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410721023.1A CN104529458B (en) | 2014-12-01 | 2014-12-01 | The manufacture method of high-performance SiC ceramic based composites blade of aviation engine |
Publications (2)
Publication Number | Publication Date |
---|---|
CN104529458A CN104529458A (en) | 2015-04-22 |
CN104529458B true CN104529458B (en) | 2016-08-17 |
Family
ID=52845145
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201410721023.1A Active CN104529458B (en) | 2014-12-01 | 2014-12-01 | The manufacture method of high-performance SiC ceramic based composites blade of aviation engine |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN104529458B (en) |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104874768B (en) * | 2015-04-24 | 2016-11-23 | 昆明理工大学 | A kind of method that the 3D of utilization print space structure prepares metal-base composites |
US10195667B2 (en) | 2015-11-23 | 2019-02-05 | Delavan Inc. | Powder removal systems |
DE102017110362A1 (en) * | 2017-05-12 | 2018-11-15 | Psc Technologies Gmbh | Process for the production of silicon carbide-containing three-dimensional objects |
CN107353008B (en) * | 2017-06-20 | 2020-03-17 | 西安交通大学 | Preparation method of layered metal-ceramic composite material part |
CN109516810A (en) * | 2018-11-07 | 2019-03-26 | 三峡大学 | A kind of preparation method of the porous silicon carbide ceramic based on P curved surface |
CN111676384B (en) * | 2020-07-06 | 2021-12-14 | 南阳师范学院 | A kind of reinforced magnesium matrix composite material and preparation method thereof |
CN111744388A (en) * | 2020-07-16 | 2020-10-09 | 沈阳九和流体科技有限公司 | Carbon fiber silicon carbide composite material stirrer |
CN113735590B (en) * | 2021-09-29 | 2022-06-28 | 北京理工大学 | Preparation method and product of high-temperature-resistant electromagnetic wave-absorbing ceramic matrix composite material |
CN116425559B (en) * | 2023-04-24 | 2024-07-16 | 福建立亚新材有限公司 | Preparation method of directional porous ceramic matrix composite material |
CN120081673A (en) * | 2025-04-28 | 2025-06-03 | 成都欣然动力科技有限公司 | Aeroengine blade and preparation method thereof |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102503503A (en) * | 2011-11-07 | 2012-06-20 | 西安交通大学 | Preparation method of machinable impregnation-reinforced silicon carbide composite ceramic |
CN103113123A (en) * | 2013-02-04 | 2013-05-22 | 西安交通大学 | A kind of preparation method of SiCf/SiC ceramic matrix composite material turbine blade |
-
2014
- 2014-12-01 CN CN201410721023.1A patent/CN104529458B/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102503503A (en) * | 2011-11-07 | 2012-06-20 | 西安交通大学 | Preparation method of machinable impregnation-reinforced silicon carbide composite ceramic |
CN103113123A (en) * | 2013-02-04 | 2013-05-22 | 西安交通大学 | A kind of preparation method of SiCf/SiC ceramic matrix composite material turbine blade |
Also Published As
Publication number | Publication date |
---|---|
CN104529458A (en) | 2015-04-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104529458B (en) | The manufacture method of high-performance SiC ceramic based composites blade of aviation engine | |
CN104496508B (en) | Manufacture method based on the SiC ceramic base turbine blade that photocuring 3D prints | |
CN103113112B (en) | Preparation method of metal toughened ceramic-based composite material turbine blade | |
CN102875150B (en) | Method for preparing silicon carbide ceramic impeller through gel casting and pressureless sintering | |
CN102964114B (en) | Method for preparing composite ceramic material through utilizing ceramic and precursor | |
CN109320246B (en) | A kind of high temperature oxidation resistant graphite ceramic composite material and preparation method thereof | |
CN104003732B (en) | A kind of method of gel injection turbine blade ceramic-mould vacuum degreasing | |
CN104496507B (en) | A kind of labyrinth ceramic part manufacture method towards gas turbine hot-end component | |
CN103130525B (en) | A preparation method of high toughness porous SiC ceramic complex parts | |
CN105801154A (en) | Method for preparing graphene toughened silicon carbide ceramic composite material | |
CN103288468A (en) | A kind of preparation method of fiber reinforced carbon-silicon carbide-zirconium carbide matrix composite material | |
CN102898141A (en) | Preparation method of high-heat-conduction aluminum nitride ceramic shaped part | |
CN106278335A (en) | A kind of manufacture method of fiber alignment toughening ceramic based composites turbo blade | |
CN107129298B (en) | graphene/ZrO2Method for preparing ceramic composite material | |
CN108658616B (en) | ZrO (ZrO)2-SiO2Low-temperature rapid preparation method of base composite material | |
CN115849928B (en) | Injection-molded aluminum oxide fiber reinforced composite material containing lanthanum phosphate interface layer and preparation method thereof | |
CN106083205B (en) | A kind of method that integral alumina base ceramic-mould elevated temperature strength is improved by chemical vapor infiltration | |
CN103803950B (en) | Boron nitride nanotube reinforced ceramic-based composite material and preparation method thereof | |
WO2007056895A1 (en) | Compact foamed thyrite with high intensity and preparation method of the same | |
CN117658641B (en) | Method for preparing high-density SiC ceramic based on selective laser 3D printing and two-step sintering | |
CN106866156A (en) | A kind of low-k α Si3N4The preparation method of porous ceramics | |
CN112047737A (en) | Infiltration method for silicon carbide-based ceramic with microstructure characteristics | |
CN106187263B (en) | The manufacturing method and C/C-SiC composite material component of C/C-SiC composite material component | |
CN116730736A (en) | A method for preparing SiC composite materials based on laser printing and vacuum-pressure-assisted in-situ impregnation of resin | |
CN105669206B (en) | porous silicon carbide ceramic and preparation method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant |