CN104480429B - 一种铂纳米颗粒负载介孔氧化铝原位制备方法 - Google Patents

一种铂纳米颗粒负载介孔氧化铝原位制备方法 Download PDF

Info

Publication number
CN104480429B
CN104480429B CN201410826776.9A CN201410826776A CN104480429B CN 104480429 B CN104480429 B CN 104480429B CN 201410826776 A CN201410826776 A CN 201410826776A CN 104480429 B CN104480429 B CN 104480429B
Authority
CN
China
Prior art keywords
nanoparticle
aluminum oxide
loaded mesoporous
bianry alloy
target
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201410826776.9A
Other languages
English (en)
Other versions
CN104480429A (zh
Inventor
麻彦龙
黄伟九
孟晓敏
陈小丽
易雅楠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chongqing University of Technology
Original Assignee
Chongqing University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chongqing University of Technology filed Critical Chongqing University of Technology
Priority to CN201410826776.9A priority Critical patent/CN104480429B/zh
Publication of CN104480429A publication Critical patent/CN104480429A/zh
Application granted granted Critical
Publication of CN104480429B publication Critical patent/CN104480429B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/16Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon
    • C23C14/165Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon by cathodic sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3464Sputtering using more than one target
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • C25D11/04Anodisation of aluminium or alloys based thereon
    • C25D11/06Anodisation of aluminium or alloys based thereon characterised by the electrolytes used
    • C25D11/08Anodisation of aluminium or alloys based thereon characterised by the electrolytes used containing inorganic acids

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Electrochemistry (AREA)
  • Catalysts (AREA)
  • Physical Vapour Deposition (AREA)
  • Powder Metallurgy (AREA)

Abstract

本发明属于纳米材料技术领域,是一种利用磁控溅射和阳极氧化双联技术原位制备铂纳米颗粒负载介孔氧化铝的方法。本发明的目的是提供一种工序简单、成本低、纳米颗粒分散性好且不易团聚的铂纳米颗粒负载介孔氧化铝生产方法。本发明的技术方案是一种铂纳米颗粒负载介孔氧化铝原位制备方法,包括Al‑Pt二元合金的制备及阳极氧化两个步骤。采用本发明方法制备铂纳米颗粒负载介孔氧化铝具有工序简单、成本低、纳米颗粒分散性好、纳米颗粒不易团聚等特点。

Description

一种铂纳米颗粒负载介孔氧化铝原位制备方法
技术领域
本发明属于纳米材料技术领域,是一种利用磁控溅射和阳极氧化双联技术原位制备铂纳米颗粒负载介孔氧化铝的方法。
背景技术
介孔材料(Mesoporous material)一般指孔径分布在2-50nm的多孔材料。由于介孔材料在催化剂、离子交换、传感器等领域有广阔的应用前景而受到材料研究者的关注。然而介孔材料的这些应用均要依赖于介孔材料本身所不具有的一些特殊性能。通过在介孔材料中引入具有特殊功能的纳米颗粒即可实现介孔材料的特殊性能,比如在催化剂领域里应用的Pd、Pt纳米颗粒、在磁性材料领域应用的Fe及其氧化物颗粒、在光学领域应用的Ag-Au合金颗粒等。然而,要想将纳米颗粒均匀的分散到介孔材料里面,同时保证其在后续的生产和使用过程中不发生团聚和长大仍然是一项巨大的挑战。
传统制备纳米颗粒负载介孔氧化物复合结构的方法主要包括介孔氧化物的制备和纳米颗粒的加载两个过程。介孔氧化物的制备又有氧化还原法、溶胶-凝胶法、阳极氧化法等,总体上比较成熟。而纳米颗粒的加载工艺复杂、技术要求高、控制难度大,是制备过程的成本和质量控制步骤。纳米颗粒的加载一般通过化学/电化学沉积的方法来完成,即将制备好的介孔氧化物载体浸在含有要加载的金属或金属离子的溶液中,通过化学/电化学沉积制得纳米金属颗粒,然后再进行干燥得到纳米颗粒负载介孔氧化物。目前,传统制备纳米颗粒负载介孔氧化物的工艺仍然面临纳米金属颗粒的分散度不够高以及纳米金属颗粒在制备和使用过程中容易团聚两个突出问题。
发明内容
本发明的目的是提供一种工序简单、成本低、纳米颗粒分散性好且不易团聚和长大的铂纳米颗粒负载介孔氧化铝生产方法。
本发明的技术方案是一种铂纳米颗粒负载介孔氧化铝原位制备方法,包括如下步骤:
a、制备Al-Pt二元合金:在直径为5cm的纯铝靶材上缠绕2~5根直径0.5~1mm、长3~5cm的铂丝制成Al-Pt复合靶材;以铝片为基材,通过Al-Pt复合靶材和纯Al靶材双靶共溅射的方法制备Al-Pt二元合金;溅射电流分别为Al-Pt复合靶材110~200mA和纯Al靶200~320mA;溅射时间为10~20min;
b、阳极氧化:将步骤a获得的Al-Pt二元合金置于0.3~0.6M的硫酸水溶液中,在0~6V动电位或恒电位阳极氧化,制备出铂纳米颗粒负载介孔氧化铝。
具体的,步骤a中在铝基材上获得一层厚100~200nm的Al-Pt二元合金,铂含量为1at%~5at%。
具体的,步骤b中在Al-Pt二元合金上制备出一层厚100~200nm的铂纳米颗负载介孔氧化铝,铂纳米颗粒的尺寸为5~50nm,且均匀弥散的分布于介孔氧化铝的孔壁之中。
具体的,步骤a中,溅射电流分别为Al-Pt复合靶材110mA和纯Al靶320mA;溅射时间为10min。
具体的,步骤b中硫酸水溶液浓度为0.4M。
具体的,步骤b中在3V电压阳极氧化20min。
本发明的有益效果:
本发明方法中介孔氧化物的制备和金属纳米颗粒的加载不是分开而是同步进行,所以生产工序更加简便;金属纳米颗粒随氧化膜孔的形成而分散,所以分散度更高且易于控制;金属纳米颗粒之间有氧化膜物质存在,可防止纳米颗粒在使用过程中(尤其在高温条件下)的烧结和团聚;本工艺的关键步骤为磁控溅射和阳极氧化两个传统技术,具有技术容易掌握、投资成本低等特点,因此利于后期的技术推广和应用。本发明方法是对传统阳极氧化技术的创造性发展,在化学催化、离子交换、传感器等领域有广阔的应用前景,同时对开发其它金属颗粒负载介孔氧化物功能材料有重要的启发意义。
附图说明
图1:磁控溅射获得的Al-Pt二元合金表面形貌
图2:磁控溅射获得的Al-Pt二元合金截面形貌
图3:0-6V动电位阳极氧化获得的铂纳米颗粒负载介孔氧化铝的表面形貌
图4:0-6V动电位阳极氧化获得的铂纳米颗粒负载介孔氧化铝的截面形貌
图5:3V恒压阳极氧化20min得到的铂纳米颗粒负载介孔氧化铝表面形貌
图6:3V恒压阳极氧化20min得到的铂纳米颗粒负载介孔氧化铝截面形貌
具体实施方式
本发明为了克服传统工艺的缺点,将介孔材料的制备和纳米颗粒的加载两个过程同时完成。研究表明,在阳极氧化Al、Ti、Zr等阀金属为基的合金时,如果固溶体合金中所包含的合金元素对应的氧化物生成吉布斯自由能变(△G0)比阀金属氧化物的△G0更正,那么合金元素将首先在金属表面富集,然后取决于加载电压和△G0值的大小,要么发生氧化,要么以金属纳米颗粒的形式进入多孔阳极氧化膜结构中。因此,如果可以设法得到A-B二元合金,其中A为介孔氧化物的金属源(如Al、Ti、Zr等),B为纳米金属颗粒的金属源(如Pt、Au、Ag等),然后将该二元合金在酸性溶液中进行阳极氧化,通过控制二元合金的成分(惰性元素含量过多时阳极氧化难以进行)和阳极氧化条件(惰性元素的稳定性越强发生选择性氧化的电压范围越大),就有望通过一步法获得纳米颗粒负载介孔氧化物。这正是本发明专利的理论依据。
本发明中,通过控制Al-Pt复合靶材及纯Al靶材的溅射电流来控制Al-Pt二元合金中Al︰Pt的比例;通过控制阳极氧化电压及加载方式控制介孔氧化铝的孔隙度及铂纳米颗粒的尺寸和分散程度。
实施例1
a、制备Al-Pt二元合金
(1)取直径0.5mm的铂丝216mm,分5段固定在直径50mm的纯Al靶材上,制成Al-Pt复合靶材;
(2)取另外一个直径为50mm纯Al靶材作为第二靶材;
(3)将两个靶材装入样品仓内,设定纯Al靶材溅射电流为320mA、Al-Pt复合靶材的溅射电流为110mA,磁控溅射时间为10min,在纯铝基材上溅射一层Al-Pt二元合金;
(4)采用场发射扫描电镜观察Al-Pt二元合金的表面形貌,如图1所示;
(5)采用显微切割技术制备透射电镜样品(样品名义厚度15nm),然后在透射电镜上进行组织观察,如图2所示,其中Al-Pt二元合金的厚度约为145nm,成分(原子百分比)为98.35%Al,1.65%Pt。
b、阳极氧化Al-Pt二元合金
(1)取浓度为98.3%的浓硫酸(密度为1.84g/cm3)0.22ml,缓慢加入到适量去离子水中,配制成浓度为0.4M的硫酸水溶液;
(2)取步骤a中制备的沉积有Al-Pt二元合金的铝片,将样品的边缘和背面用有机漆进行封闭,留出面积为1cm2的Al-Pt二元合金表面,冷风干燥待用;
(3)在恒电位仪上进行阳极氧化:将封闭好的样品放入配制好的硫酸水溶液中并与电源的正极相连;将电源的负极与环形的纯铝片相连;采用饱和甘汞电极为参比电极;从开路电位(OCP)开始正向扫描至6V(OCP),扫描速率为33mv/s,制备出铂纳米颗粒负载介孔氧化铝;
(4)采用场发射扫描电镜观察铂纳米颗粒负载介孔氧化铝的表面形貌,如图3所示,其中微孔的大小为10-25nm;
(5)采用纳米显微切割技术制备透射电镜样品(样品名义厚度15nm),然后在透射电子显微镜上进行组织观察,铂纳米颗粒负载介孔氧化铝的组织如图4所示,其中铂纳米颗粒负载介孔氧化铝的厚度约为100nm,铂纳米颗粒(黑色点)的大小为3-20nm。
实施例2
a、制备Al-Pt二元合金
Al-Pt二元合金的制备过程同实施例1中的a步骤。
b、制备铂纳米颗粒负载介孔氧化铝
(1)同实施例1中的b步骤中的(1)。
(2)同实施例1中的b步骤中的(2)。
(3)在恒电位仪上进行阳极氧化:将封闭好的样品放入配制好的硫酸水溶液中并与电源的正极相连;将电源的负极与环形的纯铝片相连;采用饱和甘汞电极为参比电极;在恒定电位3V(OCP)下进行阳极氧化20min,制备出铂纳米颗粒负载介孔氧化铝。
(4)采用场发射扫描电镜观察铂纳米颗粒负载介孔氧化铝的表面形貌,如图5所示,其中微孔大小为9-20nm;
(5)采用纳米显微切割技术制备透射电镜样品(样品名义厚度15nm),然后在透射电子显微镜上进行组织观察,如图6所示,其中铂纳米颗粒负载介孔氧化铝的厚度约为150nm,铂纳米颗粒(黑色点)的大小为5-15nm。
实施例3
a、制备Al-Pt二元合金
(1)取直径1mm的铂丝95mm,分2段固定在直径50mm的纯Al靶材上,制成Al-Pt复合靶材;
(2)取另外一个直径为50mm纯Al靶材作为第二靶材;
(3)将两个靶材装入样品仓内,设定纯Al靶材溅射电流为200mA、Al-Pt复合靶材的溅射电流为200mA,磁控溅射时间为15min,在纯铝基材上溅射一层Al-Pt二元合金,其中Al-Pt二元合金的厚度约为165nm,成分(原子百分比)为96.5%Al,3.5%Pt。
b、阳极氧化Al-Pt二元合金
(1)取浓度为98.3%的浓硫酸(密度为1.84g/cm3)0.32ml,缓慢加入到适量去离子水中,配制成浓度为0.6M的硫酸水溶液;
(2)取步骤a中制备的沉积有Al-Pt二元合金的铝片,将样品的边缘和背面用有机漆进行封闭,留出面积为1cm2的Al-Pt二元合金表面,冷风干燥待用;
(3)在恒电位仪上进行阳极氧化:将封闭好的样品放入配制好的硫酸水溶液中并与电源的正极相连;将电源的负极与环形的纯铝片相连;采用饱和甘汞电极为参比电极;从开路电位(OCP)开始正向扫描至6V(OCP),扫描速率为33mv/s,制备出厚度约为110nm铂纳米颗粒负载介孔氧化铝,其微孔大小为12-25nm,铂纳米颗粒的大小为2-25nm。
实施例4
a、制备Al-Pt二元合金
Al-Pt二元合金的制备过程同实施例3中的a步骤。
b、制备铂纳米颗粒负载介孔氧化铝
(1)同实施例3中的b步骤中的(1)。
(2)同实施例3中的b步骤中的(2)。
(3)在恒电位仪上进行阳极氧化:将封闭好的样品放入配制好的硫酸水溶液中并与电源的正极相连;将电源的负极与环形的纯铝片相连;采用饱和甘汞电极为参比电极;在恒定电位3V(OCP)下进行阳极氧化20min,制备出厚度约为135nm铂纳米颗粒负载介孔氧化铝,其微孔大小为10-18nm,铂纳米颗粒的大小为3-18nm。

Claims (9)

1.一种铂纳米颗粒负载介孔氧化铝原位制备方法,其特征在于:包括如下步骤:
a、制备Al-Pt二元合金:在直径为5cm的纯铝靶材上缠绕2~5根直径0.5~1mm、长3~5cm的铂丝制成Al-Pt复合靶材;以铝片为基材,通过Al-Pt复合靶材和纯Al靶材双靶共溅射的方法制备Al-Pt二元合金;溅射电流分别为Al-Pt复合靶材110~200mA和纯Al靶200~320mA;溅射时间为10~20 min;
b、阳极氧化:将步骤a获得的Al-Pt二元合金置于0.3~0.6M的硫酸水溶液中,在0~6V动电位或恒电位阳极氧化,制备出铂纳米颗粒负载介孔氧化铝。
2.如权利要求1所述的方法,其特征在于:步骤a中在铝基材上获得一层厚100~200nm的Al-Pt二元合金,铂含量为1 at%~5 at%。
3.如权利要求1或2所述的方法,其特征在于:步骤b中在Al-Pt二元合金上制备出一层厚100~200nm的铂纳米颗负载介孔氧化铝,铂纳米颗粒的尺寸介于5~50nm,且均匀弥散的分布于介孔氧化铝的孔壁之中。
4.如权利要求1或2所述的方法,其特征在于:步骤a中,溅射电流分别为Al-Pt复合靶材110mA和纯Al靶320mA;溅射时间为10min。
5.如权利要求3所述的方法,其特征在于:步骤a中,溅射电流分别为Al-Pt复合靶材110mA和纯Al靶320mA;溅射时间为10min。
6.如权利要求1或2所述的方法,其特征在于:步骤b中硫酸水溶液浓度为0.4M。
7.如权利要求3所述的方法,其特征在于:步骤b中硫酸水溶液浓度为0.4M。
8.如权利要求1或2任一项所述的方法,其特征在于:步骤b中在3V电压阳极氧化20min。
9.如权利要求3所述的方法,其特征在于:步骤b中在3V电压阳极氧化20min。
CN201410826776.9A 2014-12-25 2014-12-25 一种铂纳米颗粒负载介孔氧化铝原位制备方法 Active CN104480429B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410826776.9A CN104480429B (zh) 2014-12-25 2014-12-25 一种铂纳米颗粒负载介孔氧化铝原位制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410826776.9A CN104480429B (zh) 2014-12-25 2014-12-25 一种铂纳米颗粒负载介孔氧化铝原位制备方法

Publications (2)

Publication Number Publication Date
CN104480429A CN104480429A (zh) 2015-04-01
CN104480429B true CN104480429B (zh) 2016-09-07

Family

ID=52755029

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410826776.9A Active CN104480429B (zh) 2014-12-25 2014-12-25 一种铂纳米颗粒负载介孔氧化铝原位制备方法

Country Status (1)

Country Link
CN (1) CN104480429B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105206850B (zh) * 2015-10-19 2017-10-27 太原理工大学 一种Ti/W/Mo氧化物原位增强铂/钯纳米结构复合催化剂的制备方法
CN105261763A (zh) * 2015-10-30 2016-01-20 太原理工大学 一种纳米管/孔状Ti/W/Ni氧化物原位负载铂/钯纳米颗粒薄膜催化电极及其制备方法
CN115011924B (zh) * 2022-04-24 2023-07-21 昆明理工大学 一种抗高温氧化合金及其制备方法与应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3431220A (en) * 1964-07-06 1969-03-04 Exxon Research Engineering Co Particulate metal catalysts obtained by support removal and a base activation treatment
US6869671B1 (en) * 2002-06-03 2005-03-22 University Of Notre Dame Enabling nanostructured materials via multilayer thin film precursor and applications to biosensors
CN102899701A (zh) * 2012-09-13 2013-01-30 上海交通大学 Al2O3陶瓷基底上TiO2纳米管有序阵列的制备

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3431220A (en) * 1964-07-06 1969-03-04 Exxon Research Engineering Co Particulate metal catalysts obtained by support removal and a base activation treatment
US6869671B1 (en) * 2002-06-03 2005-03-22 University Of Notre Dame Enabling nanostructured materials via multilayer thin film precursor and applications to biosensors
CN102899701A (zh) * 2012-09-13 2013-01-30 上海交通大学 Al2O3陶瓷基底上TiO2纳米管有序阵列的制备

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
Efficient photocatalytic hydrogen generation by Pt modified TiO2 nanotubes fabricated by rapid breakdown anodization;Rajini P.Antony et al.;《INTERNATIONAL JOURNAL OF HYDROGEN ENERGY》;20120316;第37卷(第10期);8268-8276 *
Nanoporous Alumina Template with In Situ Barrier Oxide Removal, Synthesized from a Multilayer Thin Film Precursor;Michael M.Crouse et al.;《Journal of The Electrochemical Society》;20050822;第152卷(第10期);D167-172 *
微乳法合成可控粒径纳米Pt/Al2O3电催化CO氧化的尺寸效应;耿东生等;《化学学报》;20050415;第63卷(第7期);第658-662页 *
铂纳米微粒制备方法的研究;李明元等;《内蒙古石油化工》;20071228;第1卷(第12期);第5-10页 *

Also Published As

Publication number Publication date
CN104480429A (zh) 2015-04-01

Similar Documents

Publication Publication Date Title
Kwak et al. In situ synthesis of supported metal nanocatalysts through heterogeneous doping
Ahmad et al. Advancements in the development of TiO2 photoanodes and its fabrication methods for dye sensitized solar cell (DSSC) applications. A review
Yu et al. Evolution of hollow TiO2 nanostructures via the Kirkendall effect driven by cation exchange with enhanced photoelectrochemical performance
Gonçalves et al. Ta2O5 nanotubes obtained by anodization: effect of thermal treatment on the photocatalytic activity for hydrogen production
Murray et al. Shape-and size-selective electrochemical synthesis of dispersed silver (I) oxide colloids
Oh et al. Evidence and model for strain-driven release of metal nanocatalysts from perovskites during exsolution
Lee et al. All-sputtered, superior power density thin-film solid oxide fuel cells with a novel nanofibrous ceramic cathode
Gojković et al. Nb-doped TiO2 as a support of Pt and Pt–Ru anode catalyst for PEMFCs
Kovalev et al. Double perovskite Sr2FeMoO6 films prepared by electrophoretic deposition
Liang et al. Nanoplasmonically engineered interfaces on amorphous TiO2 for highly efficient photocatalysis in hydrogen evolution
Khare et al. Layered WO3/TiO2 nanostructures with enhanced photocurrent densities
CN103866256B (zh) 金属氧化物多孔纳米结构薄膜的制备方法
Liu et al. Films of WO3 plate-like arrays with oxygen vacancies proportionally controlled via rapid chemical reduction
Kim et al. Sub-micron porous niobium solid electrolytic capacitor prepared by dealloying in a metallic melt
Akhavan et al. Capping antibacterial Ag nanorods aligned on Ti interlayer by mesoporous TiO2 layer
CN104480429B (zh) 一种铂纳米颗粒负载介孔氧化铝原位制备方法
CN106629813A (zh) 一种泡沫铜负载多孔氧化铜纳米线复合材料及其制备方法和应用
Prabhakaran et al. Characteristics of 8ámol% yttria stabilized zirconia powder prepared by spray drying process
Qin et al. Preparation and analysis of anodic aluminum oxide films with continuously tunable interpore distances
Shahbazi et al. Nanoporous Ag and Pd foam: Redox induced fabrication using electrochemically deposited nanoporous Cu foam with no need to any additive
Hong et al. A short review on electrochemically self-doped TiO 2 nanotube arrays: Synthesis and applications
Biswal et al. Enhanced hydrogen production over CdSe QD/ZTP composite under visible light irradiation without using co-catalyst
Fang et al. Effects of oxidation on the localized surface plasmon resonance of Cu nanoparticles fabricated via vacuum coating
Santillán et al. Electrophoretic deposition of La0. 6Sr0. 4Co0. 8Fe0. 2O3− δ cathodes on Ce0. 9Gd0. 1O1. 95 substrates for intermediate temperature solid oxide fuel cell (IT-SOFC)
Zhang et al. A facile strategy for ZnFe 2 O 4 coating preparing by electrophoretic deposition and its supercapacitor performances

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant