CN104501956B - 一种超宽波段图谱关联探测装置与探测方法 - Google Patents
一种超宽波段图谱关联探测装置与探测方法 Download PDFInfo
- Publication number
- CN104501956B CN104501956B CN201410851351.3A CN201410851351A CN104501956B CN 104501956 B CN104501956 B CN 104501956B CN 201410851351 A CN201410851351 A CN 201410851351A CN 104501956 B CN104501956 B CN 104501956B
- Authority
- CN
- China
- Prior art keywords
- lens
- spectrum
- wide
- infrared
- visible
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000001514 detection method Methods 0.000 title claims abstract description 41
- 238000001228 spectrum Methods 0.000 claims abstract description 132
- 238000003384 imaging method Methods 0.000 claims abstract description 33
- 230000008859 change Effects 0.000 claims abstract description 24
- 238000003333 near-infrared imaging Methods 0.000 claims abstract description 13
- 238000003331 infrared imaging Methods 0.000 claims abstract description 11
- 230000003595 spectral effect Effects 0.000 claims description 16
- 238000000034 method Methods 0.000 claims description 15
- 230000005540 biological transmission Effects 0.000 claims description 13
- 238000012937 correction Methods 0.000 claims description 12
- 230000003287 optical effect Effects 0.000 claims description 8
- 230000011514 reflex Effects 0.000 claims description 7
- 230000008878 coupling Effects 0.000 claims description 6
- 238000010168 coupling process Methods 0.000 claims description 6
- 238000005859 coupling reaction Methods 0.000 claims description 6
- 239000013307 optical fiber Substances 0.000 claims description 6
- 239000011248 coating agent Substances 0.000 claims description 4
- 238000000576 coating method Methods 0.000 claims description 4
- 238000005516 engineering process Methods 0.000 claims description 4
- 239000011521 glass Substances 0.000 claims description 3
- 230000004446 light reflex Effects 0.000 claims description 3
- 238000002329 infrared spectrum Methods 0.000 claims 1
- 239000000463 material Substances 0.000 description 4
- 238000012545 processing Methods 0.000 description 4
- 230000004927 fusion Effects 0.000 description 3
- 238000013461 design Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 238000004611 spectroscopical analysis Methods 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- 229910000838 Al alloy Inorganic materials 0.000 description 1
