US20060011342A1 - Fluid loss control additives for use in fracturing subterranean formations - Google Patents

Fluid loss control additives for use in fracturing subterranean formations Download PDF

Info

Publication number
US20060011342A1
US20060011342A1 US10/891,394 US89139404A US2006011342A1 US 20060011342 A1 US20060011342 A1 US 20060011342A1 US 89139404 A US89139404 A US 89139404A US 2006011342 A1 US2006011342 A1 US 2006011342A1
Authority
US
United States
Prior art keywords
fluid
loss control
control additive
fluid loss
pad
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/891,394
Inventor
Kenneth Lizak
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Halliburton Energy Services Inc
Original Assignee
Halliburton Energy Services Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Halliburton Energy Services Inc filed Critical Halliburton Energy Services Inc
Priority to US10/891,394 priority Critical patent/US20060011342A1/en
Assigned to HALLIBURTON ENERGY SERVICES, INC. reassignment HALLIBURTON ENERGY SERVICES, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: LIZAK, KENNETH F.
Publication of US20060011342A1 publication Critical patent/US20060011342A1/en
Abandoned legal-status Critical Current

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/25Methods for stimulating production
    • E21B43/26Methods for stimulating production by forming crevices or fractures
    • E21B43/267Methods for stimulating production by forming crevices or fractures reinforcing fractures by propping
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/60Compositions for stimulating production by acting on the underground formation
    • C09K8/62Compositions for forming crevices or fractures
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/60Compositions for stimulating production by acting on the underground formation
    • C09K8/62Compositions for forming crevices or fractures
    • C09K8/66Compositions based on water or polar solvents
    • C09K8/665Compositions based on water or polar solvents containing inorganic compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/60Compositions for stimulating production by acting on the underground formation
    • C09K8/62Compositions for forming crevices or fractures
    • C09K8/72Eroding chemicals, e.g. acids
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/60Compositions for stimulating production by acting on the underground formation
    • C09K8/80Compositions for reinforcing fractures, e.g. compositions of proppants used to keep the fractures open

Definitions

  • the present invention relates to subterranean fracturing operations, and more particularly to fracturing fluids comprising an improved fluid loss control additive, and methods of using such fracturing fluids in fracturing subterranean formations.
  • Hydrocarbon-producing wells often are stimulated by hydraulic fracturing operations, wherein a fluid (often referred to as a “pad” fluid) is introduced into a portion of a subterranean formation at a hydraulic pressure sufficient to create or enhance at least one fracture therein.
  • a fluid often referred to as a “pad” fluid
  • one or more subsequent fluids, laden with proppant particles may be placed in the zone so that the proppant particles may be placed in the resultant fractures to maintain the integrity of the fractures (after the hydraulic pressure is released), thereby forming conductive channels within the formation through which hydrocarbons can flow.
  • the viscosity of the pad fluid may be reduced, in some cases, to facilitate removal of the fracturing fluid from the formation.
  • natural fractures may exist in the reservoir prior to a fracturing operation, and, when contacted by an induced fracture (e.g., a fracture formed or enhanced during a fracturing treatment), may provide flow channels having a relatively high conductivity that may improve hydrocarbon production from the reservoir.
  • an induced fracture e.g., a fracture formed or enhanced during a fracturing treatment
  • a portion of a pad fluid and/or a proppant-laden fluid may be lost into the subterranean formation during a fracturing operation.
  • Conventional attempts to solve this problem have included adding a conventional fluid loss control additive to the pad fluid.
  • Conventional fluid loss control additives generally comprise rigid particles having a spheroid shape, and often are used mainly to prevent the loss of the pad fluid and the proppant-laden fluid(s) to the formation, e.g., loss of the pad fluid and the proppant-laden fluid(s) to the natural fractures in the formation.
  • conventional fluid loss control additives may be able to withstand the closure stress of an induced fracture, they generally are not designed to withstand the stress exhibited by natural fractures in the formation.
  • the present invention relates to subterranean fracturing operations, and more particularly to fracturing fluids comprising an improved fluid loss control additive, and methods of using such fracturing fluids in fracturing subterranean formations.
  • An example of a method of the present invention is a method of fracturing a subterranean formation comprising the steps of: providing a pad fluid comprising a base fluid and a fluid loss control additive comprising a material that has a size in the range of from greater than or equal to about 400 U.S. mesh to less than or equal to about 70 U.S. mesh and a compressive strength greater than the maximum stress of the formation; and contacting the formation with the pad fluid so as to create or enhance at least one fracture therein.
  • Another example of a method of the present invention is a method of controlling loss of a fracturing fluid during fracturing of a subterranean formation, comprising adding a fluid loss control additive to a pad fluid, wherein the fluid loss control additive comprises a material that has a size in the range of from greater than or equal to about 400 U.S. mesh to less than or equal to about 70 U.S. mesh and a compressive strength greater than the maximum stress of the formation.
  • Another example of a method of the present invention is a method of minimizing fluid loss in a subterranean formation comprising using a fluid loss control additive to obstruct at least one pore throat in the formation, wherein the fluid loss control additive comprises a material that has a size in the range of from greater than or equal to about 400 U.S. mesh to less than or equal to about 70 U.S. mesh and a compressive strength greater than the maximum stress of the formation.
  • composition of the present invention is a pad fluid for use in fracturing a subterranean formation comprising a fluid loss control additive comprising a material that has a size in the range of from greater than or equal to about 400 U.S. mesh to less than or equal to about 70 U.S. mesh and a compressive strength greater than the maximum stress of the formation.
  • composition of the present invention is a fluid loss control additive for use in a fracturing fluid to be placed in a subterranean formation comprising a material that has a size in the range of from greater than or equal to about 400 U.S. mesh to less than or equal to about 70 U.S. mesh and a compressive strength greater than the maximum stress of the subterranean formation.
  • the present invention relates to subterranean fracturing operations, and more particularly to fracturing fluids comprising an improved fluid loss control additive, and methods of using such fracturing fluids in fracturing subterranean formations.
  • the fluid loss control additives of the present invention generally comprise a material that has a size in the range of from greater than or equal to about 400 U.S. mesh to less than or equal to about 70 U.S. mesh and a compressive strength greater than the maximum stress of a subterranean formation into which the fluid loss control additives may be placed.
  • the fluid loss control additives may comprise a material having a size in the range of from greater than or equal to about 200 U.S. mesh to less than or equal to about 80 U.S. mesh and a compressive strength greater than the maximum stress of a subterranean formation into which the fluid loss control additives may be placed.
  • the fluid loss control additives of the present invention will have a compressive strength greater than that of a natural fracture into which they may be placed. Generally, the fluid loss control additives of the present invention will have a compressive strength greater than that demonstrated by sand. In certain embodiments, the fluid loss control additives of the present invention may have a compressive strength such that when exposed to 2,000 psi pressure, less than about 1.7% by weight of fines are generated. As referred to herein, the term “fines” will be understood to mean particles having a size smaller than about 400 U.S. mesh.
  • the fluid loss control additives of the present invention may have a compressive strength such that when exposed to 3,000 psi pressure, less than about 2.8% by weight of fines are generated. In certain embodiments, the fluid loss control additives of the present invention may have a compressive strength such that when exposed to 4,000 psi pressure, less than about 4.4% by weight of fines are generated. In certain embodiments, the fluid loss control additives of the present invention may have a compressive strength such that when exposed to 5,000 psi pressure, less than about 7% by weight of fines are generated.
  • suitable materials may include, but are not limited to, bauxite or bauxite-based materials, and ceramics or ceramic-based materials. Suitable materials are commercially available from Carboceramics, Inc., of Irving, Tex.; Sintex Minerals & Services, Inc., of Houston, Tex.; and Norton-Alcoa Proppants, of Fort Smith, Ark. Examples of intermediate strength ceramic or ceramic-based materials that may be suitable include, but are not limited to, Econoprop®, Carbo Lite®, Carbo Prop®, Interprop®, Naplite®, and Valuprop®.
  • high strength ceramic or ceramic-based materials examples include, but are not limited to, Carbo HSP®, Sintered Bauxite and SinterBall®.
  • any portion of the fluid loss control additive that may be lost to the subterranean formation generally will be sufficiently strong to resist being damaged or crushed by the stress present within the formation, which may facilitate improved conductivity through at least the portion of the formation in which the fluid loss control additive resides.
  • the fluid loss control additive is present in the pad fluids of the present invention in an amount sufficient to provide a desired degree of fluid loss control.
  • the fluid loss control additive is present in the pad fluids of the present invention in an amount in the range of from about 0.0006% to about 24% by weight of the pad fluid. In certain embodiments, the fluid loss control additive is present in the pad fluids of the present invention in an amount in the range of from about 0.002% to about 6.0% by weight of the pad fluid.
  • the pad fluids of the present invention generally comprise a base fluid, and a fluid loss control additive.
  • a variety of base fluids may be included in the pad fluids of the present invention.
  • the base fluid may comprise water, acids, oils, or mixtures thereof. Examples of suitable acids include, but are not limited to, hydrochloric acid, acetic acid, formic acid, citric acid, or mixtures thereof.
  • the base fluid may further comprise a gas (e.g., nitrogen, or carbon dioxide).
  • the base fluid is present in the pad fluids of the present invention in an amount in the range of from about 30% to about 99% by weight of the pad fluid.
  • the pad fluids of the present invention may comprise a viscosifier.
  • suitable viscosifiers include, inter alia, biopolymers such as xanthan and succinoglycan, cellulose derivatives (e.g., hydroxyethylcellulose), and guar and its derivatives (e.g., hydroxypropyl guar).
  • the viscosifier comprises guar. More particularly, the viscosifier may be present in the pad fluids of the present invention in an amount in the range of from about 0.01% to about 1.0% by weight of the pad fluid. In certain embodiments, the viscosifier may be present in the pad fluid in an amount in the range of from about 0.2% to about 0.6% by weight.
  • the pad fluids of the present invention may comprise additional additives as deemed appropriate by one skilled in the art, with the benefit of this disclosure.
  • additional additives include, but are not limited to, de-emulsifiers, surfactants, salts, crosslinking agents, clay inhibitors, iron-control additives, breakers, bactericides, caustic, or the like.
  • An example of a suitable de-emulsifier is commercially available from Halliburton Energy Services, Inc., under the trade name “LO-SURF 300.”
  • An example of a suitable source of caustic is commercially available from Halliburton Energy Services, Inc., under the trade name “MO-67.”
  • An example of a suitable crosslinking agent is commercially available from Halliburton Energy Services, Inc., under the trade name “CL-28M.”
  • An example of a suitable breaker is commercially available from Halliburton Energy Services, Inc., under the trade name “VICON NF.”
  • Examples of suitable bactericides are commercially available from Halliburton Energy Services, Inc., under the trade names “BE-3S” and “BE-6.”
  • the pad fluids of the present invention comprising a fluid loss control additive of the present invention, may be introduced to a portion of a subterranean formation at a pressure sufficient to create or enhance at least one fracture therein.
  • one or more subsequent fluids that comprise proppant particles may be introduced to the chosen portion of the formation so as to deposit at least a portion of the proppant particles in at least one fracture therein.
  • Proppant particles utilized in accordance with the present invention are generally of a size such that formation particulates that may migrate with produced fluids are prevented from being produced from the subterranean zone.
  • any suitable proppant may be utilized in the one or more subsequent fluids, including graded sand, bauxite, ceramic materials, glass materials, walnut hulls, polymer beads and the like.
  • the proppant particles have a size in the range of from about 2 to about 400 U.S. mesh.
  • the proppant is graded sand having a particle size in the range of from about 10 to about 70 U.S. mesh.
  • Particle size distribution ranges are generally one or more of 10-20 U.S. mesh, 20-40 U.S. mesh, 40-60 U.S. mesh or 50-70 U.S.
  • proppant particles may be included in the one or more subsequent fluids, in an amount in the range of from about 4% to about 70% by weight.
  • An example of a method of the present invention is a method of fracturing a subterranean formation comprising the steps of: providing a pad fluid comprising a base fluid and a fluid loss control additive comprising a material that has a size in the range of from greater than or equal to about 400 U.S. mesh to less than or equal to about 70 U.S. mesh and a compressive strength greater than the maximum stress of the formation; and contacting the formation with the pad fluid so as to create or enhance at least one fracture therein.
  • Additional steps could include, inter alia, contacting the formation with one or more subsequent fluids that comprise proppant particles so as to deposit within the formation at least a portion of the proppant particles; “breaking” the pad fluid and/or the one or more subsequent fluids (e.g., reducing the viscosity of the pad fluid and/or the one or more subsequent fluids to a desired degree) with a suitable breaker; recovering at least a portion of the pad fluid from the subterranean formation; and recovering at least a portion of the one or more subsequent fluids from the subterranean formation.
  • Another example of a method of the present invention is a method of controlling loss of a fracturing fluid during fracturing of a subterranean formation, comprising adding a fluid loss control additive to a pad fluid, wherein the fluid loss control additive comprises a material that has a size in the range of from greater than or equal to about 400 U.S. mesh to less than or equal to about 70 U.S. mesh and a compressive strength greater than the maximum stress of the formation.
  • Another example of a method of the present invention is a method of minimizing fluid loss in a subterranean formation comprising using a fluid loss control additive to obstruct at least one pore throat in the formation, wherein the fluid loss control additive comprises a material that has a size in the range of from greater than or equal to about 400 U.S. mesh to less than or equal to about 70 U.S. mesh and a compressive strength greater than the maximum stress of the formation.
  • composition of the present invention is a pad fluid for use in fracturing a subterranean formation comprising a fluid loss control additive comprising a material that has a size in the range of from greater than or equal to about 400 U.S. mesh to less than or equal to about 70 U.S. mesh and a compressive strength greater than the maximum stress of the formation.
  • a pad fluid of the present invention may comprise: water, 1% potassium chloride by weight, 0.05% LO-SURF 300 by weight, 0.15% of a fluid loss control additive of the present invention by weight, 0.2% guar by weight, 0.1% MO-67 by weight, 0.05% CL-28M by weight, 0.1% VICON NF by weight, 0.001% BE-3S by weight, and 0.001% BE-6 by weight.
  • composition of the present invention is a fluid loss control additive for use in a fracturing fluid to be placed in a subterranean formation comprising a material that has a size in the range of from greater than or equal to about 400 U.S. mesh to less than or equal to about 70 U.S. mesh and a compressive strength greater than the maximum stress of the subterranean formation.

Abstract

The present invention relates to subterranean fracturing operations, and more particularly to fracturing fluids that include an improved fluid loss control additive, and methods of using such fracturing fluids in fracturing subterranean formations. An example of a method of the present invention is a method of fracturing a subterranean formation. Another example of a method of the present invention is a method of controlling loss of a fracturing fluid during fracturing of a subterranean formation. Another example of a method of the present invention is a method of minimizing fluid loss in a subterranean formation. An example of a composition of the present invention is a pad fluid for use in fracturing a subterranean formation. Another example of a composition of the present invention is a fluid loss control additive for use in a fracturing fluid to be placed in a subterranean formation.

Description

    BACKGROUND OF THE INVENTION
  • The present invention relates to subterranean fracturing operations, and more particularly to fracturing fluids comprising an improved fluid loss control additive, and methods of using such fracturing fluids in fracturing subterranean formations.
  • Hydrocarbon-producing wells often are stimulated by hydraulic fracturing operations, wherein a fluid (often referred to as a “pad” fluid) is introduced into a portion of a subterranean formation at a hydraulic pressure sufficient to create or enhance at least one fracture therein. After the placement of the pad fluid, one or more subsequent fluids, laden with proppant particles, may be placed in the zone so that the proppant particles may be placed in the resultant fractures to maintain the integrity of the fractures (after the hydraulic pressure is released), thereby forming conductive channels within the formation through which hydrocarbons can flow. Once at least one fracture has been created and at least a portion of the proppant is substantially in place within the fracture, the viscosity of the pad fluid may be reduced, in some cases, to facilitate removal of the fracturing fluid from the formation.
  • In certain hydrocarbon-producing formations, much of the production may be derived from natural fractures. These natural fractures may exist in the reservoir prior to a fracturing operation, and, when contacted by an induced fracture (e.g., a fracture formed or enhanced during a fracturing treatment), may provide flow channels having a relatively high conductivity that may improve hydrocarbon production from the reservoir.
  • In certain circumstances, a portion of a pad fluid and/or a proppant-laden fluid may be lost into the subterranean formation during a fracturing operation. Conventional attempts to solve this problem have included adding a conventional fluid loss control additive to the pad fluid. Conventional fluid loss control additives generally comprise rigid particles having a spheroid shape, and often are used mainly to prevent the loss of the pad fluid and the proppant-laden fluid(s) to the formation, e.g., loss of the pad fluid and the proppant-laden fluid(s) to the natural fractures in the formation. While conventional fluid loss control additives may be able to withstand the closure stress of an induced fracture, they generally are not designed to withstand the stress exhibited by natural fractures in the formation. This may be particularly problematic at an intersection between an induced fracture and a natural fracture, because a natural fracture that is intersected by an induced fracture often will have a higher stress than the induced fracture. Consequently, when conventional fluid loss control additives enter, and potentially obstruct, natural fractures in the formation, the conventional fluid loss control additives often may be crushed within the natural fracture, which may be problematic because the crushed particles may partially or completely restrict any production from the natural fracture.
  • SUMMARY OF THE INVENTION
  • The present invention relates to subterranean fracturing operations, and more particularly to fracturing fluids comprising an improved fluid loss control additive, and methods of using such fracturing fluids in fracturing subterranean formations.
  • An example of a method of the present invention is a method of fracturing a subterranean formation comprising the steps of: providing a pad fluid comprising a base fluid and a fluid loss control additive comprising a material that has a size in the range of from greater than or equal to about 400 U.S. mesh to less than or equal to about 70 U.S. mesh and a compressive strength greater than the maximum stress of the formation; and contacting the formation with the pad fluid so as to create or enhance at least one fracture therein.
  • Another example of a method of the present invention is a method of controlling loss of a fracturing fluid during fracturing of a subterranean formation, comprising adding a fluid loss control additive to a pad fluid, wherein the fluid loss control additive comprises a material that has a size in the range of from greater than or equal to about 400 U.S. mesh to less than or equal to about 70 U.S. mesh and a compressive strength greater than the maximum stress of the formation.
  • Another example of a method of the present invention is a method of minimizing fluid loss in a subterranean formation comprising using a fluid loss control additive to obstruct at least one pore throat in the formation, wherein the fluid loss control additive comprises a material that has a size in the range of from greater than or equal to about 400 U.S. mesh to less than or equal to about 70 U.S. mesh and a compressive strength greater than the maximum stress of the formation.
  • An example of a composition of the present invention is a pad fluid for use in fracturing a subterranean formation comprising a fluid loss control additive comprising a material that has a size in the range of from greater than or equal to about 400 U.S. mesh to less than or equal to about 70 U.S. mesh and a compressive strength greater than the maximum stress of the formation.
  • Another example of a composition of the present invention is a fluid loss control additive for use in a fracturing fluid to be placed in a subterranean formation comprising a material that has a size in the range of from greater than or equal to about 400 U.S. mesh to less than or equal to about 70 U.S. mesh and a compressive strength greater than the maximum stress of the subterranean formation.
  • The features and advantages of the present invention will be readily apparent to those skilled in the art upon a reading of the description of the preferred embodiments, which follows.
  • DETAILED DESCRIPTION OF EMBODIMENTS
  • The present invention relates to subterranean fracturing operations, and more particularly to fracturing fluids comprising an improved fluid loss control additive, and methods of using such fracturing fluids in fracturing subterranean formations.
  • The fluid loss control additives of the present invention generally comprise a material that has a size in the range of from greater than or equal to about 400 U.S. mesh to less than or equal to about 70 U.S. mesh and a compressive strength greater than the maximum stress of a subterranean formation into which the fluid loss control additives may be placed. In certain embodiments, the fluid loss control additives may comprise a material having a size in the range of from greater than or equal to about 200 U.S. mesh to less than or equal to about 80 U.S. mesh and a compressive strength greater than the maximum stress of a subterranean formation into which the fluid loss control additives may be placed. Generally, the fluid loss control additives of the present invention will have a compressive strength greater than that of a natural fracture into which they may be placed. Generally, the fluid loss control additives of the present invention will have a compressive strength greater than that demonstrated by sand. In certain embodiments, the fluid loss control additives of the present invention may have a compressive strength such that when exposed to 2,000 psi pressure, less than about 1.7% by weight of fines are generated. As referred to herein, the term “fines” will be understood to mean particles having a size smaller than about 400 U.S. mesh. In certain embodiments, the fluid loss control additives of the present invention may have a compressive strength such that when exposed to 3,000 psi pressure, less than about 2.8% by weight of fines are generated. In certain embodiments, the fluid loss control additives of the present invention may have a compressive strength such that when exposed to 4,000 psi pressure, less than about 4.4% by weight of fines are generated. In certain embodiments, the fluid loss control additives of the present invention may have a compressive strength such that when exposed to 5,000 psi pressure, less than about 7% by weight of fines are generated. Examples of suitable materials that may be used in the fluid loss control additives of the present invention may include, but are not limited to, bauxite or bauxite-based materials, and ceramics or ceramic-based materials. Suitable materials are commercially available from Carboceramics, Inc., of Irving, Tex.; Sintex Minerals & Services, Inc., of Houston, Tex.; and Norton-Alcoa Proppants, of Fort Smith, Ark. Examples of intermediate strength ceramic or ceramic-based materials that may be suitable include, but are not limited to, Econoprop®, Carbo Lite®, Carbo Prop®, Interprop®, Naplite®, and Valuprop®. Examples of high strength ceramic or ceramic-based materials that may be suitable include, but are not limited to, Carbo HSP®, Sintered Bauxite and SinterBall®. When a pad fluid comprising a fluid loss control additive of the present invention is placed in a subterranean formation, any portion of the fluid loss control additive that may be lost to the subterranean formation generally will be sufficiently strong to resist being damaged or crushed by the stress present within the formation, which may facilitate improved conductivity through at least the portion of the formation in which the fluid loss control additive resides. Generally, the fluid loss control additive is present in the pad fluids of the present invention in an amount sufficient to provide a desired degree of fluid loss control. More particularly, in certain embodiments, the fluid loss control additive is present in the pad fluids of the present invention in an amount in the range of from about 0.0006% to about 24% by weight of the pad fluid. In certain embodiments, the fluid loss control additive is present in the pad fluids of the present invention in an amount in the range of from about 0.002% to about 6.0% by weight of the pad fluid.
  • The pad fluids of the present invention generally comprise a base fluid, and a fluid loss control additive. A variety of base fluids may be included in the pad fluids of the present invention. For example, the base fluid may comprise water, acids, oils, or mixtures thereof. Examples of suitable acids include, but are not limited to, hydrochloric acid, acetic acid, formic acid, citric acid, or mixtures thereof. In certain embodiments, the base fluid may further comprise a gas (e.g., nitrogen, or carbon dioxide). Generally, the base fluid is present in the pad fluids of the present invention in an amount in the range of from about 30% to about 99% by weight of the pad fluid.
  • Optionally, the pad fluids of the present invention may comprise a viscosifier. Examples of suitable viscosifiers include, inter alia, biopolymers such as xanthan and succinoglycan, cellulose derivatives (e.g., hydroxyethylcellulose), and guar and its derivatives (e.g., hydroxypropyl guar). In certain embodiments of the present invention, the viscosifier comprises guar. More particularly, the viscosifier may be present in the pad fluids of the present invention in an amount in the range of from about 0.01% to about 1.0% by weight of the pad fluid. In certain embodiments, the viscosifier may be present in the pad fluid in an amount in the range of from about 0.2% to about 0.6% by weight.
  • Optionally, the pad fluids of the present invention may comprise additional additives as deemed appropriate by one skilled in the art, with the benefit of this disclosure. Examples of such additives include, but are not limited to, de-emulsifiers, surfactants, salts, crosslinking agents, clay inhibitors, iron-control additives, breakers, bactericides, caustic, or the like. An example of a suitable de-emulsifier is commercially available from Halliburton Energy Services, Inc., under the trade name “LO-SURF 300.” An example of a suitable source of caustic is commercially available from Halliburton Energy Services, Inc., under the trade name “MO-67.” An example of a suitable crosslinking agent is commercially available from Halliburton Energy Services, Inc., under the trade name “CL-28M.” An example of a suitable breaker is commercially available from Halliburton Energy Services, Inc., under the trade name “VICON NF.” Examples of suitable bactericides are commercially available from Halliburton Energy Services, Inc., under the trade names “BE-3S” and “BE-6.”
  • Generally, the pad fluids of the present invention, comprising a fluid loss control additive of the present invention, may be introduced to a portion of a subterranean formation at a pressure sufficient to create or enhance at least one fracture therein. Optionally, one or more subsequent fluids that comprise proppant particles may be introduced to the chosen portion of the formation so as to deposit at least a portion of the proppant particles in at least one fracture therein. Proppant particles utilized in accordance with the present invention are generally of a size such that formation particulates that may migrate with produced fluids are prevented from being produced from the subterranean zone. Any suitable proppant may be utilized in the one or more subsequent fluids, including graded sand, bauxite, ceramic materials, glass materials, walnut hulls, polymer beads and the like. Generally, the proppant particles have a size in the range of from about 2 to about 400 U.S. mesh. In some embodiments of the present invention, the proppant is graded sand having a particle size in the range of from about 10 to about 70 U.S. mesh. Particle size distribution ranges are generally one or more of 10-20 U.S. mesh, 20-40 U.S. mesh, 40-60 U.S. mesh or 50-70 U.S. mesh, depending on factors including, inter alia, the particular size and distribution of formation particulates to be screened out by the consolidated proppant particles, the permeability of the formation, and the cost of the proppant particles. Generally, proppant particles may be included in the one or more subsequent fluids, in an amount in the range of from about 4% to about 70% by weight.
  • An example of a method of the present invention is a method of fracturing a subterranean formation comprising the steps of: providing a pad fluid comprising a base fluid and a fluid loss control additive comprising a material that has a size in the range of from greater than or equal to about 400 U.S. mesh to less than or equal to about 70 U.S. mesh and a compressive strength greater than the maximum stress of the formation; and contacting the formation with the pad fluid so as to create or enhance at least one fracture therein. Additional steps could include, inter alia, contacting the formation with one or more subsequent fluids that comprise proppant particles so as to deposit within the formation at least a portion of the proppant particles; “breaking” the pad fluid and/or the one or more subsequent fluids (e.g., reducing the viscosity of the pad fluid and/or the one or more subsequent fluids to a desired degree) with a suitable breaker; recovering at least a portion of the pad fluid from the subterranean formation; and recovering at least a portion of the one or more subsequent fluids from the subterranean formation.
  • Another example of a method of the present invention is a method of controlling loss of a fracturing fluid during fracturing of a subterranean formation, comprising adding a fluid loss control additive to a pad fluid, wherein the fluid loss control additive comprises a material that has a size in the range of from greater than or equal to about 400 U.S. mesh to less than or equal to about 70 U.S. mesh and a compressive strength greater than the maximum stress of the formation. Another example of a method of the present invention is a method of minimizing fluid loss in a subterranean formation comprising using a fluid loss control additive to obstruct at least one pore throat in the formation, wherein the fluid loss control additive comprises a material that has a size in the range of from greater than or equal to about 400 U.S. mesh to less than or equal to about 70 U.S. mesh and a compressive strength greater than the maximum stress of the formation.
  • An example of a composition of the present invention is a pad fluid for use in fracturing a subterranean formation comprising a fluid loss control additive comprising a material that has a size in the range of from greater than or equal to about 400 U.S. mesh to less than or equal to about 70 U.S. mesh and a compressive strength greater than the maximum stress of the formation. In one embodiment, a pad fluid of the present invention may comprise: water, 1% potassium chloride by weight, 0.05% LO-SURF 300 by weight, 0.15% of a fluid loss control additive of the present invention by weight, 0.2% guar by weight, 0.1% MO-67 by weight, 0.05% CL-28M by weight, 0.1% VICON NF by weight, 0.001% BE-3S by weight, and 0.001% BE-6 by weight.
  • Another example of a composition of the present invention is a fluid loss control additive for use in a fracturing fluid to be placed in a subterranean formation comprising a material that has a size in the range of from greater than or equal to about 400 U.S. mesh to less than or equal to about 70 U.S. mesh and a compressive strength greater than the maximum stress of the subterranean formation.
  • Therefore, the present invention is well adapted to carry out the objects and attain the ends and advantages mentioned as well as those that are inherent therein. While the invention has been depicted and described by reference to exemplary embodiments of the invention, such a reference does not imply a limitation on the invention, and no such limitation is to be inferred. The invention is capable of considerable modification, alternation, and equivalents in form and function, as will occur to those ordinarily skilled in the pertinent arts and having the benefit of this disclosure. The depicted and described embodiments of the invention are exemplary only, and are not exhaustive of the scope of the invention. Consequently, the invention is intended to be limited only by the spirit and scope of the appended claims, giving full cognizance to equivalents in all respects.

Claims (66)

1. A method of fracturing a subterranean formation comprising the steps of:
providing a pad fluid comprising a base fluid and a fluid loss control additive comprising a material that has a size in the range of from greater than or equal to about 400 U.S. mesh to less than or equal to about 70 U.S. mesh and a compressive strength greater than the maximum stress of the formation; and
contacting the formation with the pad fluid so as to create or enhance at least one fracture therein.
2. The method of claim 1 further comprising the step of contacting the formation with one or more subsequent fluids that comprise proppant particles so as to deposit at least a portion of the proppant particles within the formation.
3. The method of claim 1 further comprising the step of breaking the pad fluid with a breaker.
4. The method of claim 1 further comprising the step of breaking the one or more subsequent fluids with a breaker.
5. The method of claim 1 further comprising the step of recovering at least a portion of the pad fluid from the subterranean formation.
6. The method of claim 1 further comprising the step of recovering at least a portion of the one or more subsequent fluids that comprise proppant particles from the subterranean formation.
7. The method of claim 1 wherein the fluid loss control additive comprises a material selected from the group consisting of: a ceramic, a ceramic derivative, bauxite, or a bauxite derivative.
8. The method of claim 1 wherein the fluid loss control additive is present in the pad fluid in an amount in the range of from about 0.0006% to about 24% by weight of the pad fluid.
9. The method of claim 1 wherein the fluid loss control additive has a size in the range of from greater than or equal to about 200 U.S. mesh to less than or equal to about 80 U.S. mesh.
10. The method of claim 1 wherein the fluid loss control additive has a compressive strength such that when exposed to a pressure of 2,000 psi, less than about 1.7% by weight of fines are generated.
11. The method of claim 1 wherein the fluid loss control additive has a compressive strength such that when exposed to a pressure of 3,000 psi, less than about 2.8% by weight of fines are generated.
12. The method of claim 1 wherein the fluid loss control additive has a compressive strength such that when exposed to a pressure of 4,000 psi, less than about 4.4% by weight of fines are generated.
13. The method of claim 1 wherein the fluid loss control additive has a compressive strength such that when exposed to a pressure of 5,000 psi, less than about 7% by weight of fines are generated.
14. The method of claim 1 wherein the base fluid is water, oil, an acid, or a mixture thereof.
15. The method of claim 1 wherein the base fluid is present in the pad fluid in an amount in the range of from about 30% to about 99% by weight of the pad fluid.
16. The method of claim 1 wherein the pad fluid further comprises a viscosifier.
17. The method of claim 16 wherein the viscosifier further comprises a biopolymer, a cellulose derivative, or a mixture thereof.
18. The method of claim 17 wherein the biopolymer comprises xanthan, succinoglycan, or a mixture thereof.
19. The method of claim 17 wherein the cellulose derivative comprises hydroxyethylcellulose, guar, a guar derivative, or a mixture thereof.
20. The method of claim 19 wherein the guar derivative is hydroxypropyl guar.
21. The method of claim 16 wherein the viscosifier is present in the pad fluid in an amount in the range of from about 0.01% to about 1.0% by weight of the pad fluid.
22. The method of claim 1 wherein the pad fluid further comprises a de-emulsifier, a salt, a crosslinking agent, a clay inhibitor, a surfactant, an iron-control additive, a breaker, a bactericide, caustic, or a mixture thereof.
23. A method of controlling loss of a fracturing fluid during fracturing of a subterranean formation, comprising adding a fluid loss control additive to a pad fluid, wherein the fluid loss control additive comprises a material that has a size in the range of from greater than or equal to about 400 U.S. mesh to less than or equal to about 70 U.S. mesh and a compressive strength greater than the maximum stress of the formation.
24. The method of claim 23 wherein the pad fluid comprises a viscosifier and a base fluid.
25. The method of claim 23 wherein the fluid loss control additive comprises a material selected from the group consisting of: bauxite, a bauxite derivative, a ceramic, and a ceramic derivative.
26. The method of claim 23 wherein the fluid loss control additive is present in the pad fluid in an amount in the range of from about 0.0006% to about 24% by weight of the pad fluid.
27. The method of claim 23 wherein the fluid loss control additive has a size in the range of from greater than or equal to about 200 U.S. mesh to less than or equal to about 80 U.S. mesh.
28. The method of claim 23 wherein the fluid loss control additive has a compressive strength such that when exposed to a pressure of 2,000 psi, less than about 1.7% by weight of fines are generated.
29. The method of claim 23 wherein the fluid loss control additive has a compressive strength such that when exposed to a pressure of 3,000 psi, less than about 2.8% by weight of fines are generated.
30. The method of claim 23 wherein the fluid loss control additive has a compressive strength such that when exposed to a pressure of 4,000 psi, less than about 4.4% by weight of fines are generated.
31. The method of claim 23 wherein the fluid loss control additive has a compressive strength such that when exposed to a pressure of 5,000 psi, less than about 7% by weight of fines are generated.
32. The method of claim 24 wherein the base fluid is water, oil, an acid, or a mixture thereof.
33. The method of claim 24 wherein the base fluid is present in the pad fluid in an amount in the range of from about 30% to about 99% by weight of the pad fluid.
34. The method of claim 24 wherein the viscosifier comprises a biopolymer, a cellulose derivative, or a mixture thereof.
35. The method of claim 24 wherein the viscosifier is present in the pad fluid in an amount in the range of from about 0.01% to about 1.0% by weight of the pad fluid.
36. The method of claim 23 wherein the pad fluid further comprises a de-emulsifier, a salt, a crosslinking agent, a clay inhibitor, an iron-control additive, a surfactant, a breaker, a bactericide, caustic, or a mixture thereof.
37. A method of minimizing fluid loss in a subterranean formation comprising using a fluid loss control additive to obstruct at least one pore throat in the formation, wherein the fluid loss control additive comprises a material that has a size in the range of from greater than or equal to about 400 U.S. mesh to less than or equal to about 70 U.S. mesh and a compressive strength greater than the maximum stress of the formation.
38. The method of claim 37 wherein the fluid loss control additive comprises a material selected from the group consisting of: bauxite, a bauxite derivative, a ceramic, and a ceramic derivative.
39. The method of claim 37 wherein the step of using the fluid loss control additive to obstruct at least one pore throat in the formation comprises placing a pad fluid that comprises the fluid loss control additive in the subterranean formation, wherein the fluid loss control additive is present in the pad fluid in an amount in the range of from about 0.0006% to about 24% by weight of the pad fluid.
40. The method of claim 37 wherein the fluid loss control additive has a size in the range of from greater than or equal to about 200 U.S. mesh to less than or equal to about 80 U.S. mesh.
41. The method of claim 37 wherein the fluid loss control additive has a compressive strength such that when exposed to a pressure of 2,000 psi, less than about 1.7% by weight of fines are generated.
42. The method of claim 37 wherein the fluid loss control additive has a compressive strength such that when exposed to a pressure of 3,000 psi, less than about 2.8% by weight of fines are generated.
43. The method of claim 37 wherein the fluid loss control additive has a compressive strength such that when exposed to a pressure of 4,000 psi, less than about 4.4% by weight of fines are generated.
44. The method of claim 37 wherein the fluid loss control additive has a compressive strength such that when exposed to a pressure of 5,000 psi, less than about 7% by weight of fines are generated.
45. A pad fluid for use in fracturing a subterranean formation comprising a fluid loss control additive comprising a material that has a size in the range of from greater than or equal to about 400 U.S. mesh to less than or equal to about 70 U.S. mesh and a compressive strength greater than the maximum stress of the formation.
46. The pad fluid of claim 45 wherein the pad fluid further comprises a base fluid.
47. The pad fluid of claim 46 wherein the base fluid comprises water, oil, an acid, or a mixture thereof.
48. The pad fluid of claim 45 wherein the pad fluid further comprises a de-emulsifier, a salt, a crosslinking agent, a clay inhibitor, an iron-control additive, a surfactant, a breaker, a bactericide, caustic, or a mixture thereof.
49. The pad fluid of claim 45 wherein the fluid loss control additive comprises a material selected from the group consisting of: a ceramic, a ceramic derivative, bauxite, and a bauxite derivative.
50. The pad fluid of claim 45 wherein the fluid loss control additive is present in the pad fluid in an amount in the range of from about 0.0006% to about 24% by weight of the pad fluid.
51. The pad fluid of claim 45 wherein the fluid loss control additive has a size in the range of from greater than or equal to about 200 U.S. mesh to less than or equal to about 80 U.S. mesh.
52. The pad fluid of claim 45 wherein the fluid loss control additive has a compressive strength such that when exposed to a pressure of 2,000 psi, less than about 1.7% by weight of fines are generated.
53. The pad fluid of claim 45 wherein the fluid loss control additive has a compressive strength such that when exposed to a pressure of 3,000 psi, less than about 2.8% by weight of fines are generated.
54. The pad fluid of claim 45 wherein the fluid loss control additive has a compressive strength such that when exposed to a pressure of 4,000 psi, less than about 4.4% by weight of fines are generated.
55. The pad fluid of claim 45 wherein the fluid loss control additive has a compressive strength such that when exposed to a pressure of 5,000 psi, less than about 7% by weight of fines are generated.
56. The pad fluid of claim 45 wherein the base fluid is present in the pad fluid in an amount in the range of from about 30% to about 99% by weight of the pad fluid.
57. The pad fluid of claim 45, further comprising a viscosifier.
58. The pad fluid of claim 57 wherein the viscosifier comprises a biopolymer, a cellulose derivative, or a mixture thereof.
59. The pad fluid of claim 57 wherein the viscosifier is present in the pad fluid in an amount in the range of from about 0.01% to about 1.0% by weight of the pad fluid.
60. A fluid loss control additive for use in a fracturing fluid to be placed in a subterranean formation comprising a material that has a size in the range of from greater than or equal to about 400 U.S. mesh to less than or equal to about 70 U.S. mesh and a compressive strength greater than the maximum stress of the subterranean formation.
61. The fluid loss control additive of claim 60 comprising a material selected from the group consisting of: a ceramic, a ceramic derivative, bauxite, and a bauxite derivative.
62. The fluid loss control additive of claim 60 wherein the fluid loss control additive has a size in the range of from greater than or equal to about 200 U.S. mesh to less than or equal to about 80 U.S. mesh.
63. The fluid loss control additive of claim 60 wherein the fluid loss control additive has a compressive strength such that when exposed to a pressure of 2,000 psi, less than about 1.7% by weight of fines are generated.
64. The fluid loss control additive of claim 60 wherein the fluid loss control additive has a compressive strength such that when exposed to a pressure of 3,000 psi, less than about 2.8% by weight of fines are generated.
65. The fluid loss control additive of claim 60 wherein the fluid loss control additive has a compressive strength such that when exposed to a pressure of 4,000 psi, less than about 4.4% by weight of fines are generated.
66. The fluid loss control additive of claim 60 wherein the fluid loss control additive has a compressive strength such that when exposed to a pressure of 5,000 psi, less than about 7% by weight of fines are generated.
US10/891,394 2004-07-14 2004-07-14 Fluid loss control additives for use in fracturing subterranean formations Abandoned US20060011342A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US10/891,394 US20060011342A1 (en) 2004-07-14 2004-07-14 Fluid loss control additives for use in fracturing subterranean formations

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US10/891,394 US20060011342A1 (en) 2004-07-14 2004-07-14 Fluid loss control additives for use in fracturing subterranean formations

Publications (1)

Publication Number Publication Date
US20060011342A1 true US20060011342A1 (en) 2006-01-19

Family

ID=35598219

Family Applications (1)

Application Number Title Priority Date Filing Date
US10/891,394 Abandoned US20060011342A1 (en) 2004-07-14 2004-07-14 Fluid loss control additives for use in fracturing subterranean formations

Country Status (1)

Country Link
US (1) US20060011342A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060065398A1 (en) * 2004-09-30 2006-03-30 Bj Services Company Method of enhancing hydraulic fracturing using ultra lightweight proppants
WO2017052537A1 (en) * 2015-09-23 2017-03-30 Halliburton Energy Services, Inc. Compositions including acidic chelator for treatment of subterranean formations including one or more fractures
US9920607B2 (en) 2012-06-26 2018-03-20 Baker Hughes, A Ge Company, Llc Methods of improving hydraulic fracture network
US10988678B2 (en) 2012-06-26 2021-04-27 Baker Hughes, A Ge Company, Llc Well treatment operations using diverting system
US11111766B2 (en) 2012-06-26 2021-09-07 Baker Hughes Holdings Llc Methods of improving hydraulic fracture network

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4078609A (en) * 1977-03-28 1978-03-14 The Dow Chemical Company Method of fracturing a subterranean formation
US4690219A (en) * 1984-03-05 1987-09-01 Phillips Petroleum Company Acidizing using n-vinyl lactum/unsaturated amide copolymers
US5095987A (en) * 1991-01-31 1992-03-17 Halliburton Company Method of forming and using high density particulate slurries for well completion
US6488091B1 (en) * 2001-06-11 2002-12-03 Halliburton Energy Services, Inc. Subterranean formation treating fluid concentrates, treating fluids and methods

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4078609A (en) * 1977-03-28 1978-03-14 The Dow Chemical Company Method of fracturing a subterranean formation
US4690219A (en) * 1984-03-05 1987-09-01 Phillips Petroleum Company Acidizing using n-vinyl lactum/unsaturated amide copolymers
US5095987A (en) * 1991-01-31 1992-03-17 Halliburton Company Method of forming and using high density particulate slurries for well completion
US6488091B1 (en) * 2001-06-11 2002-12-03 Halliburton Energy Services, Inc. Subterranean formation treating fluid concentrates, treating fluids and methods

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060065398A1 (en) * 2004-09-30 2006-03-30 Bj Services Company Method of enhancing hydraulic fracturing using ultra lightweight proppants
US7726399B2 (en) * 2004-09-30 2010-06-01 Bj Services Company Method of enhancing hydraulic fracturing using ultra lightweight proppants
US9920607B2 (en) 2012-06-26 2018-03-20 Baker Hughes, A Ge Company, Llc Methods of improving hydraulic fracture network
US10988678B2 (en) 2012-06-26 2021-04-27 Baker Hughes, A Ge Company, Llc Well treatment operations using diverting system
US11111766B2 (en) 2012-06-26 2021-09-07 Baker Hughes Holdings Llc Methods of improving hydraulic fracture network
WO2017052537A1 (en) * 2015-09-23 2017-03-30 Halliburton Energy Services, Inc. Compositions including acidic chelator for treatment of subterranean formations including one or more fractures
US10793769B2 (en) 2015-09-23 2020-10-06 Halliburton Energy Services, Inc. Compositions including acidic chelator for treatment of subterranean formations including one or more fractures

Similar Documents

Publication Publication Date Title
US4993491A (en) Fracture stimulation of coal degasification wells
Barati et al. A review of fracturing fluid systems used for hydraulic fracturing of oil and gas wells
US8607870B2 (en) Methods to create high conductivity fractures that connect hydraulic fracture networks in a well
US8752627B2 (en) System and method for low damage fracturing
AU573987B2 (en) Method for fracturing a gas-containing subsurface coal formation
US7404441B2 (en) Hydraulic feature initiation and propagation control in unconsolidated and weakly cemented sediments
US7866395B2 (en) Hydraulic fracture initiation and propagation control in unconsolidated and weakly cemented sediments
US20060183646A1 (en) Viscoelastic surfactant fluids and associated methods
US4566539A (en) Coal seam fracing method
US9441150B2 (en) Low damage seawater based frac pack fluid
US20080128131A1 (en) Methods for enhancing fracture conductivity in subterranean formations
CA2552422A1 (en) Sand aggregating reagents, modified sands, and methods for making and using same
US20070199695A1 (en) Hydraulic Fracture Initiation and Propagation Control in Unconsolidated and Weakly Cemented Sediments
US4518040A (en) Method of fracturing a subterranean formation
US20110224109A1 (en) Reversible Peptide Surfactants For Oilfield Applications
US7036597B2 (en) Systems and methods for treating a subterranean formation using carbon dioxide and a crosslinked fracturing fluid
CA2783785C (en) Fracture fluid compositions comprising a mixture of mono and divalent cations and their methods of use in hydraulic fracturing of subterranean formations
US7392843B2 (en) Method of treating subterranean formations to enhance hydrocarbon production using proppants
WO2018190835A1 (en) Staged propping of fracture networks
US20190040309A1 (en) Controlling proppant flowback using resin chemistry for acid fracturing
US20060011342A1 (en) Fluid loss control additives for use in fracturing subterranean formations
US11143008B1 (en) Methods of hydraulic fracturing
US10920132B2 (en) Pressure dependent leak-off mitigation in unconventional formations
Inam Challenges of Hydraulic Fracturing in Low Permeability Reservoirs
CA2798861A1 (en) Simultaneous injection of an acidic well treatment fluid and a proppant into a subterranean formation

Legal Events

Date Code Title Description
AS Assignment

Owner name: HALLIBURTON ENERGY SERVICES, INC., TEXAS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:LIZAK, KENNETH F.;REEL/FRAME:015575/0506

Effective date: 20040713

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION