CN104508079A - 改进水力裂缝网络的方法 - Google Patents

改进水力裂缝网络的方法 Download PDF

Info

Publication number
CN104508079A
CN104508079A CN201380039506.7A CN201380039506A CN104508079A CN 104508079 A CN104508079 A CN 104508079A CN 201380039506 A CN201380039506 A CN 201380039506A CN 104508079 A CN104508079 A CN 104508079A
Authority
CN
China
Prior art keywords
fluid
stratum
pressure
well
operating parameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201380039506.7A
Other languages
English (en)
Inventor
H·D·布拉农
T·R·斯达克二世
S·G·聂尔森
C·E·贝尔
T·N·罗伊茨
D·V·S·古普塔
J·D·莱蒙斯
C·D·胡夫
J·C·高特斯克林
A·F·贡扎勒兹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Baker Hughes Holdings LLC
Original Assignee
Baker Hughes Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Baker Hughes Inc filed Critical Baker Hughes Inc
Publication of CN104508079A publication Critical patent/CN104508079A/zh
Pending legal-status Critical Current

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/25Methods for stimulating production
    • E21B43/26Methods for stimulating production by forming crevices or fractures
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/60Compositions for stimulating production by acting on the underground formation
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/60Compositions for stimulating production by acting on the underground formation
    • C09K8/62Compositions for forming crevices or fractures

Abstract

裂缝网络的复杂性可以在水力压裂作业期间,通过监测压裂作业的运行参数和响应该运行参数的监测来改变井中的应力条件而增强。所监测的运行参数可以包括泵送流体的注射速率,泵送流体的密度或在该流体泵送后该井的井底压力。该方法提供了增产储层体积(SRV)的增加。

Description

改进水力裂缝网络的方法
发明领域
本发明涉及水力压裂的方法,特别是通过改变储层中的应力条件,来改进所产生的或扩大的裂缝的总表面积和/或水力裂缝的复杂性的方法。
发明背景
水力压裂是一种增产方法,用于产生与地下地层的大区域的高传导性连通。该方法增加了地层内有效的井筒面积,以便能够加速俘获的油或气的生产。该方法的效率经常通过地层的增产储层体积(SRV)来度量。
在水力压裂过程中,压裂流体在超过目标储层岩石的裂缝压力的压力泵送,来产生或扩大井筒穿透的地下地层内的裂缝。用于引起水力压裂的流体经常被称作“缓冲液(pad)”。在一些情况中,该缓冲液可以包含细微粒例如细筛砂,用于流体损失控制。在其他情况中,该缓冲液可以包含较大粒度的微粒,以磨除穿孔或井筒附近的弯曲处。
一旦引发了裂缝,则随后的阶段可以将含有化学试剂的流体以及支撑剂泵送入所产生的裂缝中。该裂缝通常在泵送期间持续增大,并且支撑剂以可透过的“填料”的形式保留在裂缝中,其用于“支撑”裂缝打开。一旦完成该处理,则裂缝将封闭到支撑剂上。增加压裂流体压力最终导致了流体穿过裂缝面的泄露率增加,其改进了支撑剂填充在裂缝内的能力。一旦完成该处理,则裂缝封闭到支撑剂上。该支撑剂保持裂缝打开,提供了高传导路径,用于烃和/或其他地层流体流入井筒中。
用于常规储层的水力压裂作业的处理设计通常要求压裂流体在它进入裂缝时达到最大粘度。该流体的粘度影响了裂缝长度和宽度。
大部分压裂流体的粘度可以归因于增粘剂例如粘弹性表面活性剂或增粘聚合物的存在。任何压裂流体的一个重要属性是它在注射后表现出粘度降低的能力。被称作减阻水(slickwater)的低粘度流体也已经用于低渗透性地层包括气密性储层的增产中。这样的储层经常表现出复杂的天然裂缝网络。减阻水流体典型地不含粘弹性表面活性剂或增粘聚合物,但是包含足量的减摩剂来使得管状摩擦压力最小化。这样的流体通常的粘性仅稍高于未掺杂的淡水或盐水。减阻水中减摩剂的存在典型地不会将该流体的粘度增加大于1-2厘泊(cP)。
为了有效地接近致密的地层,井经常是水平钻探的,然后进行一种或多种裂缝处理来增产。用低粘度流体传播的裂缝表现出比用高粘度流体传播的那些更小的裂缝宽度。另外,低粘度流体促进了增产期间储层内裂缝复杂性的增加。这经常导致形成更大的所产生的裂缝面积,烃可以从其中流入较高传导的裂缝路径中。此外,这样的流体在地层中引入了较少的残留损坏,这归因于该流体中不存在增粘聚合物。
在一些页岩地层中,过长的原生裂缝经常导致垂直于最小应力方向。典型地,将另外的压裂流体泵入井筒中简单地扩展了平面的或原生裂缝。在大多数情况中,原生裂缝是占优的,并且次生裂缝是有限的。压裂处理(其产生了占优的长平坦裂缝)特征在于低的接触裂缝面表面积,即低的SRV。由通过这样的处理所产生的压裂网络中来生产烃受限于低的SRV。
最近,减水阻压裂(slickwater facturing)已经被用于处理页岩地层。但是,通过该作业所产生的次生裂缝接近于井筒,在这里表面积增加。减水阻压裂通常被认为在打开或产生远离井筒的裂缝的复杂网络方面是低效的。因此,虽然减水阻压裂中SRV增加,但是生产仅在初期是高的,然后快速下降到较低的持续生产,因为很少接触远离井筒区域的烃。
如同减水阻压裂那样,常规的压裂作业典型地赋予了不需要的长原生裂缝。虽然更大数目的次生裂缝会在远离井筒处使用比减阻水粘性的流体来产生,但是在常规水力压裂作业中普遍的是流体的低效率,这主要通过井筒附近所产生的次生裂缝数目的减少来体现。
最近,人们的注意力已经涉及到增加远离井筒的区域以及近井筒区域的烃的生产率的选项。具体的关注已经聚焦于增加低渗透率地层(包括页岩)的生产率。方法已经进行了特别调节来增产沿着水平井筒的离散间距,这产生了穿孔簇。虽然通过这样的方法增加了地层的SRV,但是该簇之间的潜在生产性储层区域经常没有增产。这降低了增产作业的效率。因此寻求通过增加进行压裂的区域的分布,来增加SRV的方法。
发明内容
裂缝网络的复杂性可以在水力压裂作业期间,通过监测压裂作业的运行参数和改变作业期间井中的应力条件而增强。另外,所产生的裂缝的总表面积可以通过这样的作业来增加。该方法提供了增产储层体积(SRV)的增加。
可以监测一种或多种运行参数。进行监测的通常的运行参数是流体的注射速率、流体密度和井的井底压力。
在流体泵送阶段之前和流体泵送阶段之后评价一种或多种运行参数。然后可以基于流体泵送阶段之后所监测的运行参数的读数和预定的目标运行参数之间的差值,来改变井内的应力条件。因此,水力压裂作业中随后的步骤通过由监测一种或多种运行参数观察到的响应值来决定。
在一个实施方案中,运行参数在初始压裂流体或缓冲液流体泵入地层之后监测,其扩大或产生了初始裂缝。
在另一实施方案中,运行参数可以在任何流体阶段之后监测,其在初始压裂流体或缓冲液流体之后泵入地层。
在另一实施方案中,运行参数可以在泵入地层的每个流体阶段过程中监测。
当所监测的运行参数不同于目标运行参数时,进入地层的流体流动可以转向。
在一个实施方案中,在监测运行参数之后,流体流动可以从一个或多个高传导原生裂缝转向到低传导次生裂缝。
在一个实施方案中,在监测运行参数之后,进入地层的流体流动可以通过改变泵入地层的流体的注射速率来转向。
在另一实施方案中,在泵送受监测阶段之后,流体流动可以通过向地层中泵入包含化学转向剂的转向流体来转向。
在一个实施方案中,这里所述的方法中所用的化学转向剂可以是下式的化合物或其酸酐:
其中:
R1是-COO-(R5O)y-R4
R2和R3选自-H和-COO-(R5O)y-R4
条件是R2或R3中至少一个是-COO-(R5O)y-R4,和
进一步的条件是R2和R3都不是-COO-(R5O)y-R4
R4是-H或C1-C6烷基;
R5是C1-C6亚烷基;和
每个y是0-5;
在一个优选的实施方案中,该化学转向剂是邻苯二甲酸酐或对苯二甲酸酐。
附图说明
为了更充分地理解在本发明详细说明中提及的附图,提供了对于每个附图的简要说明,其中:
图1是本发明方法的流程图,其中将连续阶段泵入地下地层中,来增强裂缝网络。
具体实施方式
下面描述本发明的说明性实施方案,因为它们可能会用于油田应用的作业和处理中。为了清楚起见,在本说明书中没有描述实际方案的全部特征。当然将理解,在任何这样的实际实施方案的开发过程中,必须进行众多的实施和/或具体的决定,来实现操作者的具体目标,其将在不同的实施之间变化。此外,将理解,这样的开发努力可能是复杂的和耗时的,但是仍然可能是受益于本发明的本领域技术人员所采取的常规实验。本发明不同的实施方案的另外的方面和优点将通过考虑下面的说明书而变得明显。
这里所述的水力压裂方法的步骤以获自在井处理期间监测一种或多种运行参数的结果为前提。该方法可以用于扩展裂缝或产生多个裂缝网络。同样,该方法可以用于增强地下地层内的裂缝网络的复杂性和增强由地层来生产烃。
在这里所述的方法中,在完成流体泵送阶段之后监测水力压裂作业的一种或多种运行参数。具体地,将该运行参数与操作者预定的目标参数进行比较。基于该比较,在将接续的流体阶段引入地层之前,可以改变井中的应力条件。
作为此处使用的,术语“接续的流体泵送阶段”指的是水力压裂作业中先于另一流体泵送阶段的流体泵送阶段。紧领先于该接续的流体泵送阶段的流体泵送阶段被称作“倒数第二流体泵送阶段”。因为这里所述的方法可以是连续作业或者具有重复步骤,因此接续的流体泵送阶段可以处于两个倒数第二流体泵送阶段之间。例如第一接续的流体泵送阶段可以在第一倒数第二流体泵送阶段之后。当提及“第二接续的流体泵送阶段”时,第一接续的流体泵送阶段是第二倒数第二流体泵送阶段等。在倒数第二流体泵送阶段的流体转向进入由倒数第二流体泵送阶段所产生或扩大的裂缝中一段时间之后,接续的流体泵送阶段可以泵入井筒。
井中的应力可以通过监测一种或多种运行参数来确定。一种或多种运行参数中的变化向操作者显示了裂缝复杂性和/或裂缝几何形状已经改变和增产储层体积(SRV)已经增加。例如,地层内显示的应力可以作为裂缝传播的指示。评价井内应力的方法可以包括使用模拟器例如MShale实时模拟所产生的裂缝网络。
因此,依照倒数第二流体泵送阶段所形成的运行参数的趋势和响应值可以用于控制和指示接续的流体泵送阶段的条件。
例如,一种或多种预定的运行参数与第二接续的流体泵送阶段之后的运行参数之间的变化可以向操作者显示是否已经产生了裂缝,或者在第二倒数第二流体泵送阶段期间流体是否已经损失至截断裂缝。
基于一种或多种该运行参数中的变化,可以改变储层内的应力。例如,在操作者在流体泵送阶段之后确定传播不足的情况中,操作者可以改变储层应力场。这里所定义的方法因此可以用于如下来增加裂缝的复杂性:人工增加裂缝中的阻力,以使得新的裂缝路径打开,其将不能以其他方式被产生或扩大。因此,裂缝复杂性可以随着应力差或传播压力的增加而增加。这可以无需持续增加压裂压力来进行。
在一个优选的实施方案中,在压裂作业过程中监测以下运行参数中的一种或多种:流体注射速率,井的井底压力(作为净压力来测量)或泵入地层中的流体密度。这些运行参数的监测可以用于在近井筒以及远井筒位置处,通过改变储层内的应力条件来产生裂缝网络。
流体的注射速率定义为可以泵入地层中的流体的最大注射速率,超过该速率时,流体不再能够压裂地层(在给定的压力)。最大注射速率取决于众多的限制因素,包括待压裂地层的类型、裂缝宽度、流体泵送压力、地层渗透率等。最大注射速率由操作者预先确定。净压力的变化是裂缝复杂性变化和/或裂缝几何形状变化,因此产生了更大的增产储层体积(SRV)的指征。在水力压裂处理过程中所观察的净压力是裂缝中的流体压力与地层的闭合压力(CP)之间的差值。
○裂缝中的流体压力=井底处理压力(BHTP)。
○BHTP可以如下计算:表面处理压力(STP)+静水压头(HH)-总
Δ摩擦压力(Δp摩擦=管摩擦力+穿孔摩擦力+弯曲)。
确定闭合压力、管摩擦力、穿孔摩擦力和弯曲的存在是关键的。如果地层可以维持泵送关闭,而无需在重新启动注射时限制所需的注射速率来获得这些必需的参数,则应当进行使用递降的速率和遵守压力下降的诊断处理。井底压力(也称作测量的或计算的井底泵送压力或者测量的或计算的井底处理压力)(BHP)是裂缝中流体压力的度量或计算。需要确定如下所定义的净压力:
P=STP+HH-P摩擦-CP
虽然许多常规裂缝处理产生了双翼裂缝,但是还存在着天然破裂的地层,其提供了地质力学条件,该条件能够引发水力诱导的离散裂缝,并且在多个平面内传播,如微震绘图所显示的那样。占优的或原生裂缝在垂直于最小水平应力σ3的x-z平面中传播。y-z和x-y平面裂缝传播分别垂直于σ2和σ1应力。在x-z和y-z平面中产生的离散裂缝是垂直的,而在x-y平面内所产生的诱导的裂缝是水平的。在裂缝处理过程中收集的微震数据会是一种非常有用的诊断工具,通过推断DFN面区域、裂缝高度和半长度和裂缝平面方向,来校正裂缝模型。积分小型标定压裂(minifrac)分析、水力压裂和微震技术(具有对于多个横向垂直裂缝的产生响应值)提供了方法来改进增产程序,用于增强气体的生产。
用于模拟或预测BHP的程序或模型是本领域已知的。合适的模型的例子包括但不限于Baker Hughes Incorporated所用的和可获自宾夕法尼亚州的Meyer和Associates of Natrona Heights的“MACID”;来自Resources Engineering Services的“FRACPRO”;和可获自Pinnacle Technology的“FRACPRO PT”。BHP可以进一步基于地层特性来计算。参见例如Hannah等人的“Real-time Calculation ofAccurate Bottomhole Fracturing Pressure From SurfaceMeasurements Using Measured Pressures as a Base”,SPE 12062(1983);Jacot等人的“Technology Integration–A Methodology toEnhance Production and Maximize Economics in HorizontalMarcellus Shale Wells”,SPE 135262(2010);和Yeager等人的“Injection/Fall-off Testing in the Marcellus Shale:Using ReservoirKnowledge to Improve Operational Efficiency”,SPE 139067(2010)。
所以目标是观察一种或多种运行参数的变化和通过使用转向来改变该运行参数响应值。该变化的值将是地层和区域特有的,并且甚至可以在相同的地层内在相同侧面内变化。那些差异起因于改变最小和最大应力平面。在一些情况中,存在着非常低的各向异性,其形成于“净”裂缝形成中。在其他区域中,各向异性非常高,并且常规廓线会支配裂缝复杂性。
因为不能经常通过小型标定压裂处理来确定低至高的各向异性以及处于低各向异性与高各向异性之间的各向异性的存在,因此净压力变化经常是用于评价应力条件的关键的运行参数。负的向下斜率是高度增加的指征,而<45°的正斜率将是高度和宽度增加的指征,其取决于斜率。因此,运行参数中的一种或多种的变化可以是裂缝高度和增加的指征。例如,虽然BHP小的变化可以归因于流体(和支撑剂)摩擦压力在流体通过裂缝系统时的变化,但是持续的负的向下斜率可以是高度变化的指征,小于45°的正斜率可以是高度和宽度增加的指征。
井中的应力条件可以通过转向流体流动来改变,以使得泵入地层中的流体将更容易流入地层中低传导的次生裂缝中。这样的转向限制了原生裂缝中的注入能力(injectivity)和地层内的应力压力。同样,流体流动可以从高传导原生裂缝转向低传导次生裂缝。因为传导性是渗透率乘以注射几何形状,因此这同义于这样的表述,即流体流动可以从高渗透率区转向到低渗透率区。此外,因为传导性是相对流入阻力的函数,因此作为此处使用的,提及传导裂缝时被认为是与传导储层区域同义的。局部应力条件的改变为所产生的裂缝网络提供了更大的复杂性和/或改进了增产处理的储层覆盖率。
因此,这里所述的方法可以用于扩展或增加裂缝轮廓。另外,这里所述的方法可以用于产生多个裂缝,其来源于初始的原生裂缝,其中每个接续的阶段产生了这样的裂缝,其取向不同于通过倒数第二裂缝所产生的裂缝的方向取向。
当必需时,地层内流体的流动可以通过将使地层经历一个或多个转向阶段来转向。
流体流动可以通过改变进入地层中的流体的注射速率和粘度,而从高传导裂缝转向低传导裂缝。
转向也可以通过将转向剂流体或含有化学转向剂的段塞(slug)引入地层来进行。这会导致转向剂段塞从井筒附近移开。
此外,转向剂流体或段塞的组合可以与改变进入地层的流体的注射速率和/或粘度一起使用,来完成从高传导裂缝到低传导裂缝的转向。该转向剂流体可以包含化学转向剂。该转向剂流体可以以这样的注射速率泵入地层中,该注射速率不同于倒数第二流体泵送阶段的注射速率,但是必需限制到足够低的速率,以便不超过用表面监测装置所观察的预定的压力限度。
该转向阶段用于将流体流动转向离开高传导裂缝,因此促进了裂缝取向的变化。这引起流体进入和延伸入次生裂缝中。例如,注射速率的降低可以用于使得剪切稀释流体建立足够低的剪切速率粘度,用于足够的压力转向来改变次生裂缝所产生的裂缝取向。另外,注射速率的降低可以有助于次生裂缝的打开和连接。
在一个实施方案中,转向流体和/或改变泵送的流体的注射速率可以产生至少一个次生裂缝,其方向取向不同于原生裂缝的方向取向。因此,在沿着原生裂缝的某些点上,粘性流动的阻力和所形成的增加的压力引起了接续的阶段流体转向到储层的新区域,以使得发生SRV增加。
在转向之后,可以阻止引入到地层低渗透率区域中的流体的流动。所监测的运行参数因此可以与预定的运行参数进行比较。随后的流体阶段可以引入地层中,并且对于转向阶段的需要将以在该随后的流体阶段之后所监测的运行参数与目标运行参数之间的差值为前提。
在转向剂流体泵送后或者在进入地层的流体的注射速率改变后,则可以注意所监测的运行参数。如果该运行参数小于目标运行参数,则流体流动可以继续在另一转向步骤中转向。
可以重复该方法,直到获得所需的SRV或者直到达到裂缝的复杂性,其使得由地层生产烃最大化。
因此,通过监测运行参数和观察运行参数的变化,可以改变地层中的应力。任何转向步骤的值将是地层和区域特有的,并且可以注意改变相同的侧面内最小和最大应力平面中的差值。例如在一些情况中,非常低的各向异性将产生净裂缝形成。在其他区域中,非常高的各向异性会支配裂缝复杂性。
在一个优选的实施方案中,将泵送第一阶段之后流体的井底压力与井的目标预定井底压力进行比较。该第一阶段可以是扩大或产生裂缝的阶段。基于井底压力中的差值,流体从高传导原生裂缝向低传导次生裂缝的流动可以通过向地层中引入化学转向剂来转向。在转向后井底压力然后可以与预定的井底压力进行比较。然后可以阻止在下一阶段中引入到低传导裂缝的流体的流动。随后的流体阶段可以引入到地层中,并且对于随后的转向阶段的需要将以在前一阶段之后的井底压力与预定的井底压力之间的差值为前提。
在另一优选的实施方案中,将在泵送第一流体阶段之后流体可以泵送的最大注射速率与目标注射速率进行比较。该第一阶段可以是扩大或产生裂缝的阶段。基于注射速率中的差值,流体从高传导原生裂缝向低传导次生裂缝的流动可以通过向地层中引入化学转向剂来转向。在转向后最大注射速率然后可以与预定的注射速率进行比较。然后可以阻止在下一阶段中引入到低传导裂缝的流体的流动。随后的流体阶段可以引入到地层中,并且对于随后的转向阶段的需要将以在前一阶段之后的最大注射速率与预定的注射速率之间的差值为前提。
在另一优选的实施方案中,将在泵送第一流体阶段之后流体阶段的密度与流体阶段的目标密度进行比较。基于流体密度中的差值,流体从高传导原生裂缝向低传导次生裂缝的流动可以通过流体的注射速率或通过向地层中引入化学转向剂来转向。在转向后流体阶段的密度然后可以与预定的流体密度进行比较。然后可以阻止在下一阶段中引入到低传导裂缝的流体的流动。随后的流体阶段可以引入到地层中,并且对于转向阶段的需要将以在前一阶段之后的流体阶段密度与预定的流体密度之间的差值为前提。
在一个实施方案中,响应所监测的运行参数而泵入地层的流体转向可以包含化学转向剂(其在原位储层条件可以部分地但非完全地溶解)和相对轻量的微粒的组合,该微粒的表观比重小于或等于2.45。优选相对轻量的微粒在流体(其进一步包含化学转向剂)中为中等浮力(neutral buoyant)。
化学转向剂,任选地与相对轻量的微粒相组合,可以用于控制到天然裂缝的流体损失和可以引入到具有不同渗透率的地层的生产区中。该转向剂,任选地与相对轻量的微粒相组合,能够将井处理流体从地下地层内的高传导裂缝转向到低传导裂缝。
该转向剂可以部分地但非完全地溶解在处于原位储层条件的流体中。在泵入地层之后,作为未溶解的受限微粒而保留的任何部分的转向剂可以充当支撑剂。在原位条件可溶解的转向剂的量典型地是约75%-约95%。优选可溶于流体的转向剂的量是约90%。在这样的浓度,转向剂的部分单层可以充当支撑剂。随着时间逝去,当裂缝闭合不再引起操作者注意时,全部的转向剂最终会溶解。
该固体微粒典型地桥连了地层的面上的流动空间,并且形成了滤饼。例如,当用于酸压裂中时,该微粒的尺寸足以桥连流动空间(由所注入的酸与储层岩石反应而产生),而不渗透到基岩中。通过在地层的面上过滤,在地层的面上产生了相对不可透过的或低渗透率滤饼。通过滤饼而增加的压力也增加了流动阻力,和将处理流体转向到地层的低透过性区域中。
所述微粒的尺寸分布应当足以阻挡流体渗入地层的高透过率区域中。当井处理流体内至少60%,更优选80%的化学转向剂和/或相对轻量的微粒的粒度是约150μm-约2000μm时,更易于形成滤饼。
当用于增产作业时,所述微粒的粒度使得该微粒可以在岩石面上形成桥连。可选地,该微粒的粒度可以是使得它们能够流入裂缝和由此填充该裂缝,来临时降低地层中至少一些裂缝的传导性。
相对轻量的微粒也可以充当引入地层的任何流体阶段中的支撑剂。另外,常规支撑剂例如铝土矿和沙子可以作为支撑剂用于任何的流体阶段中。
该第一阶段可以由以足以传播或扩大原生裂缝的压力将流体泵入地层中组成。该流体可以是缓冲液流体。裂缝传导性可以通过在该流体中混入少量支撑剂来改进。典型地,支撑剂在缓冲液流体中的量是约0.12-约24,优选约0.6-约9.0重量百分比,基于流体的总重量百分比计。
在注射了缓冲液流体之后,然后可以将粘性流体引入井筒中。该粘性流体在0.01s-1的剪切速率时典型的粘度大于约10000cP。转向阶段可以在第一阶段之后或者在任何的接续的阶段或倒数第二阶段之间泵入地层中。
在任何的倒数第二阶段和接续的阶段之间,泵送可以停止,并且含有支撑剂的缓冲液流体可以泵入储层来帮助产生或扩大次生裂缝。
在一个优选的实施方案中,支撑剂是相对轻量或基本中等浮力的微粒材料或其混合物。这样的支撑剂可以进行切碎、研磨、碾压或其他加工。用“相对轻量”表示支撑剂的表观比重(ASG)明显小于水力压裂作业中所用的常规支撑剂,例如沙子或具有类似这些材料的ASG。特别优选ASG小于或等于3.25的那些支撑剂。甚至更优选超轻量支撑剂,其ASG小于或等于2.25,更优选小于或等于2.0,甚至更优选小于或等于1.75,最优选小于或等于1.25和经常小于或等于1.05。
该支撑剂可以进一步是树脂涂覆的陶瓷支撑剂或合成有机粒子例如尼龙粒料、陶瓷。合适的支撑剂进一步包括美国专利公布2007/0209795和美国专利公布2007/0209794中所述的那些,在此引入作为参考。该支撑剂可以进一步是塑料或塑料复合材料,例如热塑性或热塑性复合材料或树脂或含有粘合剂的聚集体。
用“基本上中等浮力”表示该支撑剂的ASG接近于未凝胶化的或弱凝胶化的携带流体(例如未凝胶化的或弱凝胶化的完井盐水,其他水基流体,或者其他合适的流体)的ASG,来允许使用所选携带流体泵送和令人满意地布置支撑剂。例如,ASG是约1.25-约1.35的聚氨酯树脂涂覆的经研磨的胡桃壳可以作为基本中等浮力的支撑剂微粒,用于ASG为约1.2的完井盐水中。作为此处使用的,“弱凝胶化”携带流体是这样的携带流体,其具有最小量的足够的聚合物、增粘剂或减摩剂,来实现当井下泵送时(例如沿管道、工作管柱、套管、螺旋管道、钻探管等向下泵送时)摩擦力的减少,和/或可以表征为具有下面浓度的聚合物或增粘剂:大于约0磅聚合物/千加仑的基础流体至约10磅聚合物/千加仑的基础流体,和/或粘度是约1-约10厘泊。未凝胶化携带流体的特征可以是含有约0至<10磅聚合物/千加仑的基础流体。(如果该未凝胶化携带流体是具有减摩剂(其典型的是聚丙烯酰胺)的减阻水,则技术上存在着1到高达8磅聚合物/千加仑的基础流体,但是聚丙烯酰胺的这种微小浓度不会赋予有益的足够粘度(典型地<3cP))。
其他合适的相对轻量的支撑剂是公开在美国专利6,364,018、6,330,916和6,059,034中的那些微粒,其全部在此引入作为参考。它们的示例可以是经研磨的或经压碎的坚果壳(山核桃、杏仁、象牙果、巴西坚果、昆士兰坚果等);经研磨的或经压碎的水果种子例如李子、桃子、樱桃、杏等的种壳(包括水果核);经研磨的或经压碎的其他植物例如玉米(例如玉米棒或玉米仁)等的种壳;经加工的木材例如来源于如橡木、山核桃木、胡桃木、杨木、桃花心木等的木材,包括已经通过研磨、切碎或其他形式的颗粒化(particalization)而加工的这样的木材。优选经研磨的或经压碎的胡桃壳材料,其涂覆有树脂来基本上保护该壳和使之防水。这样的材料的ASG可以是约1.25-约1.35。
此外,用于本发明的相对轻量的微粒可以是选择性配置的多孔微粒,如美国专利7,426,961中所述、所示和所定义,其在此引入作为参考。
在一个优选的实施方案中,这里所述的方法的至少一个转向步骤的组成为:向地层中泵入含有化学转向剂的流体和不可溶的相对轻量的微粒(包括上述那些)的组合。该化学转向剂在原位储层条件时可以部分地但非完全地溶解。在另一优选的实施方案中,该转向阶段包含化学转向剂和在流体中基本上自然浮力的相对轻量的微粒。
含有所述微粒的处理流体的流体相是适于将微粒输送到井和/或地下地层中的任何流体,例如水、盐水和减阻水。合适的盐水包括含有氯化钾、氯化钠、氯化铯、氯化铵、氯化钙、氯化镁、溴化钠、溴化钾、溴化铯、溴化钙、溴化锌、甲酸钠、甲酸钾、甲酸铯、乙酸钠及其混合物的那些。该盐在水的百分比优选是约0%-约60%重量,基于水的重量计。
该处理流体的流体可以用液烃或气体或液化气例如氮气或二氧化碳来发泡。
另外,该流体可以通过包括非气态发泡剂来进一步发泡。该非气态发泡剂可以是两性的、阳离子的或阴离子的。合适的两性发泡剂包括烷基甜菜碱、烷基磺基甜菜碱和烷基羧酸酯,例如公开在美国专利公布2010/0204069中的那些,在此引入作为参考。合适的阴离子发泡剂包括烷基醚硫酸酯、乙氧基化醚硫酸酯、磷酸酯、烷基醚磷酸酯、乙氧基化醇磷酸酯、烷基硫酸酯和α烯烃磺酸酯。合适的阳离子发泡剂包括烷基季铵盐、烷基苄基季铵盐和烷基酰胺基胺季铵盐。
含有该微粒的流体的pH值可以根据需要进一步调整。当调整时,它典型的值是约6.5或更大,7或更大,8或更大,9或更大,9-14,和最优选7.5-9.5。该pH值可以通过本领域已知的任何手段来调节,包括将酸或碱添加到该流体中,或者将二氧化碳鼓泡穿过该流体。
该流体可以是凝胶化的或非凝胶化的。典型地,该流体通过包括增粘剂例如增粘聚合物或粘弹性流体来凝胶化。该流体可以包含交联剂,不过并不需要交联剂。通常,该流体在室温的粘度大于或等于10cP。
图1显示了这里定义的一种说明性方法,其中所监测的运行参数是净压力,并且其中每个阶段的流体体积已经由操作者进行了设定;流体总体积被分为四个或更多个阶段。每个阶段可以通过减少的或暂停的泵送时间隔开成足够的持续时间,以允许储层中分阶段的流体流入所产生的或扩大的裂缝中。
注射速率和STP由操作者建立。该压裂作业开始于通过向地层中泵入包含缓冲液流体或减阻水的第一流体阶段。监测了响应该处理的净压力。可以使用净压力对时间的重对数尺度的图来确定该处理过程中的趋势。在流体泵送阶段结束时,评估了净压力值和斜率。
在该压力等于或大于预定的BHP的情况中,则将另外的压裂流体作为第二或接续的阶段泵入地层中,并且不必将流体的流动从高渗透率区转向到低渗透率区。在BHP(通过净压力来度量)小于预定的BHP的情况中,则将含有化学转向剂或段塞的转向剂流体泵入地层中。将该转向段塞从井筒附近移开。该转向剂流体可以从井筒过度移开和进入裂缝网络中。当转向阶段离开井筒和处于裂缝网络时,然后观察净压力响应值。如果该净压力响应值被操作者认为是显著的,则这表示了裂缝复杂性和/或几何形状的变化,则将另外的压裂流体泵入地层中,来对更大部分的储层进行增产。在泵送阶段结束时,再次评价净压力,并且评价进行另一转向阶段的可能性。如果操作者认为净压力响应值不显著时,则将另外的转向阶段泵入地层中,并且当该转向阶段离开井筒和处于裂缝网络中时,评价净压力响应值。接续的转向阶段的体积和量可以与倒数第二转向阶段相同,或者可以基于压力响应值而变化。一旦转向阶段处于裂缝系统中,则该泵送的流体的注射速率也可以改变,来影响压力响应值。如果净压力响应的规模过于显著(这表示了裂缝的桥连,而不改变裂缝复杂性和/或几何形状),则可以或可以不确保另外的泵送。例如,如果压力响应值过高,则管状的压力限度可以防止由于速率和地层注射性限制而导致的处理延续。另外的转向阶段的运行可以根据需要重复,直到实现期望的压力响应值和裂缝复杂性/几何形状最大化,停止该井处理注射,并且该井然后可以关闭、回流,或者可以采用步骤来完成随后的间隔。
如果BHP小于预定的BHP,则将接续的阶段泵入地层中,并且重复该方法。该方法可以是连续的,并且可以在整个泵送处理期间重复多次,来获得与在不存在这种措施中所获得的相比更大的裂缝面积和更大的裂缝复杂性的形成。
该转向阶段实现了或直接影响了所监测的BHP,来人工增加压力差。这种压力差在不转向流体时无法获得。该增加的压力差导致了足够的应力差,来产生或扩大较小的裂缝。转向的有效性因此可以通过增加化学转向剂的体积或化学转向剂的大小来确保。来自转向阶段的BHP的增加限制了引入地层的流体体积,其否则将是较大的体积。因此,该方法的一个益处是降低量的水可以用于实现给定程度的增产。
代替BHP,可以使用其他参数例如流体密度和流体注射速率作为图1中的运行参数。使用任何的这些参数,操作者将基于待处理的井和地层的特性来确定目标水平。流体的注射速率的降低能够进一步促进特别是当伴随着处理压力增加时,来自窄的相交裂缝的流动转向。流体注射速率的增加在地层内更大的原生裂缝中赋予了更大的传播。
用于本发明的转向流体的转向剂可以是本领域已知的任何转向剂。特别优选作为转向剂的是具有结构式(I)的那些微粒:
其中:
R1是-COO-(R5O)y-R4
R2和R3选自-H和-COO-(R5O)y-R4
条件是R2或R3至少之一是-COO-(R5O)y-R4,和
进一步的条件是R2和R3都不是-COO-(R5O)y-R4
R4是-H或C1-C6烷基;
R5是C1-C6亚烷基;和
每个y是0-5。
可选地,该微粒可以是结构式(I)的化合物的酸酐。
在一个优选的实施方案中,式(I)化合物的R2是-H和R3是-COO-(R5O)y-R4。在一个特别优选的实施方案中,式(I)的化合物是邻苯二酸(其中y是0和R4是-H)。在另一优选的实施方案中,式(I)的化合物是邻苯二甲酸酐。
在又一优选的实施方案中,式(I)化合物的R2是-COO-(R5O)y-R4和R2是-H。在一个特别优选的实施方案中,式(I)的化合物是对苯二酸(其中y是0和R4是-H)。在另一优选的实施方案中,式(I)的化合物是对苯二甲酸酐。
这样的转向剂和含有其的流体是在标题为Method of UsingPhthalic and Terephthalic Acids and Derivatives Thereof in WellTreatment Operations(发明人:D.V.Satyanarayana Gupta)的美国专利申请中提出的,该申请与本申请同时提交,并且其在此引入作为参考。
该微粒可以是任何尺寸或形状的,并且在给定的转向阶段中的微粒可以是不同尺寸的。例如,该微粒可以是基本球形的,例如是珠状的、或丸状的。此外,该微粒可以是非珠状和非球形的,例如是伸长的、锥形、卵形、泪滴形或椭圆形或其混合物。例如,该微粒可以具有这样的形状,其是立方体的、棒形的(如六面体,并且长度大于它的宽度,和宽度大于它的厚度)、圆柱体的、多面体的、不规则的或其混合物。另外,该微粒的表面可以是基本上粗糙的或不规则性质的,或者该表面是基本上光滑性质的。此外,进一步可以使用这样的微粒的混合物或共混物,其具有不同的、但是适用于所公开的方法的形状。
式(I)的微粒在转向流体中的量可以是约0.01-约30体积百分比(基于流体总体积计),并且可以在原位井下条件时部分溶解。在一些情况中,式(I)的微粒在井下条件时完全可溶解。
当置于井底温度是约175°F-约250°F的井中时,该微粒是特别有效的。
当用作转向剂时,含有该微粒的流体也可以直接泵送到井地层的高渗透率区中。大部分转向流体将进入高渗透率或未损坏的区域中,并且形成临时的“塞子”或“粘性丸”,而较低渗透率区具有很少的侵入。这种临时的“粘性丸”引起了压力增加和将流体转向到地层的较低渗透率部分中。该微粒能够比现有技术的转向剂更深地扩展到地下地层中。
一旦处于适当的位置,则由转向剂所形成的粘性丸将具有有限深度的侵入,其与孔喉直径有关。对于给定的地层类型,该侵入深度与地层的名义孔喉直径直接成比例。因为不同的侵入深度在整个地层中基于整个处理区域的不同的渗透率或损坏而发生,因此处理流体侵入孔喉的能力取决于损坏的和未损坏的地层的孔喉之间的差异。通常在较洁净或未损坏的地层部分(更大的孔喉)中的侵入深度将大于较低渗透率或损坏的区(较小的或部分填充的孔喉)。在地层较洁净区域中具有较大的侵入深度时,更多的转向剂可以置于这些间隔中。
这里所述的方法可以用于压裂地层,该地层被水平以及垂直井筒穿透。
进行本发明的处理的地层可以是烃或非烃地下地层。含有转向剂的流体泵入其中的地层的高渗透率区可以是自然的裂缝。当与低粘度压裂流体一起使用时,式(I)的微粒能够将压裂流体转向来扩展裂缝和增加增产表面积。
本发明特别可用于增产碳酸盐地层,例如油气井中的石灰石、白垩或白云石以及地下砂石或硅质地层,包括石英、粘土、页岩、淤泥、燧石、沸石或其组合。
在另一优选的实施方案中,该方法可用于处理具有一系列的自然裂缝,或割理(cleat)的煤床,用于回收天然气例如甲烷,和/或捕集比甲烷的吸附更强的流体,例如二氧化碳和/或硫化氢。
从前面将观察到可以进行多种改变和变化,而不脱离本发明新理念的真实主旨和范围。

Claims (23)

1.水力压裂被储层穿透的含烃地下地层的方法,该方法包括:
(a)将流体以足以产生或扩大原生裂缝的压力泵入该地层中;
(b)测定井内的井底处理压力;
(c)通过向该地层内引入化学转向剂,以使流体流动从损失区转向;
(d)将所测定的井底处理压力与预定的目标井底处理压力进行比较;
(e)将压裂流体泵入该地层中,其中通过该化学转向剂来阻止该压裂流体流向该损失区,和
(f)扩展该地层中的该原生裂缝。
2.根据权利要求1所述的方法,其中步骤(c)的该化学转向剂以不同于步骤(a)中泵送的该流体的注射速率的注射速率引入该地层。
3.根据权利要求1所述的方法,其中在该处理之后,除去该化学转向剂。
4.根据权利要求1所述的方法,其中该化学转向剂在原位井下储层条件部分地但非完全地可溶解。
5.根据权利要求1所述的方法,其中该化学转向剂在原位井下储层条件完全地可溶解。
6.根据权利要求1所述的方法,其中该化学转向剂是下式的化合物或其酸酐:
其中:
R1是-COO-(R5O)y-R4
R2和R3选自-H和-COO-(R5O)y-R4
条件是R2或R3中至少一个是-COO-(R5O)y-R4,和
进一步的条件是R2和R3都不是-COO-(R5O)y-R4
R4是-H或C1-C6烷基;
R5是C1-C6亚烷基;和
每个y是0-5。
7.根据权利要求6所述的方法,其中该化学转向剂是邻苯二甲酸酐或对苯二甲酸酐。
8.水力压裂被井穿透的含烃地下地层的方法,该方法包括:
(a)将流体以足以产生或扩大裂缝的压力泵入该地层中;
(b)测定该井的表面处或表面附近的表面压力;
(c)通过向该地层内引入转向剂,以将流体流动从高传导区转向到低传导区;
(d)将所测定的表面压力与目标表面压力进行比较;和
(e)改变该井中的应力和扩展该裂缝,其中在该井中通过改变以下至少一种来改变应力:
(i)该流体的注射速率;
(ii)该井的井底压力;或
(iii)该流体的密度。
9.根据权利要求8所述的方法,其中步骤(a)-(e)是连续的。
10.根据权利要求8所述的方法,其中该地下地层是页岩。
11.根据权利要求8所述的方法,其中该转向剂是下式的化合物或其酸酐:
其中:
R1是-COO-(R5O)y-R4
R2和R3选自-H和-COO-(R5O)y-R4
条件是R2或R3中至少一个是-COO-(R5O)y-R4,和
进一步的条件是R2和R3都不是-COO-(R5O)y-R4
R4是-H或C1-C6烷基;
R5是C1-C6亚烷基;和
每个y是0-5。
12.根据权利要求11所述的方法,其中该转向剂是邻苯二甲酸酐或对苯二甲酸酐。
13.根据权利要求8所述的方法,其中(a)的该流体进一步包含支撑剂。
14.根据权利要求13所述的方法,其中该支撑剂的表观比重小于或等于2.25。
15.水力压裂被井穿透的含烃地下地层的方法,其中将流体以足以扩大或产生裂缝的压力引入该井中,该方法包括:
(a)定义以下运行参数中的至少一个:
(i)该流体的注射速率,
(ii)该流体的密度;或
(iii)该井的井底处理压力
(b)将该流体泵入该地层中,并且产生或扩大裂缝;
(b)在该流体泵入该地层之后,比较步骤(a)的运行参数中的至少一个与所定义的运行参数之间的差值;
(c)改变该流体进入该地层的注射速率,或者向该地层泵入转向剂,其中将引入该地层的流体流动从高传导裂缝转向到低传导裂缝;
(d)比较步骤(a)的运行参数中的至少一个与步骤(a)所定义的运行参数之间的差值;
(e)改变该井中的应力和扩展该裂缝,其中在该井中通过改变步骤(a)的运行参数中的至少一个来改变应力,其中步骤(e)之后的增产储层体积大于步骤(c)之后的增产储层体积。
16.根据权利要求15所述的方法,其中该地下地层是页岩。
17.根据权利要求15所述的方法,其中在步骤(c)中将转向剂泵入该地层。
18.根据权利要求17所述的方法,其中该转向剂是下式的化合物或其酸酐:
其中:
R1是-COO-(R5O)y-R4
R2和R3选自-H和-COO-(R5O)y-R4
条件是R2或R3中至少一个是-COO-(R5O)y-R4,和
进一步的条件是R2和R3都不是-COO-(R5O)y-R4
R4是-H或C1-C6烷基;
R5是C1-C6亚烷基;和
每个y是0-5。
19.根据权利要求18所述的方法,其中该转向剂是邻苯二甲酸酐或对苯二甲酸酐。
20.水力压裂被井穿透的含烃地下地层的方法,该方法包括:
(a)将压裂流体以足以产生或扩大裂缝的压力泵入该地层中;
(b)向该地层中泵入转向剂流体,其中引入该地层的转向剂流体的流动从高传导区进行到低传导区;和
(c)以大于步骤(a)中所定义压力的压力向该地层中泵入另外的压裂流体;
其中步骤(c)之后该地层内的裂缝面积大于由不采用步骤(b)的基本类似的方法所产生的裂缝面积。
21.水力压裂被井穿透的含烃地下地层的方法,该方法包括:
(a)将流体以足以产生或扩大原生裂缝的压力泵入该地层中;
(b)监测运行参数,并且将该流体泵入该地层之后的运行参数与该运行参数的预定值进行比较,其中该运行参数是以下中至少一种:
(i)该流体的注射速率,
(ii)该流体的密度;或
(iii)该井的井底处理压力
(c)通过转向将流体流动从高传导区转向低传导区;
(d)将步骤(c)之后的运行参数与该运行参数的预定值进行比较;
(e)将压裂流体泵入该地层中,其中通过该转向剂阻止该压裂流体流向该低传导区;和
(f)扩展该地层中的该原生裂缝。
22.根据权利要求1所述的方法,其中步骤(c)的转向包括向该地层中泵入化学转向剂。
23.根据权利要求22所述的方法,其中将相对轻量的微粒与该化学转向剂一起泵入该地层中。
CN201380039506.7A 2012-06-26 2013-06-26 改进水力裂缝网络的方法 Pending CN104508079A (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201261664595P 2012-06-26 2012-06-26
US61/664,595 2012-06-26
PCT/US2013/047779 WO2014004611A2 (en) 2012-06-26 2013-06-26 Methods of improving hydraulic fracture network

Publications (1)

Publication Number Publication Date
CN104508079A true CN104508079A (zh) 2015-04-08

Family

ID=48771756

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201380039506.7A Pending CN104508079A (zh) 2012-06-26 2013-06-26 改进水力裂缝网络的方法

Country Status (12)

Country Link
US (1) US9920607B2 (zh)
EP (1) EP2864442B1 (zh)
CN (1) CN104508079A (zh)
AR (1) AR091580A1 (zh)
AU (1) AU2013280418B2 (zh)
BR (1) BR112014032573A2 (zh)
CA (1) CA2877830C (zh)
CO (1) CO7160106A2 (zh)
HU (1) HUE040215T2 (zh)
MX (1) MX356996B (zh)
PL (1) PL2864442T3 (zh)
WO (1) WO2014004611A2 (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104989361A (zh) * 2015-07-13 2015-10-21 中国石油大学(北京) 一种辅助水平井人工裂缝转向改造的方法
CN107542443A (zh) * 2016-06-29 2018-01-05 中国石油化工股份有限公司 一种页岩气直探井压裂方法
CN107923236A (zh) * 2015-08-27 2018-04-17 通用电气(Ge)贝克休斯有限责任公司 用于评估并改进地理特定页岩储集层生产的方法和材料
CN108026438A (zh) * 2015-07-13 2018-05-11 沙特阿拉伯石油公司 稳定化的包含离子的纳米粒子组合物
CN109689836A (zh) * 2016-07-22 2019-04-26 通用电气(Ge)贝克休斯有限责任公司 使用远场转向体系增强裂缝复杂性的方法
CN110308495A (zh) * 2018-12-19 2019-10-08 中国石油大学(北京) 地下储层单元线流动数据处理方法及装置

Families Citing this family (53)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10989011B2 (en) 2010-03-12 2021-04-27 Baker Hughes, A Ge Company, Llc Well intervention method using a chemical barrier
US9920609B2 (en) 2010-03-12 2018-03-20 Baker Hughes, A Ge Company, Llc Method of re-fracturing using borated galactomannan gum
US9920610B2 (en) 2012-06-26 2018-03-20 Baker Hughes, A Ge Company, Llc Method of using diverter and proppant mixture
US10988678B2 (en) 2012-06-26 2021-04-27 Baker Hughes, A Ge Company, Llc Well treatment operations using diverting system
US11111766B2 (en) 2012-06-26 2021-09-07 Baker Hughes Holdings Llc Methods of improving hydraulic fracture network
US20140096964A1 (en) * 2012-10-10 2014-04-10 Baker Hughes Incorporated Nanoparticle modified fluids and methods of manufacture thereof
US9809740B2 (en) * 2012-10-10 2017-11-07 Baker Hughes, A Ge Company, Llc Nanoparticle modified fluids and methods of manufacture thereof
US10578766B2 (en) 2013-08-05 2020-03-03 Advantek International Corp. Quantifying a reservoir volume and pump pressure limit
US10633953B2 (en) 2014-06-30 2020-04-28 Advantek International Corporation Slurrification and disposal of waste by pressure pumping into a subsurface formation
US10012069B2 (en) * 2014-10-31 2018-07-03 Schlumberger Technology Corporation Method of treatment design and optimization of sequenced fracturing technique
US20160177693A1 (en) * 2014-12-17 2016-06-23 Baker Hughes Incorporated Compositions and methods of improving hydraulic fracture network
US10538696B2 (en) 2015-01-12 2020-01-21 Southwestern Energy Company Proppant and methods of using the same
US9994756B2 (en) 2015-03-10 2018-06-12 Baker Hughes, A Ge Company, Llc Segregating fluids, methods of making, and methods of use
US9951261B2 (en) 2015-03-10 2018-04-24 Baker Hughes, A Ge Company, Llc Cement spacer system for wellbores, methods of making, and methods of use
US9976390B2 (en) 2015-03-30 2018-05-22 Baker Hughes, A Ge Company, Llc Drilling fluids with leakoff control and drill cuttings removal sweeps
GB2539056A (en) 2015-06-03 2016-12-07 Geomec Eng Ltd Improvements in or relating to injection wells
US10577909B2 (en) * 2015-06-30 2020-03-03 Halliburton Energy Services, Inc. Real-time, continuous-flow pressure diagnostics for analyzing and designing diversion cycles of fracturing operations
EP3322768B1 (en) 2015-07-13 2020-01-08 Saudi Arabian Oil Company Polysaccharide coated nanoparticle well treatment compositions comprising ions
WO2017052524A1 (en) * 2015-09-23 2017-03-30 Halliburton Energy Services, Inc. Enhancing complex fracture geometry in subterranean formations
CA2989304C (en) * 2015-09-21 2020-08-04 Halliburton Energy Services, Inc. Real-time control of diverters
AU2015409640B2 (en) * 2015-09-23 2021-07-08 Halliburton Energy Services, Inc. Enhancing complex fracture geometry in subterranean formations, net pressure pulsing
WO2017052525A1 (en) * 2015-09-23 2017-03-30 Halliburton Energy Services, Inc. Enhancing complex fracture geometry in subterranean formations, sequence transport of particulates
CA2995600C (en) * 2015-09-23 2020-10-20 Halliburton Energy Services, Inc. Enhancing complex fracture geometry in subterranean formations, sequential fracturing
US10221649B2 (en) 2015-11-03 2019-03-05 Weatherford Technology Holdings, Llc Systems and methods for intelligent diversion design and application
MX2018005522A (es) * 2015-11-03 2018-12-19 Weatherford Tech Holdings Llc Sistemas y metodos para evaluar y optimizar eficiencia de estimulacion utilizando desviadores.
US11220623B2 (en) 2016-06-06 2022-01-11 Halliburton Energy Services, Inc. Flow constraint material and slurry compositions
WO2017213624A1 (en) * 2016-06-06 2017-12-14 Halliburton Energy Services, Inc. Fracturing a subterranean formation
US10267133B2 (en) 2016-06-06 2019-04-23 Halliburton Energy Services, Inc. Systems and methods for fracturing a subterranean formation
US11047220B2 (en) 2017-01-31 2021-06-29 Halliburton Energy Services, Inc. Real-time optimization of stimulation treatments for multistage fracture stimulation
CN111742032B (zh) 2018-02-26 2023-03-17 贝克休斯控股有限责任公司 通过形成柱裂缝通道来增强传导性的方法
US11732179B2 (en) 2018-04-03 2023-08-22 Schlumberger Technology Corporation Proppant-fiber schedule for far field diversion
CN108984839B (zh) * 2018-06-15 2022-02-18 中国石油化工股份有限公司 一种基于微地震的页岩改造体积快速判断方法
US20200048532A1 (en) 2018-08-10 2020-02-13 Bj Services, Llc Frac Fluids for Far Field Diversion
US20200063015A1 (en) 2018-08-22 2020-02-27 Carbo Ceramics Inc. Composite diversion particle agglomeration
US11513254B2 (en) 2019-01-10 2022-11-29 Baker Hughes Oilfield Operations Llc Estimation of fracture properties based on borehole fluid data, acoustic shear wave imaging and well bore imaging
WO2020172575A1 (en) 2019-02-22 2020-08-27 Eog Resources, Inc. Injection systems for subterranean wellbores
WO2020243234A1 (en) 2019-05-29 2020-12-03 Saudi Arabian Oil Company Flow synthesis of polymer nanoparticles
US11566165B2 (en) 2019-05-30 2023-01-31 Saudi Arabian Oil Company Polymers and nanoparticles for flooding
US11835675B2 (en) 2019-08-07 2023-12-05 Saudi Arabian Oil Company Determination of geologic permeability correlative with magnetic permeability measured in-situ
US11827849B2 (en) 2019-08-13 2023-11-28 Xpand Oil & Gas Solutions, Llc Gas generating compositions and uses
US11965677B2 (en) 2020-06-17 2024-04-23 Sage Geosystems Inc. System, method, and composition for geothermal heat harvest
CN113833447A (zh) * 2020-06-23 2021-12-24 中国石油化工股份有限公司 一种实现压裂中复杂裂缝有效支撑的方法及其应用
US11773715B2 (en) 2020-09-03 2023-10-03 Saudi Arabian Oil Company Injecting multiple tracer tag fluids into a wellbore
CN114427417A (zh) * 2020-09-24 2022-05-03 中国石油化工股份有限公司 一种应力差异大的多层储层压裂方法与应用
CN114427424A (zh) * 2020-09-28 2022-05-03 中国石油化工股份有限公司 一种深层油气藏定向压裂方法及应用
US11660595B2 (en) 2021-01-04 2023-05-30 Saudi Arabian Oil Company Microfluidic chip with multiple porosity regions for reservoir modeling
US11534759B2 (en) 2021-01-22 2022-12-27 Saudi Arabian Oil Company Microfluidic chip with mixed porosities for reservoir modeling
US11879328B2 (en) 2021-08-05 2024-01-23 Saudi Arabian Oil Company Semi-permanent downhole sensor tool
US11796517B2 (en) 2021-11-09 2023-10-24 Saudi Arabian Oil Company Multifunctional magnetic tags for mud logging
US11725139B2 (en) 2021-12-13 2023-08-15 Saudi Arabian Oil Company Manipulating hydrophilicity of conventional dye molecules for water tracer applications
US11860077B2 (en) 2021-12-14 2024-01-02 Saudi Arabian Oil Company Fluid flow sensor using driver and reference electromechanical resonators
US11867049B1 (en) 2022-07-19 2024-01-09 Saudi Arabian Oil Company Downhole logging tool
US11913329B1 (en) 2022-09-21 2024-02-27 Saudi Arabian Oil Company Untethered logging devices and related methods of logging a wellbore

Family Cites Families (207)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2735269A (en) 1956-02-21 Sealing porous formations
US2596843A (en) 1949-12-31 1952-05-13 Stanolind Oil & Gas Co Fracturing formations in wells
US2966457A (en) 1956-05-08 1960-12-27 Swift & Co Gelled fracturing fluids
US3151678A (en) 1958-09-02 1964-10-06 Dow Chemical Co Method of fracturing formations
US3159217A (en) 1959-04-10 1964-12-01 Dow Chemical Co Plastically deformable solids in treating subterranean formations
US3089542A (en) 1960-04-13 1963-05-14 American Cyanamid Co Oil well fracturing method
US3127937A (en) 1960-08-22 1964-04-07 Atlantic Refining Co Method and a composition for treating subsurface fractures
US3149673A (en) 1961-08-23 1964-09-22 Jersey Prod Res Co Use of solid polyolefin propping agent in hydraulic fracturing
US3149674A (en) 1961-08-23 1964-09-22 Jersey Prod Res Co Fracturing of subsurface earth formations
US3249158A (en) 1962-02-19 1966-05-03 Atlantic Refining Co Plugging materials for vertical fractures
US3175615A (en) 1962-10-29 1965-03-30 Jersey Prod Res Co Fracturing of subsurface earth formations
US3254717A (en) 1962-11-19 1966-06-07 Gulf Research Development Co Fracturing process and impregnated propping agent for use therein
US3335797A (en) 1963-12-18 1967-08-15 Dow Chemical Co Controlling fractures during well treatment
US3266573A (en) 1964-03-25 1966-08-16 Pan American Petroleum Corp Method of fracturing subsurface formations
US3492147A (en) 1964-10-22 1970-01-27 Halliburton Co Method of coating particulate solids with an infusible resin
US3335796A (en) 1965-02-12 1967-08-15 Chevron Res Treatment of wells with resin-impregnated, resin-coated walnut shell particles
US3372752A (en) 1966-04-22 1968-03-12 Dow Chemical Co Hydraulic fracturing
US3399727A (en) 1966-09-16 1968-09-03 Exxon Production Research Co Method for propping a fracture
US3497008A (en) 1968-03-05 1970-02-24 Exxon Production Research Co Method of propping fractures with ceramic particles
US3480084A (en) 1968-03-25 1969-11-25 Dow Chemical Co Composition and method using temporary soild diverting agent for aqueous fluids
US3659651A (en) 1970-08-17 1972-05-02 Exxon Production Research Co Hydraulic fracturing using reinforced resin pellets
US3709300A (en) 1971-08-27 1973-01-09 Union Oil Co Hydraulic fracturing process
US3888311A (en) 1973-10-01 1975-06-10 Exxon Production Research Co Hydraulic fracturing method
US4051900A (en) 1974-06-13 1977-10-04 Dale Hankins Propping material for hydraulic fracturing
US3929191A (en) 1974-08-15 1975-12-30 Exxon Production Research Co Method for treating subterranean formations
US3954142A (en) 1974-08-21 1976-05-04 Halliburton Company Zonal fracture treatment of well formations
US3937283A (en) 1974-10-17 1976-02-10 The Dow Chemical Company Formation fracturing with stable foam
US4060988A (en) 1975-04-21 1977-12-06 Texaco Inc. Process for heating a fluid in a geothermal formation
US4074760A (en) 1976-11-01 1978-02-21 The Dow Chemical Company Method for forming a consolidated gravel pack
US4078609A (en) 1977-03-28 1978-03-14 The Dow Chemical Company Method of fracturing a subterranean formation
US4195010A (en) 1977-07-06 1980-03-25 Burns & Russell Company of Baltimore City Ceramic coated quartz particles
US4216829A (en) 1977-10-06 1980-08-12 Halliburton Company Gelled water epoxy sand consolidation system
US4283089A (en) 1980-06-12 1981-08-11 Conoco, Inc. Pretreatment for fracturing coal seams
US4421167A (en) 1980-11-05 1983-12-20 Exxon Production Research Co. Method of controlling displacement of propping agent in fracturing treatments
US4547468A (en) 1981-08-10 1985-10-15 Terra Tek, Inc. Hollow proppants and a process for their manufacture
US4439489A (en) 1982-02-16 1984-03-27 Acme Resin Corporation Particles covered with a cured infusible thermoset film and process for their production
US4462466A (en) 1982-03-29 1984-07-31 Kachnik Joseph E Method of propping fractures in subterranean formations
DE3309948A1 (de) * 1982-03-30 1983-10-13 Sandoz-Patent-GmbH, 7850 Lörrach Fluessigkeitsverluste vermindernde verbindungen fuer bohrlochbearbeitungsfluessigkeiten
US4444264A (en) * 1982-06-17 1984-04-24 Halliburton Company Method of using a diverting material for well treatment
US4502967A (en) 1982-09-27 1985-03-05 Halliburton Company Method and compositions for fracturing subterranean formations
US4509598A (en) 1983-03-25 1985-04-09 The Dow Chemical Company Fracturing fluids containing bouyant inorganic diverting agent and method of use in hydraulic fracturing of subterranean formations
US4506734A (en) 1983-09-07 1985-03-26 The Standard Oil Company Fracturing fluid breaker system which is activated by fracture closure
US4493875A (en) 1983-12-09 1985-01-15 Minnesota Mining And Manufacturing Company Proppant for well fractures and method of making same
US4680230A (en) 1984-01-18 1987-07-14 Minnesota Mining And Manufacturing Company Particulate ceramic useful as a proppant
US4888240A (en) 1984-07-02 1989-12-19 Graham John W High strength particulates
US4585064A (en) 1984-07-02 1986-04-29 Graham John W High strength particulates
US4717594A (en) 1984-07-02 1988-01-05 Graham John W High strength particulates
US4566539A (en) 1984-07-17 1986-01-28 William Perlman Coal seam fracing method
US4632876A (en) 1985-06-12 1986-12-30 Minnesota Mining And Manufacturing Company Ceramic spheroids having low density and high crush resistance
US4654266A (en) 1985-12-24 1987-03-31 Kachnik Joseph L Durable, high-strength proppant and method for forming same
US5246602A (en) 1986-02-24 1993-09-21 Forrest Gabriel T Method and composition fracturing subterranean formations
US4830794A (en) 1986-05-19 1989-05-16 Halliburton Company Dry sand foam generator
US4733729A (en) 1986-09-08 1988-03-29 Dowell Schlumberger Incorporated Matched particle/liquid density well packing technique
US4840729A (en) 1987-01-02 1989-06-20 Atlantic Richfield Company Oil spill recovery apparatus
US4850430A (en) 1987-02-04 1989-07-25 Dowell Schlumberger Incorporated Matched particle/liquid density well packing technique
US4796701A (en) 1987-07-30 1989-01-10 Dowell Schlumberger Incorporated Pyrolytic carbon coating of media improves gravel packing and fracturing capabilities
US4869960A (en) 1987-09-17 1989-09-26 Minnesota Mining And Manufacturing Company Epoxy novolac coated ceramic particulate
US4923714A (en) 1987-09-17 1990-05-08 Minnesota Mining And Manufacturing Company Novolac coated ceramic particulate
US4829100A (en) 1987-10-23 1989-05-09 Halliburton Company Continuously forming and transporting consolidatable resin coated particulate materials in aqueous gels
ES2029297T3 (es) 1988-05-13 1992-08-01 Sarea A.G. Empleo de una composicion para el tratamiento de las superficies de los suelos.
US4921821A (en) 1988-08-02 1990-05-01 Norton-Alcoa Proppants Lightweight oil and gas well proppants and methods for making and using same
US4921820A (en) 1989-01-17 1990-05-01 Norton-Alcoa Proppants Lightweight proppant for oil and gas wells and methods for making and using same
US4895207A (en) * 1988-12-19 1990-01-23 Texaco, Inc. Method and fluid for placing resin coated gravel or sand in a producing oil well
US4875525A (en) 1989-03-03 1989-10-24 Atlantic Richfield Company Consolidated proppant pack for producing formations
US4887670A (en) 1989-04-05 1989-12-19 Halliburton Company Controlling fracture growth
US4969523A (en) 1989-06-12 1990-11-13 Dowell Schlumberger Incorporated Method for gravel packing a well
US5069283A (en) 1989-08-02 1991-12-03 The Western Company Of North America Fracturing process using carbon dioxide and nitrogen
US5074359A (en) 1989-11-06 1991-12-24 Atlantic Richfield Company Method for hydraulic fracturing cased wellbores
ES2056394T3 (es) 1989-12-22 1994-10-01 Comalco Alu Microesferas ceramicas.
US5240654A (en) 1989-12-22 1993-08-31 Comalco Aluminium Limited Method of making ceramic microspheres
US5014788A (en) 1990-04-20 1991-05-14 Amoco Corporation Method of increasing the permeability of a coal seam
US5103905A (en) 1990-05-03 1992-04-14 Dowell Schlumberger Incorporated Method of optimizing the conductivity of a propped fractured formation
US5325921A (en) 1992-10-21 1994-07-05 Baker Hughes Incorporated Method of propagating a hydraulic fracture using fluid loss control particulates
US5551344A (en) 1992-11-10 1996-09-03 Schlumberger Technology Corporation Method and apparatus for overbalanced perforating and fracturing in a borehole
US5305832A (en) 1992-12-21 1994-04-26 The Western Company Of North America Method for fracturing high temperature subterranean formations
US5333689A (en) 1993-02-26 1994-08-02 Mobil Oil Corporation Gravel packing of wells with fluid-loss control
CA2119316C (en) 1993-04-05 2006-01-03 Roger J. Card Control of particulate flowback in subterranean wells
US5330005A (en) 1993-04-05 1994-07-19 Dowell Schlumberger Incorporated Control of particulate flowback in subterranean wells
US5422183A (en) 1993-06-01 1995-06-06 Santrol, Inc. Composite and reinforced coatings on proppants and particles
US5425421A (en) 1993-10-05 1995-06-20 Atlantic Richfield Company Method for sealing unwanted fractures in fluid-producing earth formations
US5381864A (en) 1993-11-12 1995-01-17 Halliburton Company Well treating methods using particulate blends
US5390741A (en) 1993-12-21 1995-02-21 Halliburton Company Remedial treatment methods for coal bed methane wells
US5417286A (en) 1993-12-29 1995-05-23 Amoco Corporation Method for enhancing the recovery of methane from a solid carbonaceous subterranean formation
US5447197A (en) 1994-01-25 1995-09-05 Bj Services Company Storable liquid cementitious slurries for cementing oil and gas wells
US5837656A (en) 1994-07-21 1998-11-17 Santrol, Inc. Well treatment fluid compatible self-consolidating particles
US5531274A (en) 1994-07-29 1996-07-02 Bienvenu, Jr.; Raymond L. Lightweight proppants and their use in hydraulic fracturing
CA2129613C (en) 1994-08-05 1997-09-23 Samuel Luk High proppant concentration/high co2 ratio fracturing system
US5435391A (en) 1994-08-05 1995-07-25 Mobil Oil Corporation Method for fracturing and propping a formation
GB9503949D0 (en) 1995-02-28 1995-04-19 Atomic Energy Authority Uk Oil well treatment
US5639806A (en) 1995-03-28 1997-06-17 Borden Chemical, Inc. Bisphenol-containing resin coating articles and methods of using same
US5960878A (en) 1995-03-29 1999-10-05 Halliburton Energy Services, Inc. Methods of protecting well tubular goods from corrosion
US6209643B1 (en) 1995-03-29 2001-04-03 Halliburton Energy Services, Inc. Method of controlling particulate flowback in subterranean wells and introducing treatment chemicals
US5582249A (en) 1995-08-02 1996-12-10 Halliburton Company Control of particulate flowback in subterranean wells
US6047772A (en) 1995-03-29 2000-04-11 Halliburton Energy Services, Inc. Control of particulate flowback in subterranean wells
US5604184A (en) 1995-04-10 1997-02-18 Texaco, Inc. Chemically inert resin coated proppant system for control of proppant flowback in hydraulically fractured wells
US6528157B1 (en) 1995-11-01 2003-03-04 Borden Chemical, Inc. Proppants with fiber reinforced resin coatings
US5582250A (en) 1995-11-09 1996-12-10 Dowell, A Division Of Schlumberger Technology Corporation Overbalanced perforating and fracturing process using low-density, neutrally buoyant proppant
US5964290A (en) 1996-01-31 1999-10-12 Vastar Resources, Inc. Chemically induced stimulation of cleat formation in a subterranean coal formation
US5699860A (en) 1996-02-22 1997-12-23 Halliburton Energy Services, Inc. Fracture propping agents and methods
US5799734A (en) 1996-07-18 1998-09-01 Halliburton Energy Services, Inc. Method of forming and using particulate slurries for well completion
US5950727A (en) 1996-08-20 1999-09-14 Irani; Cyrus A. Method for plugging gas migration channels in the cement annulus of a wellbore using high viscosity polymers
US5881813A (en) 1996-11-06 1999-03-16 Bj Services Company Method for improved stimulation treatment
US6364018B1 (en) 1996-11-27 2002-04-02 Bj Services Company Lightweight methods and compositions for well treating
US6330916B1 (en) 1996-11-27 2001-12-18 Bj Services Company Formation treatment method using deformable particles
US7426961B2 (en) 2002-09-03 2008-09-23 Bj Services Company Method of treating subterranean formations with porous particulate materials
DK133397A (da) 1996-11-27 1998-05-28 B J Services Company Fremgangsmåde ved behandling af formationer under anvendelse af deformerbare partikler
US20050028979A1 (en) 1996-11-27 2005-02-10 Brannon Harold Dean Methods and compositions of a storable relatively lightweight proppant slurry for hydraulic fracturing and gravel packing applications
US6772838B2 (en) 1996-11-27 2004-08-10 Bj Services Company Lightweight particulate materials and uses therefor
US6059034A (en) 1996-11-27 2000-05-09 Bj Services Company Formation treatment method using deformable particles
US6749025B1 (en) 1996-11-27 2004-06-15 Bj Services Company Lightweight methods and compositions for sand control
US5850875A (en) 1996-12-30 1998-12-22 Halliburton Energy Services, Inc. Method of deploying a well screen and associated apparatus therefor
CA2226928C (en) 1997-01-14 2006-11-28 Gillman A. Hill Multiple zone well completion method and apparatus
US6169058B1 (en) 1997-06-05 2001-01-02 Bj Services Company Compositions and methods for hydraulic fracturing
US5924488A (en) 1997-06-11 1999-07-20 Halliburton Energy Services, Inc. Methods of preventing well fracture proppant flow-back
US5908073A (en) 1997-06-26 1999-06-01 Halliburton Energy Services, Inc. Preventing well fracture proppant flow-back
US5921317A (en) 1997-08-14 1999-07-13 Halliburton Energy Services, Inc. Coating well proppant with hardenable resin-fiber composites
US6451953B1 (en) 1997-12-18 2002-09-17 Sun Drilling Products, Corp. Chain entanglement crosslinked polymers
EP0933498B1 (en) 1998-02-03 2003-05-28 Halliburton Energy Services, Inc. Method of rapidly consolidating particulate materials in wells
US6211120B1 (en) 1998-02-11 2001-04-03 Baker Hughes Incorporated Application of aluminum chlorohydrate in viscosifying brine for carrying proppants in gravel packing
US6070666A (en) 1998-04-30 2000-06-06 Atlantic Richfield Company Fracturing method for horizontal wells
US6114410A (en) 1998-07-17 2000-09-05 Technisand, Inc. Proppant containing bondable particles and removable particles
US6582819B2 (en) 1998-07-22 2003-06-24 Borden Chemical, Inc. Low density composite proppant, filtration media, gravel packing media, and sports field media, and methods for making and using same
AR019461A1 (es) 1998-07-22 2002-02-20 Borden Chem Inc UNA PARTíCULA COMPUESTA, UN MÉTODO PARA PRODUCIRLA, UN MÉTODO PARA TRATAR UNA FRACTURA HIDRÁULICAMENTE INDUCIDA EN UNA FORMACIoN SUBTERRÁNEA, Y UN MÉTODO PARA LA FILTRACIoN DE AGUA.
WO2000011039A2 (en) 1998-08-24 2000-03-02 Sun Drilling Products Corporation Free radical inhibitors for quenching aqueous phase polymer growth and related methods
US6116342A (en) 1998-10-20 2000-09-12 Halliburton Energy Services, Inc. Methods of preventing well fracture proppant flow-back
US6138760A (en) 1998-12-07 2000-10-31 Bj Services Company Pre-treatment methods for polymer-containing fluids
US6194355B1 (en) 1999-02-09 2001-02-27 Baker Hughes Incorporated Use of alkoxylated surfactants and aluminum chlorohydrate to improve brine-based drilling fluids
US6367548B1 (en) 1999-03-05 2002-04-09 Bj Services Company Diversion treatment method
US6315041B1 (en) 1999-04-15 2001-11-13 Stephen L. Carlisle Multi-zone isolation tool and method of stimulating and testing a subterranean well
US6640897B1 (en) 1999-09-10 2003-11-04 Bj Services Company Method and apparatus for through tubing gravel packing, cleaning and lifting
CA2318703A1 (en) 1999-09-16 2001-03-16 Bj Services Company Compositions and methods for cementing using elastic particles
US6399546B1 (en) 1999-10-15 2002-06-04 Schlumberger Technology Corporation Fluid system having controllable reversible viscosity
US6311773B1 (en) 2000-01-28 2001-11-06 Halliburton Energy Services, Inc. Resin composition and methods of consolidating particulate solids in wells with or without closure pressure
US6491099B1 (en) 2000-02-29 2002-12-10 Bj Services Company Viscous fluid applicable for treating subterranean formations
AU2001247282A1 (en) 2000-03-06 2001-09-17 Bj Services Company Lightweight methods and compositions for sand control
DE60120553T2 (de) 2000-04-28 2007-06-06 Ricoh Co., Ltd. Toner, externes Additiv, und Bilderzeugungsverfahren
US6439310B1 (en) 2000-09-15 2002-08-27 Scott, Iii George L. Real-time reservoir fracturing process
US6372678B1 (en) 2000-09-28 2002-04-16 Fairmount Minerals, Ltd Proppant composition for gas and oil well fracturing
AU2002211812A1 (en) 2000-09-28 2002-04-08 Fairmount Minerals Ltd Proppant composition for gas and oil-well fracturing
US6412559B1 (en) 2000-11-24 2002-07-02 Alberta Research Council Inc. Process for recovering methane and/or sequestering fluids
US6444162B1 (en) 2000-11-27 2002-09-03 The United States Of America As Represented By The United States Department Of Energy Open-cell glass crystalline porous material
US6439309B1 (en) 2000-12-13 2002-08-27 Bj Services Company Compositions and methods for controlling particulate movement in wellbores and subterranean formations
US7226971B2 (en) 2000-12-22 2007-06-05 Basf Corporation Polyester resin with carbamate functionality, a method of preparing the resin, and a coating composition utilizing the resin
CA2329834A1 (en) 2000-12-28 2002-06-28 David Droppert High strength, heat- and corrosion-resistant ceramic granules for proppants
US6579947B2 (en) 2001-02-20 2003-06-17 Rhodia Chimie Hydraulic fracturing fluid comprising a block copolymer containing at least one water-soluble block and one hydrophobic block
US7001872B2 (en) 2001-06-11 2006-02-21 Halliburton Energy Services, Inc. Subterranean formation treating fluid and methods of fracturing subterranean formations
US6766817B2 (en) 2001-07-25 2004-07-27 Tubarc Technologies, Llc Fluid conduction utilizing a reversible unsaturated siphon with tubarc porosity action
US6938690B2 (en) 2001-09-28 2005-09-06 Halliburton Energy Services, Inc. Downhole tool and method for fracturing a subterranean well formation
US6725931B2 (en) 2002-06-26 2004-04-27 Halliburton Energy Services, Inc. Methods of consolidating proppant and controlling fines in wells
US6830105B2 (en) 2002-03-26 2004-12-14 Halliburton Energy Services, Inc. Proppant flowback control using elastomeric component
AU2003240679A1 (en) 2002-05-21 2003-12-02 Sofitech N.V. Hydraulic fracturing method
US6930133B2 (en) 2002-05-31 2005-08-16 Robert L. Albright Low density polymer beads
US7153575B2 (en) 2002-06-03 2006-12-26 Borden Chemical, Inc. Particulate material having multiple curable coatings and methods for making and using same
US6776235B1 (en) 2002-07-23 2004-08-17 Schlumberger Technology Corporation Hydraulic fracturing method
US20040023818A1 (en) 2002-08-05 2004-02-05 Nguyen Philip D. Method and product for enhancing the clean-up of hydrocarbon-producing well
EA006928B1 (ru) * 2002-08-15 2006-04-28 Шлюмбергер Текнолоджи Б.В. Использование распределённых датчиков температуры в процессе обработки ствола скважины
US6705400B1 (en) 2002-08-28 2004-03-16 Halliburton Energy Services, Inc. Methods and compositions for forming subterranean fractures containing resilient proppant packs
US6742590B1 (en) 2002-09-05 2004-06-01 Halliburton Energy Services, Inc. Methods of treating subterranean formations using solid particles and other larger solid materials
US7049436B2 (en) 2002-10-09 2006-05-23 Bj Services Company Carbon dioxide compatible non-aqueous crosslinked fracturing fluids and methods for their use
US7036591B2 (en) 2002-10-10 2006-05-02 Carbo Ceramics Inc. Low density proppant
US7392843B2 (en) 2002-11-18 2008-07-01 Saudi Arabian Oil Company Method of treating subterranean formations to enhance hydrocarbon production using proppants
US7638468B2 (en) 2003-01-15 2009-12-29 Bj Services Company Surfactant based viscoelastic fluids
US6892813B2 (en) 2003-01-30 2005-05-17 Halliburton Energy Services, Inc. Methods for preventing fracture proppant flowback
JP2004279590A (ja) 2003-03-13 2004-10-07 Ricoh Co Ltd 定着部材及びそれを有する画像形成装置
WO2004083600A1 (en) 2003-03-18 2004-09-30 Bj Services Company Method of treating subterranean formations using mixed density proppants or sequential proppant stages
CN1839034A (zh) 2003-04-15 2006-09-27 氦克逊特种化学品公司 含有热塑性高弹体的微粒物质及其制备和使用方法
WO2004109053A2 (en) 2003-06-04 2004-12-16 Sun Drilling Products Corporation Lost circulation material blend offering high fluid loss with minimum solids
US7207386B2 (en) 2003-06-20 2007-04-24 Bj Services Company Method of hydraulic fracturing to reduce unwanted water production
US7044220B2 (en) 2003-06-27 2006-05-16 Halliburton Energy Services, Inc. Compositions and methods for improving proppant pack permeability and fracture conductivity in a subterranean well
US7178596B2 (en) 2003-06-27 2007-02-20 Halliburton Energy Services, Inc. Methods for improving proppant pack permeability and fracture conductivity in a subterranean well
US20050130848A1 (en) 2003-06-27 2005-06-16 Halliburton Energy Services, Inc. Compositions and methods for improving fracture conductivity in a subterranean well
US7066258B2 (en) 2003-07-08 2006-06-27 Halliburton Energy Services, Inc. Reduced-density proppants and methods of using reduced-density proppants to enhance their transport in well bores and fractures
US7086460B2 (en) 2003-07-14 2006-08-08 Halliburton Energy Services, Inc. In-situ filters, method of forming same and systems for controlling proppant flowback employing same
US7303018B2 (en) 2003-07-22 2007-12-04 Bj Services Company Method of acidizing a subterranean formation with diverting foam or fluid
US20050028976A1 (en) 2003-08-05 2005-02-10 Nguyen Philip D. Compositions and methods for controlling the release of chemicals placed on particulates
US20050034860A1 (en) * 2003-08-15 2005-02-17 Lauritzen J. Eric Screen for sand control in a wellbore
US7036597B2 (en) 2003-08-28 2006-05-02 Halliburton Energy Services, Inc. Systems and methods for treating a subterranean formation using carbon dioxide and a crosslinked fracturing fluid
US7271133B2 (en) 2003-09-24 2007-09-18 Halliburton Energy Services, Inc. Methods and compositions for treating subterranean formations
US20050089631A1 (en) 2003-10-22 2005-04-28 Nguyen Philip D. Methods for reducing particulate density and methods of using reduced-density particulates
NO20045474L (no) 2003-12-18 2005-06-20 Bj Services Co Fremgangsmate for syrebehandlingsstimulering ved anvendelse av viskoelastisk gelatineringsmiddel
US7036590B2 (en) 2004-02-13 2006-05-02 Halliburton Energy Services, Inc. Two stage subterranean zone fracturing fluids and methods
CN1984769A (zh) 2004-04-12 2007-06-20 卡博陶粒有限公司 涂敷和/或处理水力压裂支撑剂以改善润湿性、支撑剂润滑和/或减少由压裂液和储集层流体引起的损害
US8895480B2 (en) 2004-06-04 2014-11-25 Baker Hughes Incorporated Method of fracturing using guar-based well treating fluid
US7213651B2 (en) 2004-06-10 2007-05-08 Bj Services Company Methods and compositions for introducing conductive channels into a hydraulic fracturing treatment
US7301345B2 (en) * 2004-06-18 2007-11-27 Schlumberger Technology Corporation While-drilling methodology for estimating formation pressure based upon streaming potential measurements
US20060011342A1 (en) 2004-07-14 2006-01-19 Lizak Kenneth F Fluid loss control additives for use in fracturing subterranean formations
US7726399B2 (en) 2004-09-30 2010-06-01 Bj Services Company Method of enhancing hydraulic fracturing using ultra lightweight proppants
US20060073980A1 (en) 2004-09-30 2006-04-06 Bj Services Company Well treating composition containing relatively lightweight proppant and acid
US7603896B2 (en) 2005-09-16 2009-10-20 Bj Services Company Fluid flow model and method of using the same
RU2404359C2 (ru) 2006-01-27 2010-11-20 Шлюмберже Текнолоджи Б.В. Способ гидроразрыва подземного пласта (варианты)
US7931087B2 (en) 2006-03-08 2011-04-26 Baker Hughes Incorporated Method of fracturing using lightweight polyamide particulates
US7494711B2 (en) 2006-03-08 2009-02-24 Bj Services Company Coated plastic beads and methods of using same to treat a wellbore or subterranean formation
US7669655B2 (en) 2007-02-13 2010-03-02 Bj Services Company Method of fracturing a subterranean formation at optimized and pre-determined conditions
US7913762B2 (en) 2008-07-25 2011-03-29 Baker Hughes Incorporated Method of fracturing using ultra lightweight proppant suspensions and gaseous streams
US8082989B2 (en) * 2008-08-19 2011-12-27 Flow Industries Ltd. Method for impulse stimulation of oil and gas well production
US8205675B2 (en) 2008-10-09 2012-06-26 Baker Hughes Incorporated Method of enhancing fracture conductivity
US20100204069A1 (en) 2009-02-10 2010-08-12 Hoang Van Le METHOD OF STIMULATING SUBTERRANEAN FORMATION USING LOW pH FLUID
US8757260B2 (en) 2009-02-11 2014-06-24 Halliburton Energy Services, Inc. Degradable perforation balls and associated methods of use in subterranean applications
US8853137B2 (en) 2009-07-30 2014-10-07 Halliburton Energy Services, Inc. Increasing fracture complexity in ultra-low permeable subterranean formation using degradable particulate
EA201200268A1 (ru) 2009-08-12 2012-09-28 Басф Се Органические соли для уменьшения проницаемости породы
US9920609B2 (en) 2010-03-12 2018-03-20 Baker Hughes, A Ge Company, Llc Method of re-fracturing using borated galactomannan gum
US20120085536A1 (en) 2010-09-16 2012-04-12 Hussein Alboudwarej Method and composition to divert fluids at high temperatures
US8789596B2 (en) 2012-01-27 2014-07-29 Baker Hughes Incorporated Method of increasing efficiency in a hydraulic fracturing operation
AU2013245868A1 (en) 2012-04-12 2014-10-30 Baker Hughes Incorporated Method of increasing the permeability of a subterranean formation by creating a multiple fracture network
MY180172A (en) 2012-06-26 2020-11-24 Baker Hughes Inc Method of using phthalic and terephthalic acids and derivatives thereof in well treatment operations
GB2528006A (en) 2013-04-05 2016-01-06 Baker Hughes Inc Method of increasing fracture network complexity and conductivity
CA2815589C (en) 2013-04-30 2016-01-05 Baker Hughes Incorporated Method of real time monitoring of well operations using self-sensing treatment fluids

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104989361A (zh) * 2015-07-13 2015-10-21 中国石油大学(北京) 一种辅助水平井人工裂缝转向改造的方法
CN104989361B (zh) * 2015-07-13 2016-08-24 中国石油大学(北京) 一种辅助水平井人工裂缝转向改造的方法
CN108026438A (zh) * 2015-07-13 2018-05-11 沙特阿拉伯石油公司 稳定化的包含离子的纳米粒子组合物
CN108026438B (zh) * 2015-07-13 2021-02-26 沙特阿拉伯石油公司 稳定化的包含离子的纳米粒子组合物
CN107923236A (zh) * 2015-08-27 2018-04-17 通用电气(Ge)贝克休斯有限责任公司 用于评估并改进地理特定页岩储集层生产的方法和材料
CN107542443A (zh) * 2016-06-29 2018-01-05 中国石油化工股份有限公司 一种页岩气直探井压裂方法
CN109689836A (zh) * 2016-07-22 2019-04-26 通用电气(Ge)贝克休斯有限责任公司 使用远场转向体系增强裂缝复杂性的方法
CN110308495A (zh) * 2018-12-19 2019-10-08 中国石油大学(北京) 地下储层单元线流动数据处理方法及装置
CN110308495B (zh) * 2018-12-19 2020-06-30 中国石油大学(北京) 地下储层单元线流动数据处理方法及装置

Also Published As

Publication number Publication date
HUE040215T2 (hu) 2019-02-28
WO2014004611A3 (en) 2014-06-19
WO2014004611A2 (en) 2014-01-03
CO7160106A2 (es) 2015-01-15
CA2877830A1 (en) 2014-01-03
PL2864442T3 (pl) 2019-03-29
EP2864442A2 (en) 2015-04-29
EP2864442B1 (en) 2018-10-31
AU2013280418B2 (en) 2017-03-02
MX356996B (es) 2018-06-22
BR112014032573A2 (pt) 2017-06-27
AU2013280418A1 (en) 2015-01-22
US20130341030A1 (en) 2013-12-26
AR091580A1 (es) 2015-02-11
MX2014016040A (es) 2015-07-06
CA2877830C (en) 2018-03-20
US9920607B2 (en) 2018-03-20

Similar Documents

Publication Publication Date Title
CN104508079A (zh) 改进水力裂缝网络的方法
AU2014281205B2 (en) Simultaneous method for combined acidizing and proppant fracturing
CA2844110C (en) Method of fracturing multiple zones within a well
US20160264849A1 (en) Hydrofluoric Based Invert Emulsions for Shale Stimulation
CA2971276A1 (en) Compositions and methods of improving hydraulic fracture network
Zhang et al. An integrated experimental method to investigate tool-less temporary-plugging multistage acid fracturing of horizontal well by using self-degradable diverters
US11111766B2 (en) Methods of improving hydraulic fracture network
WO2016037094A1 (en) System and method for facilitating subterranean hydrocarbon extraction utilizing electrochemical reactions with metals
McAndrew* et al. Extending the application of foam hydraulic fracturing fluids
US11492885B2 (en) Hydraulic fracturing systems and methods
Parshall Barnett Shale showcases tight-gas development
US10968723B2 (en) Foam cleanout methods and systems for wellbores
Gharibi et al. Hydraulic fracturing for improved oil recovery
Hatzignatiou et al. Sodium silicate gelants for water management in naturally fractured hydrocarbon carbonate formations
Bist et al. Diverting agents in the oil and gas industry: A comprehensive analysis of their origins, types, and applications
McDaniel et al. Fracture Stimulate and Effectively Prop Fracs: The Conductivity Challenges of Liquids Production from Ultralow-Permeability Formations
Abrams et al. From the laboratory to the field: successful multistage horizontal fracturing design and implementation in tight sandstones in the Anadarko Basin
US20190177606A1 (en) Methods and materials for generating conductive channels within fracture geometry
Qi et al. Research and application of a controllable permeability refracturing technology in a high-water-cut potential layer
Nguyen Optimisation of Acid Fracture Design for the Basement Formation in the White Tiger Field
Wilk Modeling Efficiency of Energized Fluid Fracturing in Tight Gas Formations
Asgarov Role of Well Stimulation Methods in the Optimization of Production from Oil and Gas Well
Kienberger et al. Optimizing Water Injection in a Shallow Off-Shore Reservoir
He Effect of Hydrolysis on the Properties of a New Viscoelastic Surfactant-Based Acid
Pirayesh Application of fracturing technology in improving volumetric sweep efficiency in enhanced oil recovery schemes

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20150408