CN104521010A - 制造底衬构造的光伏器件的方法 - Google Patents

制造底衬构造的光伏器件的方法 Download PDF

Info

Publication number
CN104521010A
CN104521010A CN201380041372.2A CN201380041372A CN104521010A CN 104521010 A CN104521010 A CN 104521010A CN 201380041372 A CN201380041372 A CN 201380041372A CN 104521010 A CN104521010 A CN 104521010A
Authority
CN
China
Prior art keywords
layer
cds
type semiconductor
metal component
deposition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201380041372.2A
Other languages
English (en)
Inventor
L·克兰兹
C·格林蒂纳
J·佩勒努
S·比歇勒
A·N·蒂瓦里
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
EMPA
Original Assignee
EMPA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by EMPA filed Critical EMPA
Publication of CN104521010A publication Critical patent/CN104521010A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type
    • H01L31/073Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type comprising only AIIBVI compound semiconductors, e.g. CdS/CdTe solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022466Electrodes made of transparent conductive layers, e.g. TCO, ITO layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0296Inorganic materials including, apart from doping material or other impurities, only AIIBVI compounds, e.g. CdS, ZnS, HgCdTe
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0392Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate
    • H01L31/03925Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate including AIIBVI compound materials, e.g. CdTe, CdS
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0392Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate
    • H01L31/03926Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate comprising a flexible substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1828Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIBVI compounds, e.g. CdS, ZnS, CdTe
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1828Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIBVI compounds, e.g. CdS, ZnS, CdTe
    • H01L31/1836Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIBVI compounds, e.g. CdS, ZnS, CdTe comprising a growth substrate not being an AIIBVI compound
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/186Particular post-treatment for the devices, e.g. annealing, impurity gettering, short-circuit elimination, recrystallisation
    • H01L31/1864Annealing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1884Manufacture of transparent electrodes, e.g. TCO, ITO
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/543Solar cells from Group II-VI materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Inorganic Chemistry (AREA)
  • Photovoltaic Devices (AREA)

Abstract

通常,CdTe太阳能电池以顶衬构造生长,其中光进入光伏器件,穿过透明基板。迄今为止以底衬构造生长的CdTe太阳能电池的效率仍然显著低于以顶衬构造生长的那些。本发明公开了一种底衬构造的光伏器件(0)及其制造方法,由此能够可再现地实现接近顶衬器件的效率。此外,长期稳定性预期好于现有技术的器件。该方法是有利的,因为以底衬构造生长提供多个优点,如在金属箔上生长和更精确地控制结。

Description

制造底衬构造的光伏器件的方法
技术领域
本发明描述了制造底衬构造(substrate configuration)的光伏器件的方法,该光伏器件包含沉积在涂覆有背电极的基板(back contact coated substrate)上的p型半导体吸收层和窗口层(window layer),其中进行如下步骤:在含氯物类存在下在350℃至500℃的温度下对吸收层进行退火形式的第一处理几分钟至几小时以导致吸收层的再结晶和晶粒生长,在预处理的吸收层上沉积包含n型半导体材料的窗口层,并随后在窗口层上沉积透明接触层。
此外,描述了一种多层薄膜太阳能电池,该太阳能电池具有在涂覆有背电极的基板上生长的p型半导体吸收层,在其上以底衬构造沉积n型半导体窗口层,所述窗口层包含一定量的金属组分。
背景技术
提高的油价突显了对低成本太阳能电力的需要。虽然目前大多数光伏电力由结晶硅产生,薄膜技术如Cu(In,Ga)Se2、非晶Si或CdTe正在提高它们的市场份额。因生产过程的简单性,包含CdTe的光伏器件已被证明是最廉价的光伏技术之一。First Solar公司以远低于1$/Wp的价格每年生产超过1GWp。
通过使用底衬构造的CdTe太阳能电池以卷对卷生产工艺制造柔性CdTe太阳能电池,预计价格将进一步降低。
如Singh等人,“Thin film CdTe-CdS herterojunction Solar Cells onlightweight metal substrates”,Solar Energy Materials&Solar Cells 59(1999)中公开的那样,实现了基于作为基板的薄金属箔的底衬构造的光伏器件。通过在向基板上沉积CdTe吸收层之前在基板与CdTe吸收层之间引入导电夹层,可以改善电性能。由此可以改进基板与吸收层之间的电接触。可达效率仍然不能令人满意。基于吸收体-窗口结(absorber-window junction)对电池性能至关重要的事实,Singh等人描述了在退火步骤后沉积最多两个CdS层以便在结区域中实现CdTe和CdS的最优形成。
所有制得的底衬构造的CdTe太阳能电池迄今为止与它们的顶衬(superstrate)对应物相比表现出较低的效率。在顶衬构造中已经实现了最高17.3%的效率(在我们的实验室中为15.6%),而例如Gessert等人[“Comparisonof CdS/CdTe superstrate and substrate devices fabricated with a ZnTe:Cu contactinterface”,Proceeding of IEEE PV Specialists Conference 2010,第335页]对底衬构造的CdTe太阳能电池报道了远低于10%的效率。本领域技术人员公知的是,以顶衬构造开发的工艺不能简单地应用于底衬构造。CdS在CdTe上或CdTe在CdS上的不同沉积顺序导致不同的制造方法,同时必须使用适当的材料。
由于底衬构造的光伏器件低劣的可达效率,Gessert等人的文献可以理解为反对底衬构造的建议,这似乎更难以控制。
另一方面,常规顶衬构造(其中光必须穿过成品器件中的基板)禁止使用柔性金属箔基板,并且当在柔性聚酰亚胺箔上生长电池时导致显著的吸收损失。
在底衬构造的CdTe太阳能电池现有技术的状态下,例如以具有至少几纳米的等效层厚度的CuTex或Cu掺杂ZnTe的形式在背电极处添加Cu。CdTe太阳能电池的长期稳定性强烈地受背电极中所用Cu的量的影响,因为朝向该结的过量Cu扩散会降低电池性能。在一方面,必须加入足够的Cu以实现最高效率,另一方面,加入Cu导致低劣的长期稳定性。因此,在CdTe太阳能电池现有技术的状态下,再现性是一个问题,并且难以将最高性能与长期稳定性结合在一起。
在WO2011/044382中,另一种实现稳定CdTe太阳能电池的想法是引入由石墨箔形成的特殊多孔背基板。通过使用多孔石墨箔,可以避免金属基板,并由此可以避免铜不可控制地从金属基底扩散到吸收层中。选择该多孔基板,以便通过经由基板孔隙引入金属物类来改变靠近该多孔导电基板的CdTe吸收层的物理和/或化学性质。如WO2011/044382中所述,不同的沉积步骤或技术分别更为复杂,结果是不利的,并仍导致不可重现的太阳能电池。石墨箔表面的表面变化会在随后的CdTe层中造成裂纹,这会导致太阳能电池性能的劣化。
发明内容
本发明的目的在于提供一种制造底衬构造的光伏器件的方法,能够以提高的再现性用于在优选柔性的基板上简单地低价制造具有高效率(例如超过13%)且填充因子高于70%的的光伏器件。
可以以卷对卷工艺在作为基板的廉价金属或塑料箔上制造柔性CdTe吸收体光伏器件,该光伏器件具有接近于刚性玻璃上的那些器件的效率。
在底衬构造的CdTe太阳能电池现有技术的状态下,在背电极上添加大量铜,改进背电极与CdTe吸收层之间的欧姆接触。我们已经发现,在随后的加工步骤中添加量少得多的导电材料并随后使该导电材料扩散到所有在下层(underlying layer)中(包括窗口层、吸收层和背电极),可以显著提高该器件的性能和该方法的再现性。现有技术并未公开或建议本文中提到的以底衬构造沉积的顺序以及随后扩散以便在所有在下层中散布导电材料。
附图说明
下文中结合附图描述了优选的制造方法和所得光伏器件。
图1显示了底衬构造的光伏器件的一个实施方案的示意性截面图。
图2a显示了逐步制造的基础方法的示意图,而
图2b显示了步骤b’的示意图,其中金属组分首先沉积,和
图2c显示了可变步骤b”的示意图,其中n型半导体材料首先沉积。
图3a显示了制造方法的另一实施方案的示意图,在进一步的处理步骤后沉积第二n型半导体材料层。
图3b显示了在沉积第二n型半导体层后的双层窗口层的TEM图像,所述双层窗口层包含一个大晶粒化的预处理CdS层和一个来自于第二沉积步骤的纳米晶粒化的CdS层。
图3c显示了在根据图3a)的制造后光伏器件不同层中随深度变化的金属组分(在此情况下为Cu)分布的图,而
图3d显示了在放大的双层CdS窗口层中的铜浓度,所述双层CdS窗口层包括大晶粒化CdS和纳米晶粒化CdS,以及铜浓度方面的差异。
图3e显示了XRD图,显示了包含原沉积(as deposited)CdS的第一窗口层以不同于优化双CdS层的相的相生长。
图4显示了I/V图,其中将采用图2a的方法制得的光伏器件与采用图3a的方法制得的具有双CdS层的光伏器件进行比较。
具体实施方式
光伏器件0以示意性横截面显示在图1中。该光伏器件0是由多个半导体和金属层组成的多层薄膜器件。图1显示了底衬构造的CdTe/CdS太阳能电池形式的光伏器件0,其中附图标记大致表征沉积的顺序。
在基板1上沉积导电背电极2。将作为p型半导体材料的吸收层3添加到该背电极2上,在这里吸收层3为CdTe形式。在背电极2与吸收层3之间形成背电极-吸收体界面23。在吸收层3上背向背电极2的一侧上放置的是窗口层4,窗口层4包含n型半导体材料41与金属组分40。吸收层3与窗口层4之间的结构成吸收体-窗口-结或pn结34的区域。在窗口层4顶部,沉积至少一个透明氧化物层形式的透明接触层5,光经过该层进入成品光伏器件0。可以任选地在光伏器件0顶部沉积金属格栅以改善透明接触电阻。所有这些层相继沉积到各在先层上。各个层可以覆盖在下层的全部或一部分。由于优选选择柔性基板1和非常薄的沉积层2、3、4与5,整个光伏器件0是柔性的,分别可以弯曲并可以用于卷对卷工艺。
因为这种构造中光不必穿过基板1,可以使用不透明的基板1,如金属箔。使得能够进行卷对卷生产,这显著降低了器件0的制造成本。常见的做法是使用至少包含导电层和至少包含缓冲层的多层背电极,这并未描述在本文中。此外,可以在基板与导电背电极之间引入阻挡层,这并未描述在本文中。
基板1优选是柔性的,包含聚合物或金属箔。该背电极可以包含金属如Mo、W、Al、Cr、Ni、Ti、Ag、Au或Pt,氧化物如ZnO:Al、锡掺杂的氧化铟或氟掺杂的氧化锡,氮化物如MoN或TiN,或其组合。该p型半导体吸收体可以由CdTe或包含CdTe的混合物制成。该窗口层的n型半导体材料可以由CdS或包含CdS的混合物制成。
各个在下层在随后的沉积过程中必然经受一定的温度。这导致不同于常规顶衬构造的杂质扩散或不同层的相互扩散。因此必须发明专用于底衬构造生长的新工艺。
在下文中,描述了仅以底衬构造用包含CdTe作为p型半导体的吸收层3、由铜组成的金属组分40和包含CdS作为n型半导体材料的窗口层4用于制造光伏器件0的方法。
处理或预处理指的是在含氯物类,例如CdCl2气体,优选CdCl2的存在下在350至500℃的温度下以退火的形式调节(conditioning)最顶层几分钟至几小时的时间。处理气氛可以含有氧。
退火指的是以至少180℃将最顶层退火几分钟至几小时。该退火气氛可以含有氧。
所谓扩散处理可以通过所述退火或所述处理来进行。扩散处理是回火过程,导致沉积的金属原子扩散到光伏器件0的在下层中,即窗口层4、吸收层3和背电极2。在顶衬构造中此类扩散是不可能的,其中CdTe层在铜掺杂的CdS层沉积后沉积,并进行随后的扩散处理步骤。
为了沉积作为吸收层3的CdTe的多晶薄膜。本领域技术人员使用例如近空间升华沉积法、电沉积、溅射、高真空热蒸发法、气相传输沉积、金属有机蒸汽沉积、喷射沉积、丝网印刷、基于纳米粒子的方法或其它化学方法。优选的沉积方法是在大约300℃的基板温度下的高真空蒸发法。
从通常具有几微米、优选5微米的厚度的已经沉积的CdTe层开始,对吸收层3的表面进行第一处理a)步骤。第一处理a)包括在高于350℃的温度下在CdCl2的存在下使吸收层3退火几分钟至几小时。该气氛可以含有氧。优选的是通过高真空蒸发法沉积400纳米的CdCl2,接着在含有40%的氧的气氛中在430℃下退火25分钟。
在下文中,在沉积步骤b)中将包含金属组分40和n型半导体材料41的窗口层4一起沉积到该吸收层3的预处理表面上。
该n型半导体材料41(这里是CdS)和该金属组分40可以如图2a)中所示同时沉积,或如图2b)(步骤b')和2c)(步骤b")所示以不同的时间顺序在时间上交错沉积(timely staggered)。金属组分40的量在所有实施方案中落在相当于厚度小于0.5纳米、优选0.05-0.15纳米的层的范围内。取决于沉积方法,该金属组分40例如通过物理气相沉积、通过涂覆含金属组分的溶液或通过化学方法在单独的步骤中沉积,或者该金属与CdS材料混合,或者其可以包含在用于沉积CdS的化学浴中。
含有或不含有金属原子的CdS的沉积例如可能通过溅射、真空蒸发、近空间升华沉积、化学浴沉积、喷雾热解、电沉积或其它化学方法来进行。优选在70℃下的化学浴沉积。CdS窗口层4的厚度例如可以为50至200纳米。实现的窗口层3的厚度为大约100纳米。因此,引入的金属组分40的相对量可以在相对于窗口层3厚度的1/4000至1/100范围内。
在沉积步骤b)后,接着进行退火形式的扩散处理或如上所述的处理。使得铜原子扩散穿过窗口层4、吸收层3和背电极2。该扩散处理在至少180℃下进行数分钟。
我们已经发现,直接或与在预处理的吸收层3背向背电极2一侧上的表面上沉积CdS结合来沉积少量导电金属组分40(例如元素周期表的第11或第IB族元素,包括铜、金或银)可以提高光伏器件0的性能与该工艺的重现性。
除了按照步骤b)的同时沉积之外,金属组分40与n型半导体41的沉积可以根据图2b)和2c)在时间上交错地进行。
根据图2b)中的步骤b'),金属组分40以相当于小于0.5纳米的层厚度的量直接沉积到预处理的吸收层3上。例如其可以为0.05至0.15纳米。在金属组分沉积后例如通过化学浴沉积进行包含一定量的CdS材料41的CdS层41的沉积。在金属原子与n型半导体材料的时间交错沉积后,例如通过在400℃温度下的进一步处理步骤,进行扩散处理。该气氛可以含有氧。因扩散过程,铜原子扩散穿过CdS层4、CdTe层3并扩散至背电极2。如图2b中所示,在铜沉积后和在CdS沉积之前可以进行任选的退火步骤。例如,该退火步骤可以在大约400℃下在可能含有氧的气氛中进行。
根据图2c)中的步骤b"),改变沉积的时间顺序,首先将CdS材料41直接沉积到预处理的CdTe层3的表面上。在CdS沉积后,以小于0.5纳米的等效层厚度进行金属组分40的沉积。金属组分40的金属原子随后通过热调节形式的进一步扩散处理在半导体层中扩散。在处理过程中,Cu发生扩散,并且在成品器件中其分布在多个层(包括CdS 4、CdTe 3)中并分布在太阳能电池的背电极-吸收体界面23处。
为了沉积CdS,我们采用CBD(化学浴沉积),由此CdS以尺寸小于30纳米的纳米晶体形式沉积。由此可以获得包含纳米晶粒化CdS结构的CdS层4。由于使用了晶体尺寸小于30纳米的CdS纳米晶体,沉积的CdS层4形成纳米晶粒化结构。如果进行进一步的热扩散处理,可以形成大的晶粒化的CdS层。
在沉积金属组分40后,该金属(在此情况下为铜)通过扩散处理扩散到每一层中,这通过SIMS测量证实,与不含Cu的样品相比,SIMS测量对每一层显示了更高的Cu信号水平。在背电极-吸收体结23与窗口层4附近,由于最高的铜浓度,可以测量到最高的Cu信号水平。我们已经发现,在CdTe层3再结晶后加入少量的铜(例如10^-7g/cm^2)显著地提高了器件的性能和工艺的可再现性。
我们确定了铜在CdTe吸收层3中的影响,因为其提高了受体密度,并减少了空间电荷区(space charge region)。这可以提高器件的开路电压并降低背电极处的空穴阻挡屏障。此外,已经发现,CdS窗口层4中适当量的Cu还具有有益的效果。例如,Cu可以提高窗口层4的光电导率。通过其它杂质如氧、氢或其组合也可以实现类似的效果。
由于使用如此少的Cu,新开发的工艺预期对光伏器件0的长期稳定性具有有益的效果,因为稳定性问题通常与Cu的扩散和过量Cu在CdS中的累积相关。
我们已经测试了几个Cu的位置、Cu的量和不同的退火或扩散处理温度。作为具体实例,通过以下方法获得了良好的效率:在400纳米CdCl2的存在下在40%氧气中在大约430℃下在首次处理后在CdTe 3顶部通过高真空蒸发添加大约0.8埃的Cu,并采用在含有40%氧的气氛中在大约400℃下的退火来提高Cu向CdTe中的扩散(在沉积CdS前充当扩散处理)。当光伏器件0的层在沉积下一层(41,CdS)后再次退火时,Cu也会扩散到该n型半导体层41中。
随后,沉积100纳米的CdS,接着进行处理,该处理导致CdS的再结晶和晶粒生长以及Cu向CdS层41中的扩散。沉积CdS后的处理优选在100纳米CdCl2的存在下在含有50%氧的环境中在大约400℃下进行。随后可以如下所述沉积另一CdS层(第二CdS层41',例如100纳米)。
所有制得的光伏器件0显示出通过二次离子质谱法(SIMS)测得的深度依赖性分布以及在背电极2、吸收层3和窗口层4处的非零金属浓度。窗口层4中的金属组分浓度高于大部分(>90%)吸收层3中的浓度。例如,窗口层4中的金属组分浓度比吸收层3中高至少10倍。例如,金属组分的浓度在窗口层4中可以大于1018cm-3,在大部分吸收层中小于1018cm-3。由于基质效应,难以解释SIMS测量。我们仍可识别出两个最大金属浓度,其一位于n型半导体窗口层4中,另一个位于吸收层3与背电极2之间的界面23处。这些铜累积能够由扩散处理步骤产生。具有底衬构造的此类薄膜光伏器件0达到了所需的效率。Cu在半导体层中分布并会导致在CdS 4中和在背电极界面23附近大于1018cm-3的浓度,和在CdTe层3中小于1018cm-3的浓度。例如,在CdS 4中和在背电极界面23附近的浓度比在大部分(>90%)吸收层中高至少一个数量级。例如,CdS 4中的浓度为2*1018至1*1020cm-3,在大部分CdTe 3(>90%)中,其为1*1016至9*1017cm-3,在背电极界面23附近其为2*1018至1*1020cm-3。更精确地,在CdS 4中的浓度为大约7*1018cm-3,在大部分CdTe3(>90%)中为大约1*1017cm-3,而在背电极界面23处为大约1*1019cm-3
具有第二CdS层41'的太阳能电池
在该生产方法的略作修改的实施方案中,改变扩散处理。该方法逐步显示在图3a中,而示例性分析的结果显示在图3b至3e中。可以实现的多层薄膜光伏器件0包括具有一个CdS1,41层和另一个CdS2,41’层的窗口层(双层CdS层4),并具有如上所述的铜深度分布。
制得的光伏器件0基于缓冲层20,其作为背电极2的一部分沉积。该缓冲层20可以例如包含MoOx、SbxTey、BixTe、Sb、ZnTe、CuTex、Te、Cu掺杂CdTe或其组合。这里,该背电极2的金属部分是Mo,该缓冲层20是MoOx与Te的双层。金属背电极2和缓冲层20的优选厚度分别为0.5-1微米和50-300纳米。
在缓冲层20上沉积CdTe和根据步骤a)的第一处理后,进行根据步骤b)、b’)或b”)的金属组分40与n型半导体材料41的沉积。后接使用上述处理参数的第二处理c)形式的扩散处理。通过该扩散处理,金属原子在层2、20、3、4中扩散,CdS 141的晶粒尺寸变大,如图3b中可以看到的那样。这导致纳米晶粒化的CdS1的再结晶,导致更大的晶粒尺寸,并会导致CdS层相变为优选纤维锌矿CdS(图3e)。
在步骤c)后,进行另一CdS2层41'的第二沉积d),例如再次采用化学浴沉积。该CdS2层可以以与下方的再结晶CdS1层相同的纤维锌矿相生长。
该程序导致双层的CdS层4,包含处理过的具有大晶粒的CdSl层41和原沉积的具有纳米晶粒的CdS2层41'。纳米晶粒化CdS的尺寸小于30纳米。在扩散处理后,CdSl层的晶粒尺寸扩大,并可以达到大于30纳米的晶粒尺寸。所得晶粒分布的实例显示在图3b中。例如,退火的CdSl层具有100-500纳米的晶粒尺寸,而第二CdS2层具有小于30纳米的纳米结晶晶粒。
透明导电层5由多个高电阻透明氧化物和导电透明氧化物的层组成。优选厚度为大约200纳米的本征ZnO层和厚度为大约800纳米的ZnO:Al的双层。这种双层在另一沉积步骤中沉积。
如图3a中所示,可以在双窗口层4沉积后直接进行任选的退火,或在随后沉积至少一种透明氧化物形式的透明接触层5后进行任选的退火。该退火优选在180℃至300℃的温度下进行。
为了确定铜在何处扩散,通过二次离子质谱法(SIMS)测量Cu的深度依赖分布,背电极2至透明接触层5的概括分布的实例显示在图3c中。与不含Cu的器件相比,在每个层中的Cu量提高。
即使由于基质效应,SIMS测量的解释是困难的,我们可以确定,在不同层中的Cu浓度如下:在具有>800mV的开路电压和>70%的FF的优异器件中,在CdS窗口层4中为大约7*1018cm-3,在CdTe吸收层3中为大约1*1017cm-3,并在背电极界面23附近或在缓冲层20中为大约1*1019cm-3。如可以看到的那样,在2、20、3、4的每一层中可以检测到铜,而在窗口层4中和在背电极2处的铜浓度显著高于在吸收层3中。
两个可见的铜浓度最大值在缓冲层20中分别落在窗口层4中和落在背电极-吸收体界面23处,其中在背电极-吸收体界面23处和窗口层4的金属浓度比在吸收层3中高至少10倍。
如从图3d中所示的SIMS深度曲线可以看出,Cu存在于包含CdS1和CdS2的窗口层4中。在窗口层4的铜深度分布的放大图中可以看出,在大晶粒化CdS1中的铜浓度高于在小晶粒化CdS2中。
在一个实施方案中,在深度依赖金属组分分布中仅观察到一个明显的最大值(obvious maximum),该最大值位于窗口层4中。使用大约200℃的温度下的扩散处理,可以获得仅显示一个最大值的光伏器件0。窗口层4中的所得金属组分浓度可以比吸收层3中高至少10倍。
如可以在图3e的XRD图中看到的那样,原沉积CdS的CdS层41以符合六方晶系CdS 002或闪锌矿CdS 111的相生长。优化的双CdS层41,41'可以显示符合六方晶系CdS(100&101)的XRD谱图。
优化的双CdS层41、41'还对光伏器件0的性能具有有益的影响。其提高了开路电压和填充因子,并且其减少了在第一象限中的回跌(rollover)(图4)。现有技术的底衬构造的CdTe太阳能电池与本发明中公开的器件相比具有较低的填充因子、更显著的回跌和通常更低的Voc。采用本发明的一些实施方案中公开的方法,实现了>70%的填充因子,这是采用此前公开的方法无法实现的。
采用我们的新方法,实现了超过13%的效率的阶梯状提高,并且具有进一步改善的良好潜力。此外,新开发的方法显示出好得多的可再现性。由于采用本发明公开的方法可以使用卷对卷生产,可以预期成本的进一步降低和生产率的提高。因此,可以看到本发明对柔性箔和低成本金属(例如铝或低碳钢)基板的更好潜力。
附图标记列表
0   光伏器件(底衬构造)
1   基板
2   背电极
23  背电极-吸收体界面
3   吸收层/p型半导体层
34  pn-结/吸收体-窗口结
4   窗口层
40  金属组分
41  n型半导体材料
5   透明接触层(TCO层)
a)  第一处理
b)  沉积n型半导体材料
c)   第二处理
d)   第二沉积n型半导体材料
CdS1 大晶粒化CdS/41'
CdS2 纳米晶粒化CdS/41

Claims (18)

1.制造底衬构造的光伏器件(0)的方法,所述底衬构造的光伏器件(0)包括沉积在涂覆有背电极(2)的基板(1)上的p型半导体吸收层(3),和窗口层(4),其中进行以下步骤:
在含氯物类的存在下在350℃至500℃的温度下对吸收层(3)进行退火形式的第一处理几分钟至几小时,导致吸收层(3)的再结晶和晶粒生长,
在预处理的吸收层(3)上沉积包含n型半导体材料(41)的窗口层(4),随后在窗口层(4)上沉积透明接触层(5),
其特征在于:
在窗口层(4)于沉积步骤(b,b',b")中沉积到吸收层(3)上的同时或在此之前、一起或之后时间交错地沉积金属组分(40),其中金属组分量相当于小于0.5纳米的层厚度,接着
对由此制得的器件(1,2,3,4,40)进行扩散处理,包括在至少180℃的温度下的退火步骤或第二处理(c),处理时间为几分钟至几小时,以使得金属组分原子能够扩散并分布在窗口层(4)、吸收层(3)和背电极(2)中,接着
后继沉积透明接触层(5)。
2.如权利要求1所述的方法,其中通过以下工序进行沉积步骤(b):在进行扩散处理前,首先将金属组分(40)直接沉积到吸收层(3)的预处理表面上,并随后沉积一定量的n型半导体材料(41),称为沉积步骤(b')。
3.如权利要求2所述的方法,其中在沉积金属组分(40)后,在沉积n型半导体材料(41)前在至少180℃的温度下进行退火步骤。
4.如权利要求1所述的方法,其中通过以下工序进行沉积步骤(b):在进行扩散处理之前,首先将n型半导体材料(41)直接沉积到p型半导体吸收层(3)的预处理表面上,并随后沉积一定量的金属组分(40),称为沉积步骤(b")。
5.如前述权利要求中任一项所述的方法,其中引入的金属组分(40)的相对量为相对于窗口层(3)厚度的1/4000至1/100。
6.如前述权利要求中任一项所述的方法,其中所述第二处理(c)包括在至少180℃下对最顶层进行的回火处理,处理时间为几分钟至几小时。
7.如权利要求1所述的方法,其中在由此制得的器件(1,2,3,4,40)的扩散处理后和在沉积透明接触层(5)之前,进行第二附加量的n型半导体材料(41')的后继沉积(d),由此得到双n型半导体材料层(41,41')。
8.如权利要求7所述的方法,其中在沉积第二量的n型半导体材料(41')后,在沉积至少一种透明氧化物形式的透明接触层(5)之前进行退火。
9.如权利要求8所述的方法,其中在沉积至少一种透明氧化物形式的透明接触层(5)之后进行退火。
10.如前述权利要求中任一项所述的方法,其中p型半导体吸收层(3)由CdTe或包含CdTe的混合物制成,并且窗口层(4)的n型半导体材料是CdS或包含CdS的混合物。
11.如权利要求7和10所述的方法,其中使用尺寸小于30纳米的CdS纳米晶体根据步骤(b,b',b",d)在窗口层(4)中沉积一定量的CdS。
12.如前述权利要求中任一项所述的方法,其中该金属组分(40)包括Cu、Au、Ag或其混合物。
13.如权利要求10所述的方法,其中该窗口层(4)包含具有纳米晶粒化结构的第二CdS层(41'),该层通过在第一CdS层(4)上沉积纳米晶体尺寸小于30纳米的纳米晶粒化CdS来得到。
14.具有在涂覆有背电极(2)的基板(1)上生长的p型半导体吸收层(3)的多层薄膜太阳能电池(0),在该吸收层(3)上以底衬构造沉积有n型半导体窗口层(4),该半导体窗口层(4)包含一定量的金属组分(40),
其特征在于
其形式为周期表第11或IB族的一种元素的金属组分(40)的原子分布在窗口层(4)、吸收层(3)和背电极(2)中,在这些层(2,3,4)中表现出非零金属组分(40)浓度,其中该n型半导体窗口层(4)中的一种金属元素的金属原子浓度比超过90%的吸收层(3)中的高。
15.如权利要求14所述的多层薄膜太阳能电池(0),其中金属原子浓度在n型半导体窗口层(4)中具有最大值和在吸收层(3)与背电极(2)之间的界面(23)处具有另一最大值。
16.如权利要求14或15所述的多层薄膜太阳能电池(0),其中n型半导体窗口层(4)中的金属原子浓度比大部分吸收层(3)中的高至少一个数量级。
17.如权利要求14或15所述的多层薄膜太阳能电池(0),其中该窗口层(4)包含一个具有晶粒尺寸超过30纳米的大晶粒结构的CdS层(CdS1,41)和具有晶粒尺寸低于30纳米的纳米晶粒化结构的第二CdS层(CdS2,41')。
18.如权利要求17所述的多层薄膜太阳能电池(0),其中具有大晶粒尺寸的CdS层(CdS1,41)中的金属组分浓度高于第二CdS层(CdS2,41')中的金属组分浓度,显示出高于70%的填充因子。
CN201380041372.2A 2012-06-04 2013-05-31 制造底衬构造的光伏器件的方法 Pending CN104521010A (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP12170689.9 2012-06-04
EP12170689.9A EP2672529A1 (en) 2012-06-04 2012-06-04 Method for production of a photovoltaic device in substrate configuration
PCT/EP2013/061238 WO2013182482A1 (en) 2012-06-04 2013-05-31 Method for production of a photovoltaic device in substrate configuration

Publications (1)

Publication Number Publication Date
CN104521010A true CN104521010A (zh) 2015-04-15

Family

ID=48537992

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201380041372.2A Pending CN104521010A (zh) 2012-06-04 2013-05-31 制造底衬构造的光伏器件的方法

Country Status (4)

Country Link
US (1) US20150136220A1 (zh)
EP (2) EP2672529A1 (zh)
CN (1) CN104521010A (zh)
WO (1) WO2013182482A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106229327A (zh) * 2016-08-02 2016-12-14 天津工业大学 一种柔性大面积钙钛矿太阳电池组件及其制备方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104143517A (zh) * 2014-06-20 2014-11-12 苏州瑞晟纳米科技有限公司 一种两阶段式制备硫化镉缓冲层的工艺
CN113964244B (zh) * 2021-12-22 2022-03-11 成都中建材光电材料有限公司 太阳能薄膜电池及其制作方法
US11513246B1 (en) 2022-05-16 2022-11-29 King Fahd University Of Petroleum And Minerals Energy harvesting techniques for wireless geophones

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011044382A1 (en) * 2009-10-07 2011-04-14 Reel Solar Incorporated Porous substrates for fabrication of thin film solar cells
US20110259424A1 (en) * 2010-04-21 2011-10-27 EncoreSolar, Inc. Method of fabricating solar cells with electrodeposited compound interface layers

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011044382A1 (en) * 2009-10-07 2011-04-14 Reel Solar Incorporated Porous substrates for fabrication of thin film solar cells
US20110259424A1 (en) * 2010-04-21 2011-10-27 EncoreSolar, Inc. Method of fabricating solar cells with electrodeposited compound interface layers

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
K. BARRI 等: "INTRODUCTION OF Cu IN CdS AND ITS EFFECT ON CdTe SOLAR CELLS", 《IEEE》 *
S. ERRA 等: "An effective method Cu incorporation in CdTe solar cells for improved stability", 《SCIENCEDIRECT》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106229327A (zh) * 2016-08-02 2016-12-14 天津工业大学 一种柔性大面积钙钛矿太阳电池组件及其制备方法

Also Published As

Publication number Publication date
US20150136220A1 (en) 2015-05-21
EP2856518A1 (en) 2015-04-08
EP2672529A1 (en) 2013-12-11
WO2013182482A1 (en) 2013-12-12

Similar Documents

Publication Publication Date Title
US8916412B2 (en) High efficiency cadmium telluride solar cell and method of fabrication
US20090145472A1 (en) Photovoltaic devices having conductive paths formed through the active photo absorber
US8187963B2 (en) Method of forming back contact to a cadmium telluride solar cell
US20110259395A1 (en) Single Junction CIGS/CIS Solar Module
EP2337084A2 (en) Graded Alloy Telluride Layer In Cadmium Telluride Thin Film Photovoltaic Devices And Methods Of Manufacturing The Same
US20100000589A1 (en) Photovoltaic devices having conductive paths formed through the active photo absorber
EP3005418A1 (en) Photovoltaic devices and method of making
US20120061235A1 (en) Mixed sputtering target of cadmium sulfide and cadmium telluride and methods of their use
Ge et al. Co-electroplated kesterite bifacial thin-film solar cells: A study of sulfurization temperature
CN103855232B (zh) 光伏器件及其制造方法
EP2437316A2 (en) Photovoltaic device and method for making the same
CN104521010A (zh) 制造底衬构造的光伏器件的方法
US20140291147A1 (en) Target materials for fabricating solar cells
US20150357502A1 (en) Group iib-via compound solar cells with minimum lattice mismatch and reduced tellurium content
US20130192667A1 (en) Photovoltaic devices and method of making
US20130146133A1 (en) Thin film photovoltaic solar cell device
EP2383792A2 (en) Cadmium Sulfide Layers for Use in Cadmium Telluride Based Thin Film Photovoltaic Devices and Methods of their Manufacture
CN104051565B (zh) 制造光伏器件的方法
US20130160810A1 (en) Photovoltaic device and method of making
US20130019948A1 (en) Stabilized back contact for photovoltaic devices and methods of their manufacture
US9871159B2 (en) Apparatus for generating electricity using solar power and method for manufacturing same
CN110416358A (zh) 薄膜太阳能电池及其形成方法
CN103515479A (zh) 用于处理半导体组件的方法
EP2437289A2 (en) Photovoltaic device and method for making
KR101281330B1 (ko) 태양전지 및 이의 제조방법

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20150415