- 229910000737 Duralumin Inorganic materials 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 238000003491 array Methods 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000005286 illumination Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 230000004899 motility Effects 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 238000011897 real-time detection Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J3/00—Spectrometry; Spectrophotometry; Monochromators; Measuring colours
- G01J3/28—Investigating the spectrum
- G01J3/2823—Imaging spectrometer
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B11/00—Measuring arrangements characterised by the use of optical techniques
- G01B11/002—Measuring arrangements characterised by the use of optical techniques for measuring two or more coordinates
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J3/00—Spectrometry; Spectrophotometry; Monochromators; Measuring colours
- G01J3/02—Details
- G01J3/0205—Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows
- G01J3/0208—Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows using focussing or collimating elements, e.g. lenses or mirrors; performing aberration correction
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J3/00—Spectrometry; Spectrophotometry; Monochromators; Measuring colours
- G01J3/02—Details
- G01J3/0205—Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows
- G01J3/021—Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows using plane or convex mirrors, parallel phase plates, or particular reflectors
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J3/00—Spectrometry; Spectrophotometry; Monochromators; Measuring colours
- G01J3/28—Investigating the spectrum
- G01J3/30—Measuring the intensity of spectral lines directly on the spectrum itself
- G01J3/36—Investigating two or more bands of a spectrum by separate detectors
Landscapes
- Physics & Mathematics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- General Physics & Mathematics (AREA)
- Lenses (AREA)
- Investigating Or Analysing Materials By Optical Means (AREA)
- Spectrometry And Color Measurement (AREA)
Abstract
本发明公开了一种超宽波段图谱关联探测装置,包括扫描转镜、卡氏反射镜组、分光镜、反射镜、宽光谱透镜组、可见及近红外透镜组、长波成像透镜组、电荷耦合元件成像单元、焦平面阵列成像单元、傅里叶测谱单元和光栅测谱单元。本发明利用长波红外成像及可见近红外成像初步识别目标并引导测谱,利用测谱完成目标精确识别,解决现有探测装置探测波段不全,光路布局受限,设备体积大,探测动目标和动态变化对象能力差的难题。本发明体积较小、集成度高、使用方便灵活,对动目标和外部景物的动态变化可以实现超宽波段的图谱观测,还能实现对各种目标自动切换跟踪与辨识可广泛应用于国民经济及国家安全领域。
Description
技术领域
本发明属于遥感探测和图像识别交叉领域,具体涉及一种超宽波段图谱关联探测装置与探测方法,可用于目标探测跟踪与识别。
背景技术
物体的特性可由其光谱来表征,光谱包括散射环境照射的谱和自身辐射的谱,其谱特征可以区分不同的物体或物质,再加上物体的空间二维图像,使遥感识别物体的能力更加强大。
同时收集图像和光谱的设备多为多光谱或高光谱扫描仪,如国内外研制的机载、星载多光谱及高光谱扫描仪,安装在飞行器上,其扫描镜旋转可使接收的瞬时视场作垂直于飞行方向的运动,实现较宽幅的对地覆盖。该设备形成原始数据处理速度慢;通常要传回地面处理,只适用于静止场景的非实时探测,对于运动目标和动态现象难以适用。
发明内容
为了解决上述技术问题,本发明提供一种超宽波段图谱关联探测装置与方法,解决现有图谱合一系统不能同时复合包括可见、近红外、短波红外、中波红外和长波红外全波段的光谱测量和可见近红外与长波红外融合测量难题。
为了实现上述目的,按照本发明的一个方面,提供了一种超宽图谱探测方法图谱探测装置,包括扫描转镜、卡氏反射镜组、第一分光镜、反射镜、第一宽光谱透镜组、第二宽光谱透镜组、第三宽光谱透镜组、第四宽光谱透镜组、第二分光镜、第三分光镜、可见及近红外透镜组、长波成像透镜组、电荷耦合元件(Charge-coupledDevice,CCD)成像单元、焦平面阵列(focalplanearray,FPA)成像单元、傅里叶测谱单元和光栅测谱单元;其中:
所述扫描转镜通过伺服电机控制转动调整方位对准目标区域,用于将目标区域反射的光反射至卡氏反射镜组;卡氏反射镜组用于将反射的光收集后反射至第一分光镜,第一分光镜将2-14um红外光透射至第一宽光谱透镜组,并将0.4-2um红外光线反射至反射镜;第二分光镜分光镜用于将预定成像波段的光部分透射至长波红外成像透镜组,同时将预定成像波段的光剩余部分以及其它波段光反射至第二宽光谱透镜组;长波红外成像透镜组用于将分光镜透射出的光聚焦到FPA成像单元以实现成像;
第二宽光谱透镜组用于将分光镜反射出的光聚焦到傅里叶测谱单元以实现光谱采集;
反射镜将第一分光镜反射的0.4-2um光线反射至第三宽光谱透镜组;第三分光镜用于将预定成像波段的光部分透射至可见及近红外透镜组,同时将预定成像波段的光剩余部分以及其它波段光反射至第四宽光谱透镜组;可见及近红外成像透镜组用于将第三分光镜透射出的光聚焦到CCD成像单元以实现成像;
第四宽光谱透镜组用于将第三分光镜反射出的光聚焦到光栅型测谱单元以实现光谱采集。
进一步地,所述预定成像波段为可见、近红外及长波红外的超宽波段。
在本发明的一个实施例中,所述扫描转镜包括平面反射镜、二维转台和伺服电机,其中所述平面反射镜放置在二维转台上,并通过转台上的卡槽固定;伺服电机的两个驱动轴分别与二维转台俯仰轴以及旋转轴机械连接;二维转台在伺服电机的驱动下可以带动平面反射镜实现旋转和俯仰两个维度的运动。
进一步地,所述平面反射镜采用K9玻璃,镀金反射层后对可见、近红外光、短、中、长波红外都有较高的反射率。
在本发明的一个实施例中,所述卡氏反射镜组采用卡塞格林系统,由一个抛物面反射镜和一个双曲面反射镜组成,实现对目标可见、近红外及长波红外谱成像和能量收集。
进一步地,所述抛物面反射镜与双曲面反射镜遮挡比不大于3:1。
在本发明的一个实施例中,所述第一分光镜、第二分光镜、第三分光镜分别镀双层增透膜,第一分光镜对可见、近红外光全反射,对长波红外光全透射;第二分光镜将50%长波红外光透射至长波成像透镜组实现长波红外成像质量的补偿校正,剩余光线反射至第二宽光谱透镜组;第三分光镜将50%可见及近红外光透射至可见及近红外透镜组实现可见、近红外成像质量补偿校正,剩余光线反射至第四宽光谱透镜组。
在本发明的一个实施例中,所述第一宽光谱透镜组、第二宽光谱透镜组用于实现对长波红外镜头宽光谱能量会聚光斑质量的补偿校正,第二宽光谱透镜组满足光纤耦合输出要求;第三宽光谱透镜组、第四宽光谱透镜组用于实现对可见及近红外宽光谱能量会聚光斑质量的补偿校正,第四宽光谱透镜组满足光纤耦合输出要求。
在本发明的一个实施例中,所述第一宽光谱透镜组、第二宽光谱透镜组、第三宽光谱透镜组、第四宽光谱透镜组采用光学无热设计技术,使环境温度在-40℃~+60℃内变化时,成像面位置保持稳定不变,免除调焦结构。
本发明不仅具有多光谱扫描仪和成像光谱仪的图谱一体化的特点,而且能对场景中的多个动目标和动态现象进行自动检测、跟踪、测谱与识别。
本发明采用红外成像和红外测谱共光路及可见近红外成像和可见近红外测谱共光路的设计,对动目标和外部景物的动态变化可以实现超宽波段的图谱观测,同时还具有响应时间短,识别效率高的特点。
本发明采用可见近红外成像及长波红外成像的图谱一体探测设备对感兴趣目标进行检测识别,得到动目标和动态变化对象的超宽光谱信息和图像信息,从而实现对动目标和外部景物的动态变化可的实现超宽波段的图谱观测。
本发明体积较小、集成度高、使用方便灵活,可广泛应用于国民经济及国家安全领域。
按照本发明的另一方面,还提供了一种超宽波段图谱关联探测方法,包括以下步骤:
(1)采用长波红外成像单元捕获跟踪获动目标和动态变化对象,获得感兴趣动目标和动态变化对象的长波红外图像序列,同时采用及可见近红外成像单元跟踪捕获动目标和动态变化对象,获得感兴趣目标和动态变化对象的可见近红外图像序列;
(2)分别通过目标检测模块捕获目标长波红外成像特征点(x1,y1)及可见近红外成像特征点(x2,y2),同时输出特征点坐标(x1,y1)和(x2,y2);
(3)融合(x1,y1)和(x2,y2)输出动目标特征点(x,y);
(4)通过扫描转镜分别将红外光轴及可见近红外光轴分别移至动目标特征点位置(x,y),采集光谱;
(5)通过傅里叶测谱单元及光栅型测谱单元对相应的图像及光谱特征信息进行融合;
(6)分别将可见及近红外及长波红外的图像以及光谱信息进行融合,得到动目标和动态变化对象的超宽光谱信息和图像信息;
(7)调用识别模块,输出目标类型;
(8)将感兴趣动目标和动态变化对象的超宽波段光谱信息和图像信息存至目标指纹库,通过屏幕实时输出目标跟踪结果。
本发明使用超宽图谱关联探测的方法,通过物质的谱特征可以区分不同的物体或物质,再加上物体的空间二维图像,使得遥感探测使遥感识别物体的能力更加强大。
本发明提供超宽波段图谱关联探测方法,针对动态目标(如飞机、车辆等)和动态现象(如火灾,火山喷发,爆炸等)(图5),采用长波成像特征点与可见近红外特征点融合的方法,捕获跟踪动目标更精确、更稳定。
附图说明
图1为本发明超宽波段图谱关联探测装置结构示意图;
图2为本发明实施例中超宽波段图谱关联探测系统架构;
图3为本发明超宽波段图谱关联探测装置中扫描转镜结构示意图;
图4为本发明超宽波段图谱关联探测方法流程图;
图5为本发明实施例中特征点及特征部位示意图。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。此外,下面所描述的本发明各个实施方式中所涉及到的技术特征只要彼此之间未构成冲突就可以相互组合。
如图1和图2所示,本发明提供了一种超宽图谱探测方法图谱探测装置,同时集成了成像和测谱功能,所述装置包括扫描转镜、卡氏反射镜组、第一分光镜、反射镜、第一宽光谱透镜组、第二宽光谱透镜组、第三宽光谱透镜组、第四宽光谱透镜组、第二分光镜、第三分光镜、可见及近红外透镜组、长波成像透镜组、CCD成像单元、FPA成像单元、傅里叶测谱单元和光栅测谱单元;扫描转镜通过伺服电机控制转动调整方位对准目标区域,将目标区域反射的光反射至卡氏反射镜组;卡氏反射镜组用于将反射的光收集后投射至第一分光镜,第一分光镜将2-14um红外光透射至第一宽光谱透镜组,并将0.4-2um红外光线反射至反射镜;第二分光镜分光镜用于将预定成像波段的光部分透射至长波红外成像透镜组,同时将预定成像波段的光剩余部分以及其它波段光反射至第二宽光谱透镜组;长波红外成像透镜组用于将分光镜透射出的光聚焦到FPA成像单元以实现成像;第二宽光谱透镜组用于将分光镜反射出的光聚焦到傅里叶测谱单元以实现光谱采集;反射镜将第一分光镜反射的0.4-2um光线反射至第三宽光谱透镜组;第三分光镜用于将预定成像波段的光部分透射至可见及近红外透镜组,同时将预定成像波段的光剩余部分以及其它波段光反射至第四宽光谱透镜组;可见及近红外成像透镜组用于将第三分光镜透射出的光聚焦到CCD成像单元以实现成像,第四宽光谱透镜组用于将第三分光镜反射出的光聚焦到光栅型测谱单元以实现光谱采集。
进一步地,所述装置还包括融合信号处理与控制单元,所述融合信号处理与控制单元,用于对所述CCD成像单元、FPA成像单元、傅里叶测谱单元以及光栅测谱单元输出的信号进行融合处理。
进一步地,如图3所示,本发明实施例提供的扫描转镜包括平面反射镜、二维转台和伺服电机。平面反射镜放置在二维转台上,并通过转台上的卡槽固定;伺服电机的两个驱动轴分别与二维转台俯仰轴以及旋转轴机械连接。平面反射镜可以采用K9玻璃,镀金反射层后对可见、近红外、短、中、长波红外光都有较高的反射率;二维转台在伺服电机的驱动下可以带动平面反射镜实现旋转和俯仰两个维度的运动,从而增大系统探测的灵活性,实现局域稀疏采样。
进一步地,本发明实施例中的卡氏反射镜组采用卡塞格林系统,由一个抛物面反射镜和一个双曲面反射镜组成,实现对目标可见、近红外及长波红外谱成像和能量收集。所述抛物面反射镜与双曲面反射镜遮挡比不大于3:1;在保证主次镜成像所需合理间距的前提下,较小的遮拦比有利于提高光学系统的透过率。
进一步地,本发明实施例中的第一分光镜、第二分光镜、第三分光镜分别镀双层增透膜,第一分光镜对可见、近红外光全反射,对长波红外光则全透射;第二分光镜将50%长波红外光透射至长波成像透镜组实现长波红外成像质量的补偿校正,剩余光线反射至第二宽光谱透镜组;第三分光镜将50%可见、近红外光透射至可见及近红外透镜组实现可见、近红外成像质量补偿校正,剩余光线反射至第四宽光谱透镜组。
进一步地,本发明实施例中的第一宽光谱透镜组、第二宽光谱透镜组实现对长波红外镜头宽光谱能量会聚光斑质量的补偿校正,第二宽光谱透镜组满足短、中、长波红外光纤耦合输出要求;第三宽光谱透镜组、第四宽光谱透镜组实现对对可见、近红外宽光谱能量会聚光斑质量的补偿校正,第四宽光谱透镜组满足可见、近红外光纤耦合输出要求。
进一步地,本发明实施例中的第一宽光谱透镜组、第二宽光谱透镜组、第三宽光谱透镜组、第四宽光谱透镜组采用光学无热设计技术,使环境温度在-40℃~+60℃内变化时,成像面位置保持稳定不变,免除调焦结构。
结构设计上,采取以下措施:
(1)材料采用轻质硬铝合金,减轻重量。
(2)采用Pro-E工程结构设计软件建模,充分考虑结构刚度、应力变形,估算包括光学元件在内的质心位置和重量。
(3)考虑设置必要的薄壁遮光罩,降低背景、阳光干扰。
进一步地,如图4所示,本发明提供了一种基于上述超宽波段图谱关联探测装置的探测方法流程图,具体步骤如下:
(1)采用长波红外成像单元捕获跟踪动目标和动态变化对象,获得感兴趣动目标和动态变化对象的长波红外图像序列,同时采用及可见近红外成像单元跟踪捕获动目标和动态变化对象,获得感兴趣目标和动态变化对象的可见近红外图像序列;
(2)分别通过目标检测模块捕获目标长波红外成像特征点(x1,y1)及可见近红外成像特征点(x2,y2),同时输出特征点坐标(x1,y1)和(x2,y2);
(3)融合(x1,y1)和(x2,y2)输出动目标特征点(x,y);
(4)通过扫描转镜分别将红外光轴及可见近红外光轴分别移至动目标特征点位置(x,y),采集光谱;
(5)通过傅里叶测谱单元及光栅型测谱单元对相应的图像及光谱特征信息进行融合;
(6)分别将长波红外、可见及近红外的图像以及光谱信息进行融合,得到动目标和动态变化对象的超宽光谱信息和图像信息;
(7)调用识别模块,输出目标类型;
(8)将感兴趣动目标和动态变化对象的超宽波段光谱信息和图像信息存至目标指纹库,通过屏幕实时输出目标跟踪结果。
如图5所示,本发明实例可实现探测的特征点及特征部位包含一架飞机的机头、机尾、驾驶舱、轮胎及发动机,动物的眼睛,植物的花朵以及火山喷发等。
进一步地,通过图2中的超宽波段图谱关联探测系统为例说明本发明装置的实施,具体地:
图3中,卡氏反射镜组由一个抛物面反射镜和一个双曲面反射镜组成,两个视场中心重合,所有部件安装在封闭壳体内部。目标入射光(可见、近红外及长波红外)经扫描转镜反射至卡氏反射镜组,卡氏反射镜组将光线反射至第一分光镜。第一分光镜镀双层增透膜,使其对可见、近红外光全反射,对长波红外光全透射。入射光中的长波红外光由该分光镜透射,经由第一组宽光谱透镜组聚焦至第二分光镜;第二分光镜将长波红外光线的50%透射到长波红外透镜组,聚焦到成FPA像单元实现成像;同时将剩余长波红外光线反射至第二宽光谱透镜组,再经由耦合到该中心的光纤传输到光纤进入傅里叶测谱单元;经由第一分光镜反射的可见、近红外光线,由反射镜反射至第三宽光谱透镜组,该宽光谱透镜组将光线聚焦到第三分光镜;第三分光镜将可见、近外光线的50%透射至可见、近红外透镜组,聚焦至成CCD像单元成像,同时将剩余光线反射至第四宽光谱透镜组,再经由耦合到该中心的光纤传输到光纤进入光栅测谱单元进行测谱。
融合处理与控制单元主要负责接收长波红外图像、光谱数据及可见近红外图像、光谱数据并进行实时数据处理和分析,控制扫描转镜(图2)跟踪动目标和动态现象的运动。
本领域的技术人员容易理解,以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。
Claims (10)
1.一种超宽图谱探测方法图谱探测装置,其特征在于,所述探测装置包括扫描转镜、卡氏反射镜组、第一分光镜、反射镜、第一宽光谱透镜组、第二宽光谱透镜组、第三宽光谱透镜组、第四宽光谱透镜组、第二分光镜、第三分光镜、可见及近红外透镜组、长波成像透镜组、CCD成像单元、FPA成像单元、傅里叶测谱单元和光栅测谱单元;其中:
所述扫描转镜通过伺服电机控制转动调整方位对准目标区域,用于将目标区域反射的光反射至卡氏反射镜组;卡氏反射镜组用于将反射的光收集后反射至第一分光镜,第一分光镜将2-14um红外光透射至第一宽光谱透镜组,并将0.4-2um红外光线反射至反射镜;第二分光镜分光镜用于将预定成像波段的光部分透射至长波成像透镜组,同时将预定成像波段的光剩余部分以及其它波段光反射至第二宽光谱透镜组;长波红外成像透镜组用于将分光镜透射出的光聚焦到FPA成像单元以实现成像;
第二宽光谱透镜组用于将第二分光镜反射出的光聚焦到傅里叶测谱单元以实现光谱采集;
反射镜将第一分光镜反射的0.4-2um光线反射至第三宽光谱透镜组;第三分光镜用于将预定成像波段的光部分透射至可见及近红外透镜组,同时将预定成像波段的光剩余部分以及其它波段光反射至第四宽光谱透镜组;可见及近红外成像透镜组用于将第三分光镜透射出的光聚焦到CCD成像单元以实现成像;
第四宽光谱透镜组用于将第三分光镜反射出的光聚焦到光栅型测谱单元以实现光谱采集。
2.如权利要求1所述的超宽图谱探测方法图谱探测装置,其特征在于,所述预定成像波段为长波红外、可见及近红外的超宽波段。
3.如权利要求1或2所述的超宽图谱探测方法图谱探测装置,其特征在于,所述扫描转镜包括平面反射镜、二维转台和伺服电机,其中所述平面反射镜放置在二维转台上,并通过转台上的卡槽固定;伺服电机的两个驱动轴分别与二维转台俯仰轴以及旋转轴机械连接;二维转台在伺服电机的驱动下可以带动平面反射镜实现旋转和俯仰两个维度的运动。
4.如权利要求3所述的超宽图谱探测方法图谱探测装置,其特征在于,所述平面反射镜采用K9玻璃,镀金反射层后对可见、近红外光、短、中、长波红外都有较高的反射率。
5.如权利要求1或2所述的超宽图谱探测方法图谱探测装置,其特征在于,所述卡氏反射镜组采用卡塞格林系统,由一个抛物面反射镜和一个双曲面反射镜组成,实现对目标可见、近红外及长波红外谱成像和能量会聚。
6.如权利要求5所述的超宽图谱探测方法图谱探测装置,其特征在于,所述抛物面反射镜与双曲面反射镜遮挡比不大于3:1。
7.如权利要求1或2所述的超宽图谱探测方法图谱探测装置,其特征在于,所述第一分光镜、第二分光镜、第三分光镜分别镀双层增透膜,第一分光镜对可见、近红外光全反射,对短波、中波、长波红外全透射;第二分光镜将50%长波红外光透射至长波成像透镜组实现长波红外成像质量的补偿校正,剩余光线反射至第二宽光谱透镜组;第三分光镜将50%可见、近红外光透射至可见及近红外透镜组实现可见、近红外成像质量补偿校正,剩余光线反射至第四宽光谱透镜组。
8.如权利要求1或2所述的超宽图谱探测方法图谱探测装置,其特征在于,所述第一宽光谱透镜组、第二宽光谱透镜组用于实现对短、中、长波红外宽光谱能量会聚光斑质量的补偿校正,第二宽光谱透镜组满足短、中、长波红外光纤耦合输出要求;第三宽光谱透镜组、第四宽光谱透镜组用于实现对可见及近红外宽光谱能量会聚光斑质量的补偿校正,第四宽光谱透镜组满足可见、近红外光纤耦合输出要求。
9.如权利要求1或2所述的超宽图谱探测方法图谱探测装置,其特征在于,所述第一宽光谱透镜组、第二宽光谱透镜组、第三宽光谱透镜组、第四宽光谱透镜组采用光学无热设计技术,使环境温度在-40℃~+60℃内变化时,成像面位置保持稳定不变,免除调焦结构。
10.一种基于权利要求1至9任一项所述超宽波段图谱关联探测装置的探测方法,其特征在于,所述方法包括以下步骤:
(1)采用长波红外成像单元捕获跟踪动目标和动态变化对象,获得感兴趣动目标和动态变化对象的长波红外图像序列,同时采用可见及近红外成像单元跟踪捕获动目标和动态变化对象,获得感兴趣目标和动态变化对象的可见近红外图像序列;
(2)分别通过目标检测模块捕获目标长波红外成像特征点(x1,y1)及可见近红外成像特征点(x2,y2),同时输出特征点坐标(x1,y1)和(x2,y2);
(3)融合(x1,y1)和(x2,y2)输出动目标特征点(x,y);
(4)通过同一扫描转镜分别将红外光轴及可见近红外光轴分别移至动目标特征点位置(x,y),采集光谱;
(5)通过傅里叶测谱单元及光栅型测谱单元对相应的图像及光谱特征信息进行融合;
(6)分别将可见、近红外及长波红外的图像以及光谱信息进行融合,得到动目标和动态变化对象的超宽光谱信息和图像信息;
(7)调用识别模块,输出目标类型;
(8)将感兴趣动目标和动态变化对象的超宽波段光谱信息和图像信息存至目标指纹库,通过屏幕实时输出目标跟踪结果。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410851351.3A CN104501956B (zh) | 2014-12-30 | 2014-12-30 | 一种超宽波段图谱关联探测装置与探测方法 |
US14/902,271 US9518867B2 (en) | 2014-12-30 | 2015-02-10 | Detecting device and method combining images with spectrums in ultra-wide waveband |
PCT/CN2015/072679 WO2016106957A1 (zh) | 2014-12-30 | 2015-02-10 | 一种超宽波段图谱关联探测装置与探测方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410851351.3A CN104501956B (zh) | 2014-12-30 | 2014-12-30 | 一种超宽波段图谱关联探测装置与探测方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN104501956A CN104501956A (zh) | 2015-04-08 |
CN104501956B true CN104501956B (zh) | 2016-07-13 |
Family
ID=52943378
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201410851351.3A Active CN104501956B (zh) | 2014-12-30 | 2014-12-30 | 一种超宽波段图谱关联探测装置与探测方法 |
Country Status (3)
Country | Link |
---|---|
US (1) | US9518867B2 (zh) |
CN (1) | CN104501956B (zh) |
WO (1) | WO2016106957A1 (zh) |
Families Citing this family (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104501959B (zh) * | 2014-12-30 | 2016-08-17 | 华中科技大学 | 一种红外图谱关联智能探测方法及装置 |
CN105182436B (zh) * | 2015-09-07 | 2017-07-28 | 南京华图信息技术有限公司 | 一种全光学波段图谱协同探测动目标的装置和方法 |
CN105676305B (zh) * | 2015-12-31 | 2017-05-31 | 南京华图信息技术有限公司 | 一种共口径多视场图谱协同探测系统与方法 |
DE102016121517A1 (de) * | 2016-11-10 | 2018-05-17 | Deutsches Zentrum für Luft- und Raumfahrt e.V. | Detektionsverfahren für chemische Stoffe, Detektionsvorrichtung, Durchgangsvorrichtung |
CN108508503B (zh) * | 2017-02-27 | 2019-08-02 | 北京航空航天大学 | 一种可实现图谱及结构信息集成探测的遥感成像系统 |
CN106931911A (zh) * | 2017-04-01 | 2017-07-07 | 浙江协同光电科技有限公司 | 白光光谱共焦线扫描装置 |
US10949679B2 (en) * | 2017-09-28 | 2021-03-16 | Apple Inc. | Nighttime sensing |
CN107782448B (zh) * | 2017-10-27 | 2020-05-12 | 中国科学院上海技术物理研究所杭州大江东空间信息技术研究院 | 一种新型成像光谱仪及其数据立方体的构建方法 |
CN107727233B (zh) * | 2017-10-27 | 2024-07-23 | 北京卓立汉光仪器有限公司 | 一种摄谱仪 |
CN108305290B (zh) * | 2017-12-29 | 2020-12-08 | 华中科技大学 | 一种动目标的精确测谱方法 |
CN108415097B (zh) * | 2017-12-29 | 2019-07-19 | 华中科技大学 | 一种多波段红外成像的图谱协同探测系统和方法 |
CN109506900B (zh) * | 2018-11-05 | 2023-11-14 | 苏州工业职业技术学院 | 一种用于近红外相机的成像帧率检测系统及其检测方法 |
CN109443546A (zh) * | 2018-12-19 | 2019-03-08 | 南京森林警察学院 | 一种基于扫描成像技术的火场温度场测量装置及方法 |
CN109655157A (zh) * | 2018-12-29 | 2019-04-19 | 华中科技大学 | 一种可见光-红外图谱探测装置及方法 |
CN109668636B (zh) * | 2019-03-01 | 2023-09-26 | 长春理工大学 | 一种成像式光谱辐射接收和分光一体化装置 |
CN111609935B (zh) * | 2020-05-14 | 2023-02-28 | 中国人民解放军空军预警学院 | 一种光学微小卫星可见光与红外双波段微扫描成像装置 |
US11823458B2 (en) * | 2020-06-18 | 2023-11-21 | Embedtek, LLC | Object detection and tracking system |
CN113055571A (zh) * | 2021-03-10 | 2021-06-29 | 中国科学院半导体研究所 | 长波红外与可见光共孔径复合成像相机及系统 |
CN113538314B (zh) * | 2021-07-23 | 2024-06-11 | 北京理工大学 | 四波段共光轴光电成像平台及其图像融合处理方法 |
CN114088351B (zh) * | 2021-10-01 | 2023-06-20 | 中航洛阳光电技术有限公司 | 一种多光谱自动校准系统 |
CN114894737A (zh) * | 2021-12-06 | 2022-08-12 | 西安电子科技大学 | 一种基于红外图像的光谱反射率重建方法 |
CN114485939B (zh) * | 2022-01-26 | 2024-05-07 | 亚太卫星宽带通信(深圳)有限公司 | 一种遥感卫星超宽波段图谱动态跟踪探测装置及方法 |
CN115855258B (zh) * | 2022-12-31 | 2023-08-18 | 华中科技大学 | 一种无人机载全光谱双偏振多光阑透射图谱关联导引系统 |
CN116625827B (zh) * | 2023-06-17 | 2024-01-23 | 广州市盛通建设工程质量检测有限公司 | 含钢渣细集料的混凝土抗压测试方法、装置、设备及介质 |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2001003050A1 (en) * | 1999-07-02 | 2001-01-11 | Hypermed Imaging, Inc. | Imaging apparatus with means for fusing thermal and hyperspectral images |
US6781127B1 (en) | 2000-06-08 | 2004-08-24 | Equinox Corporation | Common aperture fused reflective/thermal emitted sensor and system |
US6795182B2 (en) * | 2001-07-06 | 2004-09-21 | Arroyo Optics, Inc. | Diffractive fourier optics for optical communications |
GB2445956B (en) * | 2007-01-26 | 2009-12-02 | Valtion Teknillinen | A spectrometer and a method for controlling the spectrometer |
CN101866054B (zh) * | 2010-06-03 | 2011-08-17 | 中国科学院长春光学精密机械与物理研究所 | 多光谱面阵ccd成像仪的光学系统 |
CN102564589B (zh) * | 2011-12-20 | 2013-07-24 | 华中科技大学 | 一种多波段动目标光谱特征探测识别方法和装置 |
CN103776540B (zh) * | 2013-12-30 | 2015-07-08 | 华中科技大学 | 一种多波段共光路图谱联合遥感测量系统及方法 |
CN103913439B (zh) * | 2014-03-28 | 2016-09-28 | 中国科学院上海技术物理研究所 | 二维分辨扫描成像红外调制光致发光光谱测试装置及方法 |
CN204439211U (zh) * | 2014-12-30 | 2015-07-01 | 华中科技大学 | 一种超宽波段图谱关联探测装置 |
-
2014
- 2014-12-30 CN CN201410851351.3A patent/CN104501956B/zh active Active
-
2015
- 2015-02-10 WO PCT/CN2015/072679 patent/WO2016106957A1/zh active Application Filing
- 2015-02-10 US US14/902,271 patent/US9518867B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
WO2016106957A1 (zh) | 2016-07-07 |
CN104501956A (zh) | 2015-04-08 |
US20160202122A1 (en) | 2016-07-14 |
US9518867B2 (en) | 2016-12-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104501956B (zh) | 一种超宽波段图谱关联探测装置与探测方法 | |
CN204439211U (zh) | 一种超宽波段图谱关联探测装置 | |
CN105182436B (zh) | 一种全光学波段图谱协同探测动目标的装置和方法 | |
CN104535186B (zh) | 一种动平台红外图谱关联探测系统及方法 | |
US9869793B2 (en) | Multiband common-optical-path image-spectrum associated remote sensing measurement system and method | |
CN101738619B (zh) | 双波段红外光学系统 | |
CN104501959B (zh) | 一种红外图谱关联智能探测方法及装置 | |
CN104502918B (zh) | 一种低轨卫星星载图谱关联探测方法与载荷 | |
CN105676305B (zh) | 一种共口径多视场图谱协同探测系统与方法 | |
CN100504495C (zh) | 空间大口径压缩光束中继扫描成像光学系统 | |
CN106595869B (zh) | 一种高分辨率制冷型红外热像仪 | |
CN103777348B (zh) | 一种多波段灵巧红外光学系统 | |
DE112009003495T5 (de) | Vorrichtung und Verfahren zum Messen von sechs Freiheitsgraden | |
CN103471715A (zh) | 一种共光路组合式光场光谱成像方法及装置 | |
CN203164522U (zh) | 多谱段图像采集系统 | |
CN106184792B (zh) | 一种机载双光合一的光电吊舱及其控制方法 | |
CN103792652A (zh) | 结合主/被动探测的折返式光学系统 | |
CN104360464B (zh) | 一种连续变焦光学系统 | |
CN114236559A (zh) | 面向低慢小飞行器的共孔径六波段成像成谱测距光学系统 | |
CN105973469A (zh) | 带同步辐射矫正的无人机载高光谱图像探测仪及方法 | |
Deng et al. | A compact mid-wave infrared imager system with real-time target detection and tracking | |
CN109655157A (zh) | 一种可见光-红外图谱探测装置及方法 | |
CN103207443B (zh) | 近红外飞行器姿态位置测量物镜系统 | |
CN206031807U (zh) | 一种机载双光合一的光电吊舱 | |
CN203658669U (zh) | 一种多波段灵巧红外光学系统 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant |