CN104485728A - 一种多台双向储能变流器并联下垂的控制方法 - Google Patents

一种多台双向储能变流器并联下垂的控制方法 Download PDF

Info

Publication number
CN104485728A
CN104485728A CN201410753929.1A CN201410753929A CN104485728A CN 104485728 A CN104485728 A CN 104485728A CN 201410753929 A CN201410753929 A CN 201410753929A CN 104485728 A CN104485728 A CN 104485728A
Authority
CN
China
Prior art keywords
current transformer
voltage
bus
storage current
bidirectional energy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201410753929.1A
Other languages
English (en)
Other versions
CN104485728B (zh
Inventor
戴伟
陈芳
孙向东
张琦
任碧莹
王月盈
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
XINJIANG HOPE ELECTRONIC CO Ltd
Original Assignee
XINJIANG HOPE ELECTRONIC CO Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by XINJIANG HOPE ELECTRONIC CO Ltd filed Critical XINJIANG HOPE ELECTRONIC CO Ltd
Priority to CN201410753929.1A priority Critical patent/CN104485728B/zh
Publication of CN104485728A publication Critical patent/CN104485728A/zh
Application granted granted Critical
Publication of CN104485728B publication Critical patent/CN104485728B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • H02J7/35Parallel operation in networks using both storage and other dc sources, e.g. providing buffering with light sensitive cells
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J1/00Circuit arrangements for dc mains or dc distribution networks
    • H02J1/10Parallel operation of dc sources
    • H02J1/102Parallel operation of dc sources being switching converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

本发明公开了一种多台双向储能变流器并联下垂的控制方法,包括:有太阳光照时,利用现场总线通信方式, N(N≥2)台双向储能变流器从光伏逆变器的最大功率点控制器同时获得光伏阵列最优的输出电压作为直流母线的电压指令,利用下垂控制方式,N台双向储能变流器进行各自的功率开关控制;无太阳光照时,以光伏逆变器的最大功率点控制器通过现场总线通信方式最后发出的光伏阵列最优电压作为直流母线的电压指令进行稳压控制,利用下垂控制方式, N台双向储能变流器进行各自的功率开关控制。该多台双向储能变流器并联下垂的控制方法,可以实现输出电流均衡、储能变流器不易故障和储能系统可靠性高的优点。

Description

一种多台双向储能变流器并联下垂的控制方法
技术领域
本发明涉及光伏发电与储能相结合为负载供电的应用领域,具体地,涉及一种多台双向储能变流器并联下垂的控制方法。
背景技术
在国家政策的大力扶持下,分布式光伏发电系统进入了快速发展时期,但由于太阳光的间歇特性,所以导致光伏发电功率存在波动,势必影响负载的供电质量,储能系统可以实现功率波动抑制功能,从而对光伏发电的波动功率进行有益补充,对负载而言,得到了与大电网类似的稳定供电电源。
双向储能变流器是储能系统的功率变换部分,对其控制的优劣直接决定了储能系统的整体性能。为了实现模块化的目的,通常大功率的双向储能变流器由多台相同小功率的双向储能变流器并联组成,既利于装配与维护,也利于增加系统的冗余度,减小故障停机的风险。但是,多台双向储能变流器并联运行时,存在各台储能变流器间输出电流不均的问题,输出电流较大的储能变流器容易引起过载和过热,势必影响储能系统的可靠性。
在实现本发明的过程中,发明人发现现有技术中至少存在输出电流不均衡、储能变流器易故障和储能系统可靠性低等缺陷。
发明内容
本发明的目的在于,针对上述问题,提出一种多台双向储能变流器并联下垂的控制方法,以实现输出电流均衡、储能变流器不易故障和储能系统可靠性高的优点。
为实现上述目的,本发明采用的技术方案是:一种多台双向储能变流器并联下垂的控制方法,包括:
a、有太阳光照时,利用现场总线通信方式,使得储能系统中N(N≥2)台双向储能变流器从光伏逆变器的最大功率点控制器同时获得光伏阵列最优的输出电压作为直流母线的电压指令,利用下垂控制方式,N台双向储能变流器进行各自的功率开关控制;
b、无太阳光照时,以光伏逆变器的最大功率点控制器通过现场总线通信方式最后发出的光伏阵列最优电压作为直流母线的电压指令进行稳压控制,利用下垂控制方式,使得储能系统中N台双向储能变流器进行各自的功率开关控制。
进一步地,所述步骤a,具体包括:
对于现场总线通信方式,光伏逆变器作为主机,通过现场总线监视各台双向储能变流器的工作情况,同时将目前的光伏阵列输出的最优电压Umpp传送给每台双向储能变流器从机,作为直流母线电压的指令值;
当光伏阵列的最优输出电压Umpp随着太阳光照和环境温度变化时,每台从机获得的直流母线电压的指令值也跟随变化。
进一步地,在步骤a中,对于下垂控制方式,储能系统工作过程分为充电过程、放电过程和不充不放过程:
1)不充不放过程
当直流母线的电压Udc处于光伏阵列的最优电压Umpp*范围内时,由各台双向储能变流器组成的储能系统不动作,既不进行充电,也不进行放电,此时允许光伏阵列的输出电压以±C*Umpp进行波动;
当光伏阵列的最优输出电压Umpp随着太阳光照和环境温度变化时,其不充不放的电压范围也跟着变化,即仍由式Umpp*进行计算;
2)充电过程
当直流母线的电压Udc大于光伏阵列的最优电压Umpp*=UHB,而小于等于UHU时,此时,蓄电池组的充电功率P *按照式(1)的下垂直线进行计算:
其中,I充ed为直流母线的额定充电电流,U标HB为Umpp*,Umpp为标准光照条件下的光伏阵列的最优输出电压,通常通过串联的光伏组件铭牌参数计算获得;
当光伏阵列的最优输出电压Umpp随着太阳光照和环境温度变化时,充电过程的直线斜率k不变,其工作点在保持蓄电池组充电功率不变基础上,在Umpp变化前后两条对应的下垂直线上进行上下运动;
3)放电过程
当直流母线的电压Udc小于光伏阵列的最优电压Umpp*=ULB,而小于等于ULU时,此时,蓄电池组的放电功率P *按照式(2)的下垂直线进行计算:
其中,I放ed为直流母线的额定放电电流,U标LB为Umpp*,Umpp为标准光照条件下的光伏阵列的最优输出电压,通常通过串联的光伏组件铭牌参数计算获得;
当光伏阵列的最优输出电压Umpp随着太阳光照和环境温度变化时,放电过程的直线斜率k不变,其工作点在保持蓄电池组放电功率不变基础上,在Umpp变化前后两条对应的下垂直线上进行上下运动。
进一步地,所述步骤b,具体包括:
当阴雨天、夜晚等自然条件下,没有太阳光照射在光伏阵列上时,需要储能系统对直流母线电压进行控制;
然后,按照与上述的储能系统的充电过程、放电过程和不充不放过程一样的控制方法,各台双向储能变流器进行下垂控制,以实现均流的目的,同时,光伏逆变器主机通过现场总线通信方式监视各台双向储能变流器的工作情况,不再发送直流母线的电压指令。
进一步地,在步骤b中,对于每台双向储能变流器,按照如下控制算法控制各自的功率开关动作:
1、充电过程
由获得的直流母线电压指令值计算UHB,由检测的直流母线电压Udc按照公式(1)计算蓄电池组充电功率P *,P *除以Udc得到双向储能变流器的电感电流指令值iL*,iL*减去该双向储能变流器的电感电流检测值iL,经过比例积分调节器作用,得到调制信号,该调制信号与三角载波进行比较,得到双向储能变流器中BUCK变换器的功率开关的驱动脉冲信号,该脉冲信号电平逻辑取反,得到双向储能变流器中BOOST变换器的功率开关的驱动脉冲信号,从而完成该双向储能变流器对蓄电池组的充电控制过程;
2、放电过程
由获得的直流母线电压指令值计算ULB,由检测的直流母线电压Udc按照公式(2)计算蓄电池组充电功率P *,P *除以Udc得到双向储能变流器的电感电流指令值iL*,iL*减去该双向储能变流器的电感电流检测值iL,经过比例积分调节器作用,得到调制信号,该调制信号与三角载波进行比较,得到双向储能变流器中BOOST变换器的功率开关的驱动脉冲信号,该脉冲信号电平逻辑取反,得到双向储能变流器中BUCK变换器的功率开关的驱动脉冲信号,从而完成该双向储能变流器对蓄电池组的充电控制过程。
本发明各实施例的多台双向储能变流器并联下垂的控制方法,由于包括:有太阳光照时,利用现场总线通信方式,N(N≥2)台双向储能变流器从光伏逆变器的最大功率点控制器同时获得光伏阵列最优的输出电压作为直流母线的电压指令,利用下垂控制方式,N台双向储能变流器进行各自的功率开关控制;无太阳光照时,以光伏逆变器的最大功率点控制器通过现场总线通信方式最后发出的光伏阵列最优电压作为直流母线的电压指令进行稳压控制,利用下垂控制方式,N台双向储能变流器进行各自的功率开关控制;从而可以克服现有技术中输出电流不均衡、储能变流器易故障和储能系统可靠性低的缺陷,以实现输出电流均衡、储能变流器不易故障和储能系统可靠性高的优点。
本发明的其它特征和优点将在随后的说明书中阐述,并且,部分地从说明书中变得显而易见,或者通过实施本发明而了解。
下面通过附图和实施例,对本发明的技术方案做进一步的详细描述。
附图说明
附图用来提供对本发明的进一步理解,并且构成说明书的一部分,与本发明的实施例一起用于解释本发明,并不构成对本发明的限制。在附图中:
图1为本发明中整个储能系统组成框架图;
图2为本发明中单台双向储能变流器电路示意图;
图3为本发明中单台双向储能变流器的充电过程控制算法框图;
图4为本发明中是单台双向储能变流器的放电过程控制算法框图;
图5为本发明中当光伏阵列最优输出电压Umpp时充电、放电、不充不放过程的直流母线电压与蓄电池组充电功率、放电功率的关系;
图6为本发明中Umpp变大时充电过程运动轨迹和Umpp变小时放电过程运动轨迹。
具体实施方式
以下结合附图对本发明的优选实施例进行说明,应当理解,此处所描述的优选实施例仅用于说明和解释本发明,并不用于限定本发明。
对于并联均流方法,一般分为采用通信方式的主从控制方式和无联络线的下垂控制方式,本发明结合了现场总线通信方式和下垂控制方式进行多台双向储能变流器的均流控制。
根据本发明实施例,如图1-图6所示,提供了一种多台双向储能变流器并联下垂的控制方法,具体是一种用于稳定光伏阵列输出电压的多台双向储能变流器并联下垂的控制方法。
本发明专利的目的是提供一种用于稳定光伏阵列输出电压的多台双向储能变流器并联下垂的控制方法。当有太阳光照时,可以保证光伏阵列工作在最大功率点,不管有无太阳光照时,都可以保证多台双向储能变流器具有较好的均流效果。
本发明专利所采用的技术方案是,一种用于稳定光伏阵列输出电压的多台双向储能变流器并联下垂的控制方法,包括:
有太阳光照时,利用现场总线通信方式(例如CAN总线),N(N≥2)台双向储能变流器从光伏逆变器的最大功率点控制器同时获得光伏阵列最优的输出电压作为直流母线的电压指令,利用下垂控制方式,N台双向储能变流器进行各自的功率开关控制,以稳定光伏阵列输出最优电压以及达到均流的目的;
无太阳光照时,以光伏逆变器的最大功率点控制器通过现场总线通信方式最后发出的光伏阵列最优电压作为直流母线的电压指令进行稳压控制,利用下垂控制方式,N台双向储能变流器进行各自的功率开关控制,来达到均流的目的。
光伏阵列输出电压正极通过防反充二极管与直流母线的“+”连接,光伏阵列输出电压负极直接与直流母线的“-”连接,带有最大功率点控制器的光伏逆变器的正负输入端分别与直流母线的“+”、“-”连接,光伏逆变器的输出端与负载连接。双向储能变流器1的正负输入端分别与直流母线的“+”、“-”连接,双向储能变流器1的输出端与蓄电池组连接。双向储能变流器2的正负输入端分别与直流母线的“+”、“-”连接,双向储能变流器2的输出端与蓄电池组连接。同理,双向储能变流器N的正负输入端分别与直流母线的“+”、“-”连接,双向储能变流器N的输出端与蓄电池组连接。光伏逆变器和双向储能变流器1、双向储能变流器2及双向储能变流器N之间通过现场总线方式进行通信,光伏逆变器是主机,各台双向储能变流器是从机。
双向储能变流器1、双向储能变流器2与双向储能变流器N的电路结构完全相同,都是典型的非隔离型双向BUCK-BOOST变换器。它们所连接的蓄电池组也完全相同。
储能系统分为有太阳光照条件下的工作过程和无太阳光照条件下的工作过程。
1、有太阳光照条件下的工作过程
对于现场总线通信方式,光伏逆变器作为主机,通过现场总线监视各台双向储能变流器的工作情况,同时将目前的光伏阵列输出的最优电压Umpp传送给每台双向储能变流器从机,作为直流母线电压的指令值。当光伏阵列的最优输出电压Umpp随着太阳光照和环境温度变化时,每台从机获得的直流母线电压的指令值也跟随变化。
对于下垂控制方式,储能系统工作过程分为充电过程、放电过程和不充不放过程。
1)不充不放过程
当直流母线的电压Udc处于光伏阵列的最优电压Umpp*(1±ε)范围(例如ε=5%)内时,由各台双向储能变流器组成的储能系统不动作,既不进行充电,也不进行放电,此时允许光伏阵列的输出电压以±C*Umpp进行波动。
当光伏阵列的最优输出电压Umpp随着太阳光照和环境温度变化时,其不充不放的电压范围也跟着变化,即仍由式Umpp*(1±ε)进行计算。
2)充电过程
当直流母线的电压Udc大于光伏阵列的最优电压Umpp*(1+ε)=UHB,而小于等于UHU(UHU是蓄电池组额定充电功率P充max所对应的直流母线电压值)时,此时,蓄电池组的充电功率P *按照式(1)的下垂直线进行计算。
其中,I充ed为直流母线的额定充电电流,U标HB为Umpp*(1+ε),Umpp为标准光照条件下的光伏阵列的最优输出电压,通常可以通过串联的光伏组件铭牌参数计算获得。
当光伏阵列的最优输出电压Umpp随着太阳光照和环境温度变化时,充电过程的直线斜率k不变,其工作点在保持蓄电池组充电功率不变基础上,在Umpp变化前后两条对应的下垂直线上进行上下运动。即当Umpp增加时,其工作点由原来的下垂直线跃升到现在的下垂直线上,且保持蓄电池组充电功率不变;当Umpp减少时,其工作点由原来的下垂直线突降到现在的下垂直线上,且保持蓄电池组充电功率不变。当直流母线电压超过允许的上限工作电压Umax时,光伏逆变器和储能系统都进行过压保护。
3)放电过程
当直流母线的电压Udc小于光伏阵列的最优电压Umpp*(1-ε)=ULB,而小于等于ULU(ULU是蓄电池组额定放电功率P放max所对应的直流母线电压值)时,此时,蓄电池组的放电功率P *按照式(2)的下垂直线进行计算。
其中,I放ed为直流母线的额定放电电流,U标LB为Umpp*(1-ε),Umpp为标准光照条件下的光伏阵列的最优输出电压,通常可以通过串联的光伏组件铭牌参数计算获得。
当光伏阵列的最优输出电压Umpp随着太阳光照和环境温度变化时,放电过程的直线斜率k不变,其工作点在保持蓄电池组放电功率不变基础上,在Umpp变化前后两条对应的下垂直线上进行上下运动。即当Umpp增加时,其工作点由原来的下垂直线跃升到现在的下垂直线上,且保持蓄电池组充电功率不变;当Umpp减少时,其工作点由原来的下垂直线突降到现在的下垂直线上,且保持蓄电池组充电功率不变。当直流母线电压超过允许的下限工作电压Umin时,光伏逆变器和储能系统都进行欠压保护。
2、无太阳光照条件下的工作过程
当阴雨天、夜晚等自然条件下,没有太阳光照射在光伏阵列上时,需要储能系统对直流母线电压进行控制。此时,直流母线的电压指令值来源于两种情况,一种情况是太阳自然日落时以光伏逆变器的最大功率点控制器通过现场总线通信方式最后发出的光伏阵列最优电压作为直流母线的电压指令进行稳压控制;另一种情况是初始时就没有太阳光照,以默认设定的直流母线的电压值(例如标准光照条件下的光伏阵列最优输出电压Umpp)作为指令值。然后,按照与上述的储能系统的充电过程、放电过程和不充不放过程一样的控制方法,各台双向储能变流器进行下垂控制,以实现均流的目的,同时,光伏逆变器主机通过现场总线通信方式监视各台双向储能变流器的工作情况,不再发送直流母线的电压指令。
对于每台双向储能变流器,按照如下控制算法控制各自的功率开关动作。
1、充电过程
由获得的直流母线电压指令值计算UHB,由检测的直流母线电压Udc按照公式(1)计算蓄电池组充电功率P *,P *除以Udc得到双向储能变流器的电感电流指令值iL*,iL*减去该双向储能变流器的电感电流检测值iL,经过比例积分(PI)调节器作用,得到调制信号,该调制信号与三角载波进行比较,得到双向储能变流器中BUCK变换器的功率开关的驱动脉冲信号,该脉冲信号电平逻辑取反,得到双向储能变流器中BOOST变换器的功率开关的驱动脉冲信号,从而完成该双向储能变流器对蓄电池组的充电控制过程。
2、放电过程
由获得的直流母线电压指令值计算ULB,由检测的直流母线电压Udc按照公式(2)计算蓄电池组充电功率P *,P *除以Udc得到双向储能变流器的电感电流指令值iL*,iL*减去该双向储能变流器的电感电流检测值iL,经过比例积分(PI)调节器作用,得到调制信号,该调制信号与三角载波进行比较,得到双向储能变流器中BOOST变换器的功率开关的驱动脉冲信号,该脉冲信号电平逻辑取反,得到双向储能变流器中BUCK变换器的功率开关的驱动脉冲信号,从而完成该双向储能变流器对蓄电池组的充电控制过程。
本发明用于稳定光伏阵列输出电压的多台双向储能变流器并联下垂的控制方法的有益效果是:有太阳光照时,随着太阳光照和环境温度的变化,本发明可以自动平滑地跟踪光伏阵列输出最优电压的变化,在稳定光伏阵列输出最优电压的同时,可以达到各台双向储能变流器均流的目的。无太阳光照时,也可以达到各台双向储能变流器均流的目的。
如图1所示,在储能系统中,光伏阵列的第一输出端与防反充二极管的阳极连接,防反充二极管的阴极与光伏逆变器的第一输入端连接;光伏阵列的第二输出端与光伏逆变器的第二输入端连接,最大功率控制器与光伏逆变器连接,光伏逆变器的第一输出端和光伏逆变器的第二输出端分别与负载的第一输入端和负载的第二输入端连接。
防反充二极管的阴极还与直流母线Udc的正极连接,光伏逆变器的第二输入端与直流母线Udc的负极连接,每个双向储能变换器的第一输入端与直流母线Udc的正极连接,每个双向储能变换器的第二输入端与直流母线Udc的负极连接,每个双向储能变换器的第一输出端和每个双向储能变换器的第二输出端分别与对应的蓄电池组的第一输入端和蓄电池组的第二输入端连接,每个双向储能变流器的控制端分别通过现场通信总线与最大功率点控制器连接。
如图2所示,第一电容C1并联在直流母线的正极和直流母线的负极之间,直流母线的正极与第一MOS管S1的漏极和第一二极管D1的阴极连接,第一MOS管S1的栅极为驱动脉冲信号输入端,第一MOS管S1的源极分别与第一二极管D1的阳极、第二MOS管S2的漏极、第二二极管D2的阴极和电感L1的第一连接端连接,第二MOS管S2的栅极为驱动脉冲信号输入端,第二MOS管S2的源极与第二二极管D2的阳极连接,第二二极管D2的阳极与直流母线的负极连接,蓄电池组与第二电容C2并联,蓄电池组的一端与电感L1的第二连接端连接,蓄电池组的另一端与直流母线的负极连接。
如图3所示,单台双向储能变流器的充电过程控制算法过程,充电功率计算模块、除法器、加法器、PI调节器和比较器依次连接,三角载波模块还与比较器连接,比较器还与电平逻辑取反模块连接;比较器的输出端输出S1驱动脉冲信号,电平逻辑取反模块的输出端输出S2驱动脉冲信号。
如图4所示,单台双向储能变流器的放电过程控制算法过程,充电功率计算模块、除法器、加法器、PI调节器和比较器依次连接,三角载波模块还与比较器连接,比较器还与电平逻辑取反模块连接;比较器的输出端输出S2驱动脉冲信号,电平逻辑取反模块输出S1驱动脉冲信号。
如图5所示,当光伏阵列最优输出电压Umpp时充电、放电、不充不放过程的直流母线电压与蓄电池组充电功率、放电功率的关系。
如图6所示,当光伏阵列最优输出电压由Umpp1增加为Umpp2时,处于充电过程区间。在以Umpp1为直流母线电压指令值时,充电过程的下垂直线按照由A点到B点区间进行工作点控制。当以Umpp2为直流母线电压指令值时,工作点由B点跃迁到C点,然后按照C点到D点区间进行工作点控制,可见,此时下垂直线的充电斜率不变,在蓄电池组充电功率不变的前提下进行工作点跃迁,因此不影响系统的充电功率控制的稳定性。
如图6所示,当光伏阵列最优输出电压由Umpp1减小为Umpp3时,处于放电过程区间。在以Umpp1为直流母线电压指令值时,放电过程的下垂直线按照由E点到F点区间进行工作点控制。当以Umpp3为直流母线电压指令值时,工作点由F点突降到G点,然后按照G点到H点区间进行工作点控制,可见,此时下垂直线的放电斜率不变,在蓄电池组放电功率不变的前提下进行工作点突降,因此不影响系统的放电功率控制的稳定性。
最后应说明的是:以上所述仅为本发明的优选实施例而已,并不用于限制本发明,尽管参照前述实施例对本发明进行了详细的说明,对于本领域的技术人员来说,其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (5)

1.一种多台双向储能变流器并联下垂的控制方法,其特征在于,包括:
a、有太阳光照时,利用现场总线通信方式,使得储能系统中N(N≥2)台双向储能变流器从光伏逆变器的最大功率点控制器同时获得光伏阵列最优的输出电压作为直流母线的电压指令,利用下垂控制方式,N台双向储能变流器进行各自的功率开关控制;
b、无太阳光照时,以光伏逆变器的最大功率点控制器通过现场总线通信方式最后发出的光伏阵列最优电压作为直流母线的电压指令进行稳压控制,利用下垂控制方式,使得储能系统中N台双向储能变流器进行各自的功率开关控制。
2.根据权利要求1所述的多台双向储能变流器并联下垂的控制方法,其特征在于,所述步骤a,具体包括:
对于现场总线通信方式,光伏逆变器作为主机,通过现场总线监视各台双向储能变流器的工作情况,同时将目前的光伏阵列输出的最优电压Umpp传送给每台双向储能变流器从机,作为直流母线电压的指令值;
当光伏阵列的最优输出电压Umpp随着太阳光照和环境温度变化时,每台从机获得的直流母线电压的指令值也跟随变化。
3.根据权利要求2所述的多台双向储能变流器并联下垂的控制方法,其特征在于,在步骤a中,对于下垂控制方式,储能系统工作过程分为充电过程、放电过程和不充不放过程:
1)不充不放过程
当直流母线的电压Udc处于光伏阵列的最优电压Umpp*范围内时,由各台双向储能变流器组成的储能系统不动作,既不进行充电,也不进行放电,此时允许光伏阵列的输出电压以±C*Umpp进行波动;
当光伏阵列的最优输出电压Umpp随着太阳光照和环境温度变化时,其不充不放的电压范围也跟着变化,即仍由式Umpp*进行计算;
2)充电过程
当直流母线的电压Udc大于光伏阵列的最优电压Umpp*=UHB,而小于等于UHU时,此时,蓄电池组的充电功率P *按照式(1)的下垂直线进行计算:
其中,I充ed为直流母线的额定充电电流,U标HB为Umpp*,Umpp为标准光照条件下的光伏阵列的最优输出电压,通常通过串联的光伏组件铭牌参数计算获得;
当光伏阵列的最优输出电压Umpp随着太阳光照和环境温度变化时,充电过程的直线斜率k不变,其工作点在保持蓄电池组充电功率不变基础上,在Umpp变化前后两条对应的下垂直线上进行上下运动;
3)放电过程
当直流母线的电压Udc小于光伏阵列的最优电压Umpp*=ULB,而小于等于ULU时,此时,蓄电池组的放电功率P *按照式(2)的下垂直线进行计算:
其中,I放ed为直流母线的额定放电电流,U标LB为Umpp*,Umpp为标准光照条件下的光伏阵列的最优输出电压,通常通过串联的光伏组件铭牌参数计算获得;
当光伏阵列的最优输出电压Umpp随着太阳光照和环境温度变化时,放电过程的直线斜率k不变,其工作点在保持蓄电池组放电功率不变基础上,在Umpp变化前后两条对应的下垂直线上进行上下运动。
4.根据权利要求1-3中任一项所述的多台双向储能变流器并联下垂的控制方法,其特征在于,所述步骤b,具体包括:
当阴雨天、夜晚等自然条件下,没有太阳光照射在光伏阵列上时,需要储能系统对直流母线电压进行控制;
然后,按照与上述的储能系统的充电过程、放电过程和不充不放过程一样的控制方法,各台双向储能变流器进行下垂控制,以实现均流的目的,同时,光伏逆变器主机通过现场总线通信方式监视各台双向储能变流器的工作情况,不再发送直流母线的电压指令。
5.根据权利要求4所述的多台双向储能变流器并联下垂的控制方法,其特征在于,在步骤b中,对于每台双向储能变流器,按照如下控制算法控制各自的功率开关动作:
1、充电过程
由获得的直流母线电压指令值计算UHB,由检测的直流母线电压Udc按照公式(1)计算蓄电池组充电功率P *,P *除以Udc得到双向储能变流器的电感电流指令值iL*,iL*减去该双向储能变流器的电感电流检测值iL,经过比例积分调节器作用,得到调制信号,该调制信号与三角载波进行比较,得到双向储能变流器中BUCK变换器的功率开关的驱动脉冲信号,该脉冲信号电平逻辑取反,得到双向储能变流器中BOOST变换器的功率开关的驱动脉冲信号,从而完成该双向储能变流器对蓄电池组的充电控制过程;
2、放电过程
由获得的直流母线电压指令值计算ULB,由检测的直流母线电压Udc按照公式(2)计算蓄电池组充电功率P *,P *除以Udc得到双向储能变流器的电感电流指令值iL*,iL*减去该双向储能变流器的电感电流检测值iL,经过比例积分调节器作用,得到调制信号,该调制信号与三角载波进行比较,得到双向储能变流器中BOOST变换器的功率开关的驱动脉冲信号,该脉冲信号电平逻辑取反,得到双向储能变流器中BUCK变换器的功率开关的驱动脉冲信号,从而完成该双向储能变流器对蓄电池组的充电控制过程。
CN201410753929.1A 2014-12-10 2014-12-10 一种多台双向储能变流器并联下垂的控制方法 Active CN104485728B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410753929.1A CN104485728B (zh) 2014-12-10 2014-12-10 一种多台双向储能变流器并联下垂的控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410753929.1A CN104485728B (zh) 2014-12-10 2014-12-10 一种多台双向储能变流器并联下垂的控制方法

Publications (2)

Publication Number Publication Date
CN104485728A true CN104485728A (zh) 2015-04-01
CN104485728B CN104485728B (zh) 2018-05-08

Family

ID=52760248

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410753929.1A Active CN104485728B (zh) 2014-12-10 2014-12-10 一种多台双向储能变流器并联下垂的控制方法

Country Status (1)

Country Link
CN (1) CN104485728B (zh)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105515208A (zh) * 2015-12-28 2016-04-20 新疆希望电子有限公司 一种光伏—储能系统以及其内部数据交换的通信方法
CN105633993A (zh) * 2016-03-15 2016-06-01 北京科力通电气股份有限公司 一种模块化超级电容储能单元
CN106100029A (zh) * 2016-06-29 2016-11-09 国网浙江省电力公司杭州供电公司 一种储能快充站
CN106452122A (zh) * 2016-09-22 2017-02-22 许继电气股份有限公司 Ac/dc直流源并联协调运行控制方法和控制装置
CN106549372A (zh) * 2016-11-02 2017-03-29 许继集团有限公司 一种直流微电网系统及其孤岛运行控制方法
CN107666147A (zh) * 2016-07-27 2018-02-06 无锡丰晟科技有限公司 一种电网储能系统
CN109038780A (zh) * 2018-06-29 2018-12-18 华为技术有限公司 一种光伏系统
CN110502057A (zh) * 2019-07-05 2019-11-26 北京空间飞行器总体设计部 一种无需电流检测的航天器太阳能功率调节模块均流方法
CN111630762A (zh) * 2017-12-22 2020-09-04 Lg伊诺特有限公司 包括直流/直流转换器的供电系统及其控制方法
CN112104024A (zh) * 2020-09-04 2020-12-18 易事特集团股份有限公司 储能变换器自适应下垂控制方法及其控制系统
CN112165126A (zh) * 2020-09-27 2021-01-01 新风光电子科技股份有限公司 双向变流器并联运行环流抑制自适应控制方法
CN112803475A (zh) * 2020-12-31 2021-05-14 深圳市富兰瓦时技术有限公司 一种户用储能逆变器并机控制系统及方法
CN113708359A (zh) * 2020-05-21 2021-11-26 中车株洲电力机车研究所有限公司 一种双向dcdc变流器控制方法、系统及相关组件

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103472885A (zh) * 2013-08-19 2013-12-25 西安理工大学 应用于多级式光伏并网发电系统的最大功率点追踪方法
CN103825291A (zh) * 2014-02-24 2014-05-28 国家电网公司 一种模块化三电平储能装置并离网控制方法
JP2014106935A (ja) * 2012-11-29 2014-06-09 Noritz Corp 発電システム

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014106935A (ja) * 2012-11-29 2014-06-09 Noritz Corp 発電システム
CN103472885A (zh) * 2013-08-19 2013-12-25 西安理工大学 应用于多级式光伏并网发电系统的最大功率点追踪方法
CN103825291A (zh) * 2014-02-24 2014-05-28 国家电网公司 一种模块化三电平储能装置并离网控制方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
雷建: "单相光伏逆变器并联系统控制策略研究", 《CNKI优秀硕士论文全文数据库》 *

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105515208A (zh) * 2015-12-28 2016-04-20 新疆希望电子有限公司 一种光伏—储能系统以及其内部数据交换的通信方法
CN105633993A (zh) * 2016-03-15 2016-06-01 北京科力通电气股份有限公司 一种模块化超级电容储能单元
CN106100029B (zh) * 2016-06-29 2019-01-25 国网浙江省电力公司杭州供电公司 一种储能快充站
CN106100029A (zh) * 2016-06-29 2016-11-09 国网浙江省电力公司杭州供电公司 一种储能快充站
CN107666147A (zh) * 2016-07-27 2018-02-06 无锡丰晟科技有限公司 一种电网储能系统
CN106452122A (zh) * 2016-09-22 2017-02-22 许继电气股份有限公司 Ac/dc直流源并联协调运行控制方法和控制装置
CN106549372B (zh) * 2016-11-02 2019-04-12 许继集团有限公司 一种直流微电网系统及其孤岛运行控制方法
CN106549372A (zh) * 2016-11-02 2017-03-29 许继集团有限公司 一种直流微电网系统及其孤岛运行控制方法
CN111630762A (zh) * 2017-12-22 2020-09-04 Lg伊诺特有限公司 包括直流/直流转换器的供电系统及其控制方法
CN111630762B (zh) * 2017-12-22 2024-04-02 Lg伊诺特有限公司 包括直流/直流转换器的供电系统及其控制方法
CN109038780A (zh) * 2018-06-29 2018-12-18 华为技术有限公司 一种光伏系统
WO2020001051A1 (zh) * 2018-06-29 2020-01-02 华为技术有限公司 一种光伏系统
CN110502057A (zh) * 2019-07-05 2019-11-26 北京空间飞行器总体设计部 一种无需电流检测的航天器太阳能功率调节模块均流方法
CN110502057B (zh) * 2019-07-05 2020-12-25 北京空间飞行器总体设计部 一种无需电流检测的航天器太阳能功率调节模块均流方法
CN113708359A (zh) * 2020-05-21 2021-11-26 中车株洲电力机车研究所有限公司 一种双向dcdc变流器控制方法、系统及相关组件
CN113708359B (zh) * 2020-05-21 2024-04-05 中车株洲电力机车研究所有限公司 一种双向dcdc变流器控制方法、系统及相关组件
CN112104024A (zh) * 2020-09-04 2020-12-18 易事特集团股份有限公司 储能变换器自适应下垂控制方法及其控制系统
CN112165126A (zh) * 2020-09-27 2021-01-01 新风光电子科技股份有限公司 双向变流器并联运行环流抑制自适应控制方法
CN112803475A (zh) * 2020-12-31 2021-05-14 深圳市富兰瓦时技术有限公司 一种户用储能逆变器并机控制系统及方法

Also Published As

Publication number Publication date
CN104485728B (zh) 2018-05-08

Similar Documents

Publication Publication Date Title
CN104485728A (zh) 一种多台双向储能变流器并联下垂的控制方法
US11929620B2 (en) Maximizing power in a photovoltaic distributed power system
CN103545905B (zh) 一种光伏直流微电网能量协调控制方法
KR101097260B1 (ko) 계통 연계형 전력 저장 시스템 및 전력 저장 시스템 제어 방법
US10283964B2 (en) Predictive control for energy storage on a renewable energy system
KR101678536B1 (ko) 배터리 온도 제어 시스템과 이를 구비한 전력 저장 시스템 및 그 제어 방법
KR101698771B1 (ko) 배터리 온도 제어 시스템 및 그 제어 방법
US10811900B2 (en) Uninterruptible power supply system and uninterruptible power supply apparatus
US20100133911A1 (en) Solar power array with maximized panel power extraction
KR101331183B1 (ko) 에너지저장 기능을 갖는 무정전전원장치
JP5882845B2 (ja) 電力貯蔵型太陽光発電システム
JP2008099527A (ja) 電力系統に接続された自家発電設備における蓄電池設備および蓄電池設備の運転方法
JP2013138530A (ja) 太陽電池発電システム
CN103441667A (zh) 一种应用于多级储能系统的直流控制装置
KR20150106694A (ko) 에너지 저장 시스템과 그의 구동방법
JP2012161189A (ja) 蓄電池への太陽電池電力の充放電制御方法
CN204809877U (zh) 储能设备的控制电路
WO2018177062A1 (zh) 供电系统和供电系统的控制方法
KR20130026788A (ko) 풍력 발전 시스템 및 그 제어방법
CN103795116A (zh) 一种电源转换及控制装置、供电方法和系统
KR20220101569A (ko) 그리드 레벨에서 모듈과 배터리를 결합한 하이브리드 태양광 발전시스템
CN203617724U (zh) 一种太阳能发电站智能并网发电装置系统
JP5810254B2 (ja) 蓄電装置
CN109861288B (zh) 基于cps的光伏混合储能电力系统
CN219611358U (zh) 家庭光伏储能混合并网系统

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant