CN104502516A - 一种用于聚合甘油三酯的微流控示差折光检测方法 - Google Patents
一种用于聚合甘油三酯的微流控示差折光检测方法 Download PDFInfo
- Publication number
- CN104502516A CN104502516A CN201510038402.5A CN201510038402A CN104502516A CN 104502516 A CN104502516 A CN 104502516A CN 201510038402 A CN201510038402 A CN 201510038402A CN 104502516 A CN104502516 A CN 104502516A
- Authority
- CN
- China
- Prior art keywords
- micro
- fluidic
- triglyceride
- chip
- fluidic chip
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Investigating Or Analysing Materials By Optical Means (AREA)
Abstract
本发明公开了一种用于检测甘油三酯聚合物的微流控示差折光方法,该方法既保持了高效空间排阻色谱法灵敏度高的优点,又利用微流控芯片分析技术有效简化和微型化了检测仪器,并且可作为一种便携式的分析技术平台,对油脂进行现场检测,为建立食用油脂样品中甘油三酯聚合物的快速、灵敏、准确检测技术及装备奠定基础。
Description
技术领域
本发明涉及一种基于微流控示差折光法检测聚合甘油三酯的方法,涉及对食用油中甘油三酯聚合物的快速检测方法。
背景技术
甘油三酯( Triacylglycerols,TAGs) 是食用油的最主要成分,由1个甘油分子与3个脂肪酸分子缩合而成其结构式如(I)所示。油脂氧化会产生甘油三酯聚合物(Triglycerides polymer,TGP),主要包括甘油三酯二聚物(Triglycerides dimmer,TGD)和甘油三酯寡聚物(Triglycerides oligomer,TGO)。
(I)
油脂氧化程度可反映油脂质量劣变情况,传统的油脂劣化指标过氧化值(POV)、酸价(AV)、羰基值、甲氧基苯胺值、硫代巴比妥酸值和极性化合物等,难以用于评价新近加工油脂的氧化和水解状况,已有研究证明氧化甘油三酯及其聚合物等极性化合物(polar compounds,PCs) 含量与油脂氧化程度相关联。油脂在精炼、储藏、煎炸过程中,因氧化、水解、聚合形成油脂极性物(PCs),包括各级氧化和水解产物,如氧化甘油三酯(oxidized triglycerides,ox-TG)、甘油三酯聚合物(TGP)及甘油二酯(DGA)、游离脂肪酸(FFA)等。其中,ox-TG和TGP是油脂氧化形成极性成分中主要非挥发性组分。食用植物油中TGP是以TGD和TGO为主的混合物。鉴于目前关于食用油品质检测,特别是对于非法回流的地沟油监控方面尚无有效检测方法,因此,建立以甘油三酯聚合物含量为指标的食用油品质检测方法具有十分迫切和必要的现实意义。
目前甘油三酯聚合物检测方法主要是基于高效液相色谱(HPLC)的高效空间排阻色谱法(HPSEC),检测器通常采用示差折光检测器(RI),该方法具有精密度高、重现性好的优点,但需要建立在精密昂贵的HPLC仪器设备及专业的操作人员的基础上,不适合于现场的快速检测。微流控分析芯片具有分析效率高、试样消耗少、易于微型化和便携化等特点,是当前化学和生物的研究热点。示差检测器(RI)是连续检测样品流路与参比流路间液体折光指数差值的检测器,可用于检测在紫外光范围内吸光度不高的化合物,如聚合物、糖、有机酸和甘油三酸酯。微流控示差折光(MC-RI)检测法则是将微流控芯片分析与示差折光检测器结合进行检测的实验方法。
发明内容
本发明的目的是提供一种微流控示差折光方法用于检测甘油三酯聚合物。
本发明的技术方案概述如下:
一种微流控示差折光方法用于检测甘油三酯聚合物:
微流控芯片设计与制备:
(1) 将设计的掩膜用高分辨率激光照排机在照相底片上制得光刻掩膜。
(2) 用光刻机将掩膜上的图形转移到铬板基片的光胶层上,通过0.5% NaOH除去光胶;用除铬液除去铬层;于40℃恒温水浴刻烛100 min。
(3) 2.0 mm金刚石钻头在相应位置打孔后,用溶剂除净表面上光胶,除铬液完全除铬,依次用水、2 M氢氧化纳、超纯水将基片和抛光片彻底洗净。
(4) 超纯水中将基片与抛光片贴合,吹干后550℃高温加热键合2 h,制得键合好的微流控芯片。
(5) 将预聚合液导入芯片通道中,利用两端加压的方法将预聚合液固定在指定位置,通过热引发进行聚合,在微流控芯片通道中制备有机聚合物整体柱。
微流控示差折光检测系统构建与甘油三酯聚合物样品检测:
(1) 将制备的微流控芯片、具温度控制的示差折光检测器、进样阀、高效液相色谱用泵通过聚四氟乙烯管连接,与恒温气浴箱组成微流控示差折光检测系统。
(2) 检测前以超纯水冲洗芯片及所有连接管路,排空气泡后,用载液冲洗芯片和所有管路15 min。
(3) 油脂样品溶于一定量四氢呋喃,无水硫酸钠干燥后过滤,取0.8μL进样。
(4) 以四氢呋喃为流动相,流动相流速20μL/min,微流控芯片和示差折光检测器温度35℃,采用峰面积归一化法计算样品中甘油三酯聚合物的相对含量,通过色谱工作站对峰面积准确定量。
所述预聚合液中引发剂优选为偶氮二异丁腈、过氧化二碳酸二(2-乙基己基)酯、过氧化苯甲酰、2,2'-偶氮二(2-咪基丙烷)二盐酸盐和偶氮二异丁基脒盐酸盐。粘附剂优选为聚氯乙烯、氯化聚氯乙烯、聚乙烯。功能单体优选为丙烯酰胺、丙烯酸、苯乙烯、甲基丙烯酸甲酯、2-乙烯基吡啶。交联剂优选为N,N′-亚甲基二丙烯酰胺、二乙烯基苯、乙二醇二甲基丙烯酸酯、3,5-二(丙烯酰胺)苯甲酸。
附图说明
图1为可与示差折光检测器联用的微流控芯片示意图。
图中有机聚合物整体柱部分微流控通道长度为50mm,微通道截面上下底分别为100μm和300μm,高为100μm,截面积为0.02 mm2。
图2为微流控示差折光检测系统示意图。
图中转接管及系统各部分连接均通过聚四氟乙烯管(0.25mm内径,1.8mm外径);光学检测器为具有控温功能的示差折光检测器(满标折射率≥1×10-4)。
具体实施方式
实施例一油脂样品中甘油三酯聚合物检测实验
超纯水冲洗芯片及所有连接管路,排空气泡后,用四氢呋喃冲洗芯片和所有管路15 min。50mg油脂样品溶于2mL四氢呋喃,无水硫酸钠干燥后过滤,取0.8μL进样。以四氢呋喃为流动相,流速20μL/min,微流控芯片和示差折光检测器控制温度35℃,采用峰面积归一化法计算样品中甘油三酯聚合物的相对含量,通过色谱工作站对峰面积准确定量,方法回收率在80-110%内,相对标准偏差小于5%。
Claims (1)
1.权利要求一种甘油三酯聚合物的微流控示差折光检测方法,其特征是由以下步骤组成:(1)将设计的掩膜用高分辨率激光照排机在照相底片上制得光刻掩膜;
(2)用光刻机将掩膜上的图形转移到铬板基片的光胶层上,通过0.5% NaOH除去光胶;用除铬液除去铬层;于40℃恒温水浴刻烛100 min;
(3)2.0 mm金刚石钻头在相应位置打孔后,用溶剂除净表面上光胶,除铬液完全除铬,依次用水、2 M氢氧化纳、超纯水将基片和抛光片彻底洗净;
(4)超纯水中将基片与抛光片贴合,吹干后550℃高温加热键合2 h,制得键合好的微流控芯片;
(5)将预聚合液导入芯片通道中,利用两端加压的方法将预聚合液固定在指定位置,通过热引发进行聚合,在微流控芯片通道中制备有机聚合物整体柱;
(6)将制备的微流控芯片、具温度控制的示差折光检测器、进样阀、高效液相色谱用泵通过聚四氟乙烯管连接,与恒温气浴箱组成微流控示差折光检测系统;
(7)检测前以超纯水冲洗芯片及所有连接管路,排空气泡后,用载液冲洗芯片和所有管路15 min;
(8)油脂样品溶于一定量四氢呋喃,无水硫酸钠干燥后过滤,取0.8μL进样;
(9)以四氢呋喃为流动相,流动相流速20μL/min,微流控芯片和示差折光检测器温度35℃,采用峰面积归一化法计算样品中甘油三酯聚合物的相对含量,通过色谱工作站对峰面积准确定量。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510038402.5A CN104502516A (zh) | 2015-01-27 | 2015-01-27 | 一种用于聚合甘油三酯的微流控示差折光检测方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510038402.5A CN104502516A (zh) | 2015-01-27 | 2015-01-27 | 一种用于聚合甘油三酯的微流控示差折光检测方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN104502516A true CN104502516A (zh) | 2015-04-08 |
Family
ID=52943930
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201510038402.5A Pending CN104502516A (zh) | 2015-01-27 | 2015-01-27 | 一种用于聚合甘油三酯的微流控示差折光检测方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN104502516A (zh) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109212092A (zh) * | 2018-10-29 | 2019-01-15 | 广东省药品检验所(广东省药品质量研究所、广东省口岸药品检验所) | 食用油脂中聚合甘油三酯的超高效空间排阻色谱测定方法 |
CN110196292A (zh) * | 2019-05-16 | 2019-09-03 | 暨南大学 | 一种双柱检测油脂劣变产物含量的方法 |
CN112098571A (zh) * | 2020-09-10 | 2020-12-18 | 江南大学 | 一种在线快速分离煎炸油中极性组分的方法 |
CN112387317A (zh) * | 2020-10-15 | 2021-02-23 | 上海市第五人民医院 | 一种快速检测血清Septin 9甲基化的微流控液滴芯片 |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN2390207Y (zh) * | 1999-10-27 | 2000-08-02 | 何农跃 | 微流体生物芯片检测分析板 |
WO2007077218A1 (en) * | 2006-01-03 | 2007-07-12 | Inverness Medical Switzerland Gmbh | An optical system; an optical chip for an optical system and a method of using an optical chip for an analytical operation |
US20080254541A1 (en) * | 2007-04-11 | 2008-10-16 | Korea Institute Of Science And Technology | Chip having microchannels and a method for continuous dilution of solution |
WO2009076372A2 (en) * | 2007-12-10 | 2009-06-18 | Molecular Sensing, Inc. | Temperature-stable interferometer |
WO2010085727A1 (en) * | 2009-01-26 | 2010-07-29 | Canon U.S. Life Sciences, Inc. | Microfluidic flow monitoring |
WO2012088351A2 (en) * | 2010-12-21 | 2012-06-28 | The Regents Of The University Of California | Compact wide-field fluorescent imaging on a mobile device |
CN102998439A (zh) * | 2011-09-14 | 2013-03-27 | 佳木斯大学 | 同时检测葡萄糖、尿酸、甘油三酯及胆固醇的微流控纸芯片及制造方法 |
CN203002392U (zh) * | 2012-12-25 | 2013-06-19 | 广东药学院 | 一种固相萃取微流控分析芯片 |
-
2015
- 2015-01-27 CN CN201510038402.5A patent/CN104502516A/zh active Pending
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN2390207Y (zh) * | 1999-10-27 | 2000-08-02 | 何农跃 | 微流体生物芯片检测分析板 |
WO2007077218A1 (en) * | 2006-01-03 | 2007-07-12 | Inverness Medical Switzerland Gmbh | An optical system; an optical chip for an optical system and a method of using an optical chip for an analytical operation |
US20080254541A1 (en) * | 2007-04-11 | 2008-10-16 | Korea Institute Of Science And Technology | Chip having microchannels and a method for continuous dilution of solution |
WO2009076372A2 (en) * | 2007-12-10 | 2009-06-18 | Molecular Sensing, Inc. | Temperature-stable interferometer |
WO2010085727A1 (en) * | 2009-01-26 | 2010-07-29 | Canon U.S. Life Sciences, Inc. | Microfluidic flow monitoring |
WO2012088351A2 (en) * | 2010-12-21 | 2012-06-28 | The Regents Of The University Of California | Compact wide-field fluorescent imaging on a mobile device |
CN102998439A (zh) * | 2011-09-14 | 2013-03-27 | 佳木斯大学 | 同时检测葡萄糖、尿酸、甘油三酯及胆固醇的微流控纸芯片及制造方法 |
CN203002392U (zh) * | 2012-12-25 | 2013-06-19 | 广东药学院 | 一种固相萃取微流控分析芯片 |
Non-Patent Citations (2)
Title |
---|
PAVEL A.LEVKIN等: "Monolithic porous polymer stationary phases in polyimide chips for the fast high-performance liquid chromatography separation of proteins and peptides", 《JOURNAL OF CHROMATOGRAPHY A》 * |
徐溢等: "微流控芯片系统中固液双相分离富集技术", 《化学进展》 * |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109212092A (zh) * | 2018-10-29 | 2019-01-15 | 广东省药品检验所(广东省药品质量研究所、广东省口岸药品检验所) | 食用油脂中聚合甘油三酯的超高效空间排阻色谱测定方法 |
CN110196292A (zh) * | 2019-05-16 | 2019-09-03 | 暨南大学 | 一种双柱检测油脂劣变产物含量的方法 |
CN112098571A (zh) * | 2020-09-10 | 2020-12-18 | 江南大学 | 一种在线快速分离煎炸油中极性组分的方法 |
CN112387317A (zh) * | 2020-10-15 | 2021-02-23 | 上海市第五人民医院 | 一种快速检测血清Septin 9甲基化的微流控液滴芯片 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104502516A (zh) | 一种用于聚合甘油三酯的微流控示差折光检测方法 | |
Rye et al. | The flow of liquids in surface grooves | |
Yu et al. | Flow control valves for analytical microfluidic chips without mechanical parts based on thermally responsive monolithic polymers | |
Xiao et al. | Prediction and optimization of liquid propagation in micropillar arrays | |
Hasselbrink et al. | High-pressure microfluidic control in lab-on-a-chip devices using mobile polymer monoliths | |
Verneuil et al. | Laser-induced force on a microfluidic drop: origin and magnitude | |
De Pra et al. | Experimental study on band dispersion in channels structured with micropillars | |
Tamayol et al. | Creeping flow through ordered arrays of micro-cylinders embedded in a rectangular minichannel | |
Li et al. | Spontaneous displacement of high viscosity micrometer size oil droplets from a curved solid in aqueous solutions | |
CN113862140A (zh) | 一种便携式液滴数字pcr装置 | |
Lee et al. | Dispersion control in pressure-driven flow through bowed rectangular microchannels | |
van ‘t Oever et al. | In-chip direct laser writing of a centimeter-scale acoustic micromixer | |
Kee et al. | Monolithic integration of poly (dimethylsiloxane) waveguides and microfluidics for on-chip absorbance measurements | |
Huang et al. | On-chip microfabrication of thermally controllable PNIPAAm microvalves by using optical maskless stereolithography | |
Cheng et al. | Directional Superspreading of Water Droplets on Grooved Hydrogel Surfaces for Open Microfluidic Platforms | |
Lee et al. | Absorbent-force-driven microflow cytometer | |
CN110252436B (zh) | 一种用于高倍显微图像采集的可拆卸式浮游生物微流控芯片 | |
EP3374752A1 (en) | Closed-system passive mixing flow cell system for tissue slide staining | |
EP3421967B1 (en) | Capillary viscometer and method for analysis of fluids, in particular oils | |
JP2017536110A5 (zh) | ||
Fan et al. | Simulation and fabrication of integrated polystyrene microlens in microfluidic system | |
Chang et al. | A study on the biological detection chip through the use of PDMS lens for the reinforcement of fluorescence receiving signal | |
Mukhopadhyay | Experimental Studies on the Surface-Driven Microfluidic Flow of Dyed Working Liquids in Sudden Expansion Microchannels Fabricated by Polymer | |
Kumar et al. | Interfacing 3D micro/nanochannels with a branch-shaped reservoir enhances fluid and mass transport | |
Nemati et al. | Solvent immersion imprint lithography: A high-performance, semi-automated procedure |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C02 | Deemed withdrawal of patent application after publication (patent law 2001) | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20150408 |