CN104478514B - 一种利用烟气净化副产物制备化肥的热泵蒸发工艺 - Google Patents

一种利用烟气净化副产物制备化肥的热泵蒸发工艺 Download PDF

Info

Publication number
CN104478514B
CN104478514B CN201410716525.5A CN201410716525A CN104478514B CN 104478514 B CN104478514 B CN 104478514B CN 201410716525 A CN201410716525 A CN 201410716525A CN 104478514 B CN104478514 B CN 104478514B
Authority
CN
China
Prior art keywords
liquid
thermo
gas cleaning
chemical fertilizer
evaporation technique
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201410716525.5A
Other languages
English (en)
Other versions
CN104478514A (zh
Inventor
汪然
陈洪会
汤茂辉
黄炳光
郎治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CHENGDU HUAXITANG INVESTMENT Co Ltd
Original Assignee
CHENGDU HUAXITANG INVESTMENT Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CHENGDU HUAXITANG INVESTMENT Co Ltd filed Critical CHENGDU HUAXITANG INVESTMENT Co Ltd
Priority to CN201410716525.5A priority Critical patent/CN104478514B/zh
Publication of CN104478514A publication Critical patent/CN104478514A/zh
Application granted granted Critical
Publication of CN104478514B publication Critical patent/CN104478514B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/129Energy recovery, e.g. by cogeneration, H2recovery or pressure recovery turbines

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)

Abstract

本发明提供了一种利用烟气净化副产物制备化肥的热泵蒸发工艺,烟气经湿法净化后的废液反应器与碳酸氢铵反应,反应完成后,料液经固液分离,液体冷却结晶后得到的清液作为原料液,泵入预热器,预热后的原料液进入换热器,在换热器的管程中被壳程蒸汽加热温度升高,原料液在强制循环泵的推动下进入结晶分离器,在结晶分离器内产生闪蒸,原料液产生过饱和而结晶,再经离心分离、干燥造粒得到复合肥;所述闪蒸产生的二次蒸汽经压缩机压缩后作为热源进入换热器的壳程。该工艺不仅达到变废为宝的目的,节约了蒸汽的消耗;同时,蒸馏出来的水可循环至脱硫脱硝工段作为补水使用,节约用水。

Description

一种利用烟气净化副产物制备化肥的热泵蒸发工艺
技术领域
本发明涉及烟气净化技术领域,具体涉及一种利用烟气净化副产物制备化肥的热泵蒸发工艺。
背景技术
近年来随着空气污染的越来越严重,人们对烟气特别是燃煤烟气的治理提出了更高的要求;国家环境保护部2011年7月29日发布了新的《火电厂大气污染物排放标准》(GB13223-2011),对烟气的烟尘、二氧化硫、氮氧化物提出了新的排放限值。目前,烟气脱硫的有效方式为氨法、钠法等湿法烟气脱硫。以上的脱硫方法都要产生一定浓度的含硫酸盐、硝酸盐的废液。具有含盐量高、偏酸性等特性,采用普通方法处理时出水水质难于达到排放标准,针对烟气净化废水的新型处理技术的开发显得尤为重要。尤其对于环保要求较高的地区,往往要求高含盐废水“零排放”,这就对高含盐废水处理技术提出了更高的要求。需对其进行处理,同时回收有用物质,避免浪费。传统的处理方法是采用多效蒸发,造成能耗较高。
201110155630.2,名称为“脱硫后的硫酸铵/硫酸镁回收技术”的发明专利,工艺流程为:原料→原料泵→预热器→一效蒸发器→二效蒸发器→三效蒸发器→冷凝器→液封槽→排出;固料部分工艺流程:三效蒸发器→出料泵→结晶器→离心机→干燥机→料仓→包装机。该专利的蒸发器某一效的二次蒸汽不能直接作为本效热源,只能作为次效或次几效的热源。如作为本效热源必须额外给其能量,使其温度(压力)提高;且没有实现资源的最大化回收利用。
发明内容
为了解决上述技术问题,本发明提供了一种利用烟气净化副产物制备化肥的热泵蒸发工艺。将烟气脱硫脱硝后的废液作为原料,先与碳酸氢铵反应,液体再经预热、强制循环加热、浓缩结晶后制备复合肥。该工艺特别适合处理烟气脱硫脱硝后的废液,达到变废为宝的目的,节约了蒸汽的消耗;同时,蒸馏出来的水可循环至脱硫脱硝工段作为补水使用,节约用水。
为实现上述发明目的,本发明采用如下技术方案:
一种利用烟气净化副产物制备化肥的热泵蒸发工艺,其特征在于:烟气经湿法净化后的废液在反应器中与碳酸氢铵反应,反应完成后,料液经固液分离,液体冷却结晶后得到的清液作为原料液,泵入预热器,预热后的原料液进入换热器,在换热器的管程中被壳程蒸汽加热温度升高,原料液在强制循环泵的推动下进入结晶分离器,在结晶分离器内产生闪蒸,原料液产生过饱和而结晶,再经离心分离、干燥造粒得到复合肥;所述闪蒸产生的二次蒸汽经压缩机压缩后作为热源进入换热器的壳程。
本发明所述的废液与碳酸氢铵反应得到的碳酸盐固体作为吸收剂回用于烟气净化工段,液体溶液中主要含硫酸铵和硝酸铵,经过后续的热泵蒸发工序得到硫酸铵和硝酸铵晶体,用于制备复合肥。
所述的湿法净化是指湿法脱硫或者脱硝。
本发明所述原料液产生过饱和而结晶,经旋流器增稠后送入离心分离机,清液回到结晶分离器。由于经旋流器分离得到的液体,硫胺含量高,直接回到结晶分离器结晶。
本发明所述的复合肥的粒径为0.1-0.2mm,优点是吸湿小,不结块,物理性状好。
本发明所述的压缩机为离心压缩机,离心压缩机的结构紧凑,尺寸小,重量轻;排气连续、均匀,不需要中间罐等装置;振动小,易损件少,不需要庞大而笨重的基础件;除轴承外,机器内部不需润滑,省油,且不污染被压缩的气体;转速高;维修量小,调节方便。
优选地,所述的离心压缩机为三级串联,压缩机电机配160Kw,压缩机串联能够得到更高的压头,同时提高二次蒸汽温度,作为热源重新返回换热器强制循环蒸发。
本发明所述的预热器分为一级预热器和二级预热器,有效利用锅炉余热及蒸汽冷凝水余热。
优选地,所述二级预热器与换热器的冷凝液作为一级预热器的热源,有效地节约了能源。
优选地,所述的一级预热器的冷凝液回到烟气净化工段作为补水使用,实现了零排放。
所述的原料液在预热器中的流速为0.5~3m/s,在此流速下能够加大对流传热系数,提高传热效率,减少污垢在管子表面沉积的可能性,同时是避免流速增大导致动力消耗过多选择的最佳流速。
所述的原料液在一级预热器内加热至50~70℃,利用蒸馏水余热将原料由25℃加热到50℃,传热效率为最佳。
所述的原料液在二级预热器内加热至90~100℃,利用蒸汽提高进入循环蒸发器的原料温度,提高循环蒸发器传热效率,减少能耗。
所述的原料液在换热器内加热至105~108℃,达到物料沸点,进入蒸发结晶器,直接蒸发产生二次蒸汽。
所述强制循环泵的表压为0.03~0.05MPa,在此压力下能够保证二次蒸汽的温度。
所述的原料液进入结晶分离器的流速为1~2.5m/s,既不破坏晶体,又在合理的流速范围。
所述的原料液在结晶分离器内产生闪蒸,闪蒸产生的二次蒸汽的温度为80~85℃,压力为40~50kPa,提供稳定的蒸汽温度及压力,使后续压缩机能够稳定运行。
所述的二次蒸汽在压缩机内被压缩升高至106℃,作为热源重新返回换热器实现强制循环蒸发。
本发明所述的冷却结晶是指,液体经过一次冷却结晶,取清液蒸馏后进行二次冷却结晶。采用一次冷却结晶-蒸馏-二次冷却结晶的方式,二次结晶的方式是为了充分析出溶液中未反应完全的碳酸氢铵和硫酸钠等杂质,同时减少物料消耗;蒸馏是为了脱除溶液中的游离氨和二氧化碳。
优选地,所述的一次冷却结晶得到的清液加热至60℃以上后,再进行蒸馏。节省蒸馏蒸汽消耗,降低装置能耗。
进一步优选地,所述一次冷却结晶的清液加热用的热源为蒸馏后的料液。充分利用蒸馏后料液的热能,进一步降低能耗。
优选地,所述的二次冷却结晶得到的清液加热至60℃以上后,再作为原料液泵入预热器。节省蒸馏蒸汽消耗,降低装置能耗。
优选地,所述的一次冷却结晶和二次冷却结晶的温度为-2~0℃,蒸馏的温度为98~105℃。
一次冷却结晶在该温度范围内可析出大量的十水硫酸钠、碳酸氢钠和碳酸氢铵;二次冷却结晶在该温度范围内可析出四水硫酸钠和硫酸铵的混合物,进一步降低硫酸铵母液中的硫酸钠含量,以提高硫酸铵的产品纯度。98~105℃的蒸馏温度是为了脱除溶液中的游离氨和二氧化碳。
优选地,所述的一次冷却结晶析出的固体返回到反应器中继续反应。一次冷却结晶析出的固体析出大量的十水硫酸钠、碳酸氢钠和碳酸氢铵,返回到结晶反应器中继续反应,有利于提高铵盐的收率。
优选地,所述的二次冷却结晶析出的固体返回到一次冷却结晶工序中进一步冷却结晶,提高铵盐收率。
所述蒸馏得到的气体返回反应器中继续反应。减少物料消耗,以及降低对环境的污染。
所述的气体经风机加压至0.05~0.08Mpa后,从反应器的底部进入。蒸馏得到的氨气和二氧化碳分散到结晶器底部,从下往上,利用结晶器溶液充分回收氨气和二氧化碳。
所述结晶分离器出来的晶浆经离心分离得到的清液回到二次冷却结晶工序中冷却结晶。分离得到的液体在硫酸钠达到饱和之前,将滤液送入到二次冷却结晶器进行冷却结晶,将硫酸钠析出后再进入后序的热泵蒸发系统,从而保障硫酸铵产品的纯度。
本发明的有益效果在于:
1、为了适应烟气净化废液的结晶蒸发过程,本发明采用强制循环蒸发工艺。物料在换热器的管程中被壳程蒸汽加热温度升高,在强制循环泵的推动下进入结晶分离器后压力降低产生闪蒸,产生的二次蒸汽从蒸汽管路排出,物料产生过饱和结晶沉降,强制循环蒸发产生的二次蒸汽经过压缩机压缩后作为换热器的热源。节约了蒸汽的消耗,每年节约生蒸汽7000t左右,实现了节能。同时减少50%以上的占地面积。
2、本发明工艺中,烟气经湿法净化后的含钠离子溶液与碳酸氢铵反应回收碳酸氢钠,可用于烟气净化工段的吸收剂循环利用,实现了资源回收利用的最大化。
3、本发明的二级预热器与换热器的冷凝液作为一级预热器的热源,同时,一级预热器的冷凝液回到烟气净化工段作为补水使用,节约用水的同时,实现了零排放。
4、本发明采用离心压缩机作为热泵,工作时它本身消耗很少一部分电能,却能从二次蒸汽中提取4~7倍于电能,提升温度进行利用。压缩离心机本身结构紧凑,尺寸小,重量轻;排气连续、均匀,不需要中间罐等装置;振动小,易损件少,不需要庞大而笨重的基础件;除轴承外,机器内部不需润滑,省油,且不污染被压缩的气体;转速高;维修量小,调节方便。
5、本发明将预热器中原料液的流速控制在0.5~3m/s,在此流速下能够加大对流传热系数,提高传热效率,减少污垢在管子表面沉积的可能性,同时是避免流速增大导致动力消耗过多选择的最佳流速。
6、本发明的原料液在结晶分离器内产生闪蒸,闪蒸产生的二次蒸汽的温度控制在80~85℃,压力控制在40~50kPa,提供稳定的蒸汽温度及压力,使后续压缩机能够稳定运行。同时经压缩机压缩后,蒸汽温度升高到106℃,作为热源重新返回换热器实现强制循环蒸发。
7、本发明将烟气净化的废液,包括脱硫或者脱硝的废液与碳酸氢铵反应,反应液中含有硫酸铵和硝酸铵等铵盐,固体可作为烟气的吸收剂回用于烟气净化工段。采用一次冷却结晶-蒸馏-二次冷却结晶工艺处理铵盐母液,二次结晶是为了析出溶液中未反应完全的碳酸氢铵和硫酸钠等杂质,同时减少物料消耗;蒸馏是为了脱除溶液中的游离氨和二氧化碳。得到高纯度的铵盐溶液。最终产品的氮含量符合电力标准的副产硫酸铵产品要求:总氮≥18%,外观白色颗粒。
8、本发明一次冷却结晶的固体返回反应器继续反应,一次冷却结晶析出的十水硫酸钠、碳酸氢钠和碳酸氢铵固体返回到结晶反应器中继续反应;二次冷却结晶析出的四水硫酸钠和硫酸铵的混合物,返回到一次冷却结晶工序中冷却结晶;经热泵蒸发后得到的液体连接回到二次冷却结晶工序,分离后的溶液中含有大量的硫酸铵,在硫酸钠达到饱和之前,将滤液送入到二次冷却结晶器进行冷却结晶,将硫酸钠析出后再进入后序的热泵蒸发系统,从而保障硫酸铵产品的纯度。以上操作是硫酸铵收率的有力保证,系统得到铵盐产品的收率达到99%以上,每吨废液可以副产0.25-0.35吨铵盐产品。
9、由于蒸馏后的料液作为一次冷却结晶液体加热的热源,使一次冷却结晶后的清液通过与蒸馏塔底部出液进行换热,温度达到60℃以上,再送入蒸馏塔,节省蒸馏蒸汽消耗,降低装置能耗。
10、由于蒸馏排出的气体经加压至0.05~0.08Mpa后,从反应器的底部进入。蒸馏得到的氨气和二氧化碳分散到结晶器底部,从下往上,利用结晶器溶液充分回收氨气和二氧化碳。 减少物料消耗的同时,降低对环境的污染。
11、结晶分离器出来的晶浆经离心分离得到的清液回到二次冷却结晶工序中冷却结晶。分离得到的液体在硫酸钠达到饱和之前,将滤液送入到二次冷却结晶器进行冷却结晶,将硫酸钠析出后再进入后序的热泵蒸发系统,从而进一步地保障硫酸铵产品的纯度。
附图说明
图1为本发明的利用烟气净化副产物制备化肥的热泵蒸发工艺流程图。
图2为本发明原料液制备的工艺流程图。
具体实施方式
下面结合具体实施方式对本发明的实质性内容作进一步详细的描述。
实施例1
一种利用烟气净化副产物制备化肥的热泵蒸发工艺,烟气经湿法净化后的废液在反应器中与碳酸氢铵反应,反应完成后,料液经固液分离,液体冷却结晶后得到的清液作为原料液,泵入预热器,预热后的原料液进入换热器,在换热器的管程中被壳程蒸汽加热温度升高,原料液在强制循环泵的推动下进入结晶分离器,在结晶分离器内产生闪蒸,原料液产生过饱和而结晶,再经离心分离、干燥造粒得到复合肥;所述闪蒸产生的二次蒸汽经压缩机压缩后作为热源进入换热器的壳程。
实施例2
本实施例与实施例1基本相同,在此基础上:
所述原料液产生过饱和而结晶,经旋流器增稠后送入离心分离机,所得清液返回结晶分离器。
实施例3
本实施例与实施例1基本相同,在此基础上:
所述原料液产生过饱和而结晶,经旋流器增稠后送入离心分离机,所得清液返回结晶分离器。
所述的复合肥的粒径为0.1mm。
实施例4
本实施例与实施例1基本相同,在此基础上:
所述原料液产生过饱和而结晶,经旋流器增稠后送入离心分离机,所得清液返回结晶分离器。
所述的复合肥的粒径为0.2mm。
所述的废液与碳酸氢铵反应得到的固体作为吸收剂回用于烟气净化工段。
实施例5
本实施例与实施例1基本相同,在此基础上:
所述原料液产生过饱和而结晶,经旋流器增稠后送入离心分离机,所得清液返回结晶分离器。
所述的复合肥的粒径为0.15mm。
所述的废液与碳酸氢铵反应得到的固体作为吸收剂回用于烟气净化工段。
所述的压缩机为离心压缩机。
实施例6
本实施例与实施例1基本相同,在此基础上:
所述原料液产生过饱和而结晶,经旋流器增稠后送入离心分离机,所得清液返回结晶分离器。
所述的复合肥的粒径为0.12mm。
所述的废液与碳酸氢铵反应得到的固体作为吸收剂回用于烟气净化工段。
所述的压缩机为离心压缩机。
所述的离心压缩机为三级串联,压缩机电机配160Kw。
实施例7
本实施例与实施例1基本相同,在此基础上:
所述原料液产生过饱和而结晶,经旋流器增稠后送入离心分离机,所得清液返回结晶分离器。
所述的复合肥的粒径为0.16mm。
所述的废液与碳酸氢铵反应得到的固体作为吸收剂回用于烟气净化工段。
所述的压缩机为离心压缩机。
所述的离心压缩机为三级串联,压缩机电机配160Kw。
所述的预热器分为一级预热器和二级预热器。
实施例8
本实施例与实施例1基本相同,在此基础上:
所述原料液产生过饱和而结晶,经旋流器增稠后送入离心分离机,所得清液返回结晶分离器。
所述的复合肥的粒径为0.15mm。
所述的废液与碳酸氢铵反应得到的固体作为吸收剂回用于烟气净化工段。
所述的压缩机为离心压缩机。
所述的离心压缩机为三级串联,压缩机电机配160Kw。
所述的预热器分为一级预热器和二级预热器。
所述二级预热器与换热器的冷凝液作为一级预热器的热源。
实施例9
本实施例与实施例1基本相同,在此基础上:
所述原料液产生过饱和而结晶,经旋流器增稠后送入离心分离机,所得清液返回结晶分离器。
所述的复合肥的粒径为0.18mm。
所述的废液与碳酸氢铵反应得到的固体作为吸收剂回用于烟气净化工段。
所述的压缩机为离心压缩机。
所述的离心压缩机为三级串联,压缩机电机配160Kw。
所述的预热器分为一级预热器和二级预热器。
所述二级预热器与换热器的冷凝液作为一级预热器的热源。
所述的一级预热器的冷凝液回到烟气净化工段作为补水使用。
实施例10
本实施例与实施例1基本相同,在此基础上:
所述的原料液在预热器中的流速为0.6m/s。
实施例11
本实施例与实施例7基本相同,在此基础上:
所述的原料液在预热器中的流速为2m/s。
所述的原料液在一级预热器内加热至60℃。
实施例12
本实施例与实施例7基本相同,在此基础上:
所述的原料液在预热器中的流速为0.5m/s。
所述的原料液在一级预热器内加热至50℃。
所述的原料液在二级预热器内加热至90℃。
实施例13
本实施例与实施例9基本相同,在此基础上:
所述的原料液在预热器中的流速为3m/s。
所述的原料液在一级预热器内加热至70℃。
所述的原料液在二级预热器内加热至100℃。
所述的原料液在换热器内加热至108℃。
实施例14
本实施例与实施例9基本相同,在此基础上:
所述的原料液在预热器中的流速为0.8m/s。
所述的原料液在一级预热器内加热至55℃。
所述的原料液在二级预热器内加热至95℃。
所述的原料液在换热器内加热至106℃。
所述强制循环泵的表压为0.03MPa。
实施例15
本实施例与实施例9基本相同,在此基础上:
所述的原料液在预热器中的流速为2.5m/s。
所述的原料液在一级预热器内加热至65℃。
所述的原料液在二级预热器内加热至95℃。
所述的原料液在换热器内加热至107℃。
所述强制循环泵的表压为0.05MPa。
所述的原料液进入结晶分离器的流速为2.5m/s。
实施例16
本实施例与实施例9基本相同,在此基础上:
所述的原料液在预热器中的流速为1.0 m/s。
所述的原料液在一级预热器内加热至58℃。
所述的原料液在二级预热器内加热至92℃。
所述的原料液在换热器内加热至106℃。
所述强制循环泵的表压为0.04MPa。
所述的原料液进入结晶分离器的流速为1m/s。
所述的原料液在结晶分离器内产生闪蒸,闪蒸产生的二次蒸汽的温度为80℃,压力为40kPa。
实施例17
本实施例与实施例9基本相同,在此基础上:
所述的原料液在预热器中的流速为2.2m/s。
所述的原料液在一级预热器内加热至62℃。
所述的原料液在二级预热器内加热至96℃。
所述的原料液在换热器内加热至108℃。
所述强制循环泵的表压为0.05MPa。
所述的原料液进入结晶分离器的流速为2m/s。
所述的原料液在结晶分离器内产生闪蒸,闪蒸产生的二次蒸汽的温度为85℃,压力为50kPa。
所述的二次蒸汽在压缩机内被压缩升高至106℃。
实施例18
本实施例与实施例9基本相同,在此基础上:
所述的原料液在预热器中的流速为1.8m/s。
所述的原料液在一级预热器内加热至60℃。
所述的原料液在二级预热器内加热至95℃。
所述的原料液在换热器内加热至106℃。
所述强制循环泵的表压为0.04MPa。
所述的原料液进入结晶分离器的流速为1.8m/s。
所述的原料液在结晶分离器内产生闪蒸,闪蒸产生的二次蒸汽的温度为82℃,压力为45kPa。
所述的二次蒸汽在压缩机内被压缩升高至106℃。
实施例19
本实施例与实施例1基本相同,在此基础上:
所述的冷却结晶是指,液体经过一次冷却结晶,取清液蒸馏后进行二次冷却结晶。
实施例20
本实施例与实施例7基本相同,在此基础上:
所述的冷却结晶是指,液体经过一次冷却结晶,取清液蒸馏后进行二次冷却结晶。
所述的一次冷却结晶得到的清液加热至60℃以上后,再进行蒸馏。
实施例21
本实施例与实施例9基本相同,在此基础上:
所述的冷却结晶是指,液体经过一次冷却结晶,取清液蒸馏后进行二次冷却结晶。
所述的一次冷却结晶得到的清液加热至60℃以上后,再进行蒸馏。
所述加热用的热源为蒸馏后的料液。
实施例22
本实施例与实施例9基本相同,在此基础上:
所述的冷却结晶是指,液体经过一次冷却结晶,取清液蒸馏后进行二次冷却结晶。
所述的一次冷却结晶得到的清液加热至60℃以上后,再进行蒸馏。
所述加热用的热源为蒸馏后的料液。
所述的二次冷却结晶得到的清液加热至60℃以上后,再作为原料液泵入预热器。
实施例23
本实施例与实施例10基本相同,在此基础上:
所述的冷却结晶是指,液体经过一次冷却结晶,取清液蒸馏后进行二次冷却结晶。
所述的一次冷却结晶得到的清液加热至60℃以上后,再进行蒸馏。
所述加热用的热源为蒸馏后的料液。
所述的二次冷却结晶得到的清液加热至60℃以上后,再作为原料液泵入预热器。
所述的一次冷却结晶和二次冷却结晶的温度为0℃,蒸馏的温度为98℃。
实施例24
本实施例与实施例10基本相同,在此基础上:
所述的冷却结晶是指,液体经过一次冷却结晶,取清液蒸馏后进行二次冷却结晶。
所述的一次冷却结晶得到的清液加热至60℃以上后,再进行蒸馏。
所述加热用的热源为蒸馏后的料液。
所述的二次冷却结晶得到的清液加热至60℃以上后,再作为原料液泵入预热器。
所述的一次冷却结晶和二次冷却结晶的温度为-2℃,蒸馏的温度为105℃。
所述的一次冷却结晶析出的固体返回到反应器中继续反应。
实施例25
本实施例与实施例18基本相同,在此基础上:
所述的冷却结晶是指,液体经过一次冷却结晶,取清液蒸馏后进行二次冷却结晶。
所述的一次冷却结晶得到的清液加热至60℃以上后,再进行蒸馏。
所述加热用的热源为蒸馏后的料液。
所述的二次冷却结晶得到的清液加热至60℃以上后,再作为原料液泵入预热器。
所述的一次冷却结晶和二次冷却结晶的温度为-1℃,蒸馏的温度为101℃。
所述的一次冷却结晶析出的固体返回到反应器中继续反应。
所述的二次冷却结晶析出的固体返回到一次冷却结晶工序中冷却结晶。
实施例26
本实施例与实施例18基本相同,在此基础上:
所述的冷却结晶是指,液体经过一次冷却结晶,取清液蒸馏后进行二次冷却结晶。
所述的一次冷却结晶得到的清液加热至60℃以上后,再进行蒸馏。
所述加热用的热源为蒸馏后的料液。
所述的二次冷却结晶得到的清液加热至60℃以上后,再作为原料液泵入预热器。
所述的一次冷却结晶和二次冷却结晶的温度为-0.5℃,蒸馏的温度为99℃。
所述的一次冷却结晶析出的固体返回到反应器中继续反应。
所述的二次冷却结晶析出的固体返回到一次冷却结晶工序中冷却结晶。
所述蒸馏得到的气体返回反应器中继续反应。
实施例27
本实施例与实施例18基本相同,在此基础上:
所述的冷却结晶是指,液体经过一次冷却结晶,取清液蒸馏后进行二次冷却结晶。
所述的一次冷却结晶得到的清液加热至60℃以上后,再进行蒸馏。
所述加热用的热源为蒸馏后的料液。
所述的二次冷却结晶得到的清液加热至60℃以上后,再作为原料液泵入预热器。
所述的一次冷却结晶和二次冷却结晶的温度为-1.5℃,蒸馏的温度为103℃。
所述的一次冷却结晶析出的固体返回到反应器中继续反应。
所述的二次冷却结晶析出的固体返回到一次冷却结晶工序中冷却结晶。
所述蒸馏得到的气体返回反应器中继续反应。
所述的气体经风机加压至0.08Mpa后,从反应器的底部进入。
实施例28
本实施例与实施例18基本相同,在此基础上:
所述的冷却结晶是指,液体经过一次冷却结晶,取清液蒸馏后进行二次冷却结晶。
所述的一次冷却结晶得到的清液加热至60℃以上后,再进行蒸馏。
所述加热用的热源为蒸馏后的料液。
所述的二次冷却结晶得到的清液加热至60℃以上后,再作为原料液泵入预热器。
所述的一次冷却结晶和二次冷却结晶的温度为-0.2℃,蒸馏的温度为100℃。
所述的一次冷却结晶析出的固体返回到反应器中继续反应。
所述的二次冷却结晶析出的固体返回到一次冷却结晶工序中冷却结晶。
所述蒸馏得到的气体返回反应器中继续反应。
所述的气体经风机加压至0.05Mpa后,从反应器的底部进入。
所述结晶分离器内的晶体回收后,溶液回到二次冷却结晶工序中冷却结晶。
实施例29
本实施例与实施例18基本相同,在此基础上:
所述的冷却结晶是指,液体经过一次冷却结晶,取清液蒸馏后进行二次冷却结晶。
所述的一次冷却结晶得到的清液加热至60℃以上后,再进行蒸馏。
所述加热用的热源为蒸馏后的料液。
所述的二次冷却结晶得到的清液加热至60℃以上后,再作为原料液泵入预热器。
所述的一次冷却结晶和二次冷却结晶的温度为-0.8℃,蒸馏的温度为102℃。
所述的一次冷却结晶析出的固体返回到反应器中继续反应。
所述的二次冷却结晶析出的固体返回到一次冷却结晶工序中冷却结晶。
所述蒸馏得到的气体返回反应器中继续反应。
所述的气体经风机加压至0.06Mpa后,从反应器的底部进入。
所述结晶分离器出来的晶浆经离心分离得到的清液回到二次冷却结晶工序中冷却结晶。
实施例30
以碳酸氢钠作为吸收剂的湿发烟气净化废液为初始的原料液,采用本发明的热泵蒸发工艺,得到硫酸铵副产品的量如下表:
表1
实施例31
本实施例的实施方式与实施例1基本相同,在此基础上:
烟气经湿法净化后的废液经絮凝后,再进入反应器与碳酸氢铵反应。
所述的絮凝是指:通过管道混合器向脱硫液中投加所述复合絮凝剂的水溶液,脱硫液在沉降池中进行絮凝澄清,清液进入下级再生工序,沉淀污泥经脱水后固体物外运,滤液返回到沉降池循环澄清。
实施例30
本实施例的实施方式与实施例2基本相同,在此基础上:
烟气经湿法净化后的废液经絮凝后,再进入反应器与碳酸氢铵反应。
所述的絮凝是指:通过管道混合器向脱硫液中投加所述复合絮凝剂的水溶液,脱硫液在沉降池中进行絮凝澄清,清液进入下级再生工序,沉淀污泥经脱水后固体物外运,滤液返回到沉降池循环澄清。
所述的絮凝剂水溶液由质量比例为1:3的聚丙烯酰胺和聚丙烯酰钠配制成质量分数为0.06%的水溶液。
实施例31
本实施例的实施方式与实施例7基本相同,在此基础上:
烟气经湿法净化后的废液经絮凝后,再进入反应器与碳酸氢铵反应。
所述的絮凝是指:通过管道混合器向脱硫液中投加所述复合絮凝剂的水溶液,脱硫液在沉降池中进行絮凝澄清,清液进入下级再生工序,沉淀污泥经脱水后固体物外运,滤液返回到沉降池循环澄清。
所述的絮凝剂水溶液由质量比例为1:3的聚丙烯酰胺和聚丙烯酰钠配制成质量分数为0.05%的水溶液。
所述絮凝剂的使用量为脱硫液中粉尘质量的0.20%。
实施例32
本实施例的实施方式与实施例17基本相同,在此基础上:
烟气经湿法净化后的废液经絮凝后,再进入反应器与碳酸氢铵反应。
所述的絮凝是指:通过管道混合器向脱硫液中投加所述复合絮凝剂的水溶液,脱硫液在沉降池中进行絮凝澄清,清液进入下级再生工序,沉淀污泥经脱水后固体物外运,滤液返回到沉降池循环澄清。
所述的絮凝剂水溶液由质量比例为1:3的聚丙烯酰胺和聚丙烯酰钠配制成质量分数为0.1%的水溶液。
所述絮凝剂的使用量为脱硫液中粉尘质量的0.05%。
所述的料液在管道混合器中的流速为0.8m/s,絮凝剂水溶液在管道混合器中的流速为0.9m/s。
本发明的复合絮凝剂可有效的去除烟气湿法脱硫液中的烟气粉尘,其透光率与不含粉尘的纯溶液的透光率基本相同,充分说明絮凝后的溶液除尘效果好;本发明的复配絮凝剂很适合脱硫液的pH值和温度,符合粉尘絮凝的条件,无需进行任何处理,可直接加入絮凝;且絮凝剂的使用量为脱硫液中粉尘质量的0.05%-0.20%,用量小,可大大节省运行成本。
实施例33
本实施例的实施方式与实施例17基本相同,在此基础上:
烟气经湿法净化后的废液经絮凝后,再进入反应器与碳酸氢铵反应。
所述的絮凝是指:通过管道混合器向脱硫液中投加所述复合絮凝剂的水溶液,脱硫液在沉降池中进行絮凝澄清,清液进入下级再生工序,沉淀污泥经脱水后固体物外运,滤液返回到沉降池循环澄清。
所述的絮凝剂水溶液由质量比例为1:3的聚丙烯酰胺和聚丙烯酰钠配制成质量分数为0.07%的水溶液。
所述絮凝剂的使用量为脱硫液中粉尘质量的0.10%。
所述的料液在管道混合器中的流速为1.2m/s,絮凝剂水溶液在管道混合器中的流速为1.0m/s。
所述的管道混合器为螺旋式静态管式混合器。
实施例34
本实施例的实施方式与实施例27基本相同,在此基础上:
烟气经湿法净化后的废液经絮凝后,再进入反应器与碳酸氢铵反应。
所述的絮凝是指:通过管道混合器向脱硫液中投加所述复合絮凝剂的水溶液,脱硫液在沉降池中进行絮凝澄清,清液进入下级再生工序,沉淀污泥经脱水后固体物外运,滤液返回到沉降池循环澄清。
所述的絮凝剂水溶液由质量比例为1:3的聚丙烯酰胺和聚丙烯酰钠配制成质量分数为0.08%的水溶液。
所述絮凝剂的使用量为脱硫液中粉尘质量的0.12%。
所述的料液在管道混合器中的流速为1.0 m/s,絮凝剂水溶液在管道混合器中的流速为0.95m/s。
所述的管道混合器为螺旋式静态管式混合器。
所述的螺旋式静态管式混合器上的脱硫液入口管道和药剂入口管道之间呈12°的夹角。能很好地控制脱硫液在管道混合器中的流速为0.8-1.2m/s,絮凝剂水溶液在管道混合器中的流速为0.9-1.0m/s,在混合器内完成絮凝反应,不需要调节pH值,不需要另外设置反应区,设备占地小,很大程度上节约了投资。且混合性能好,效率高;操作稳定。
所述絮凝的温度为42℃,在沉降池中絮凝澄清的时间为0.5h。
实施例35
本实施例的实施方式与实施例27基本相同,在此基础上:
烟气经湿法净化后的废液经絮凝后,再进入反应器与碳酸氢铵反应。
所述的絮凝是指:通过管道混合器向脱硫液中投加所述复合絮凝剂的水溶液,脱硫液在沉降池中进行絮凝澄清,清液进入下级再生工序,沉淀污泥经脱水后固体物外运,滤液返回到沉降池循环澄清。
所述的絮凝剂水溶液由质量比例为1:3的聚丙烯酰胺和聚丙烯酰钠配制成质量分数为0.09%的水溶液。
所述絮凝剂的使用量为脱硫液中粉尘质量的0.15%。
所述的料液在管道混合器中的流速为0.9m/s,絮凝剂水溶液在管道混合器中的流速为0.92m/s。
所述的管道混合器为螺旋式静态管式混合器。
所述的螺旋式静态管式混合器上的脱硫液入口管道和药剂入口管道之间呈16°的夹角。
所述絮凝的温度为40℃,在沉降池中絮凝澄清的时间为0.5h。
实施例36
本实施例的实施方式与实施例27基本相同,在此基础上:
烟气经湿法净化后的废液经絮凝后,再进入反应器与碳酸氢铵反应。
所述的絮凝是指:通过管道混合器向脱硫液中投加所述复合絮凝剂的水溶液,脱硫液在沉降池中进行絮凝澄清,清液进入下级再生工序,沉淀污泥经脱水后固体物外运,滤液返回到沉降池循环澄清。
所述的絮凝剂水溶液由质量比例为1:3的聚丙烯酰胺和聚丙烯酰钠配制成质量分数为0.07%的水溶液。
所述絮凝剂的使用量为脱硫液中粉尘质量的0.09%。
所述的料液在管道混合器中的流速为0.16m/s,絮凝剂水溶液在管道混合器中的流速为0.96m/s。
所述的管道混合器为螺旋式静态管式混合器。
所述的螺旋式静态管式混合器上的脱硫液入口管道和药剂入口管道之间呈15°的夹角。
所述絮凝的温度为45℃,在沉降池中絮凝澄清的时间为0.5h。

Claims (21)

1.一种利用烟气净化副产物制备化肥的热泵蒸发工艺,其特征在于:烟气经湿法净化后的废液在反应器中与碳酸氢铵反应,反应完成后,料液经固液分离,液体冷却结晶后得到的清液作为原料液,泵入预热器,预热后的原料液进入换热器,在换热器的管程中被壳程蒸汽加热温度升高,原料液在强制循环泵的推动下进入结晶分离器,在结晶分离器内产生闪蒸,原料液产生过饱和而结晶,再经离心分离、干燥造粒得到复合肥;所述闪蒸产生的二次蒸汽经压缩机压缩后作为热源进入换热器的壳程。
2.根据权利要求1所述的一种利用烟气净化副产物制备化肥的热泵蒸发工艺,其特征在于:所述原料液产生过饱和而结晶,经旋流器增稠后送入离心分离机,所得清液返回结晶分离器。
3.根据权利要求1所述的一种利用烟气净化副产物制备化肥的热泵蒸发工艺,其特征在于:所述的复合肥的粒径为0.1-0.2mm。
4.根据权利要求1所述的一种利用烟气净化副产物制备化肥的热泵蒸发工艺,其特征在于:所述的废液与碳酸氢铵反应得到的固体作为吸收剂回用于烟气净化工段。
5.根据权利要求1所述的一种利用烟气净化副产物制备化肥的热泵蒸发工艺,其特征在于:所述的压缩机为离心压缩机。
6.根据权利要求1所述的一种利用烟气净化副产物制备化肥的热泵蒸发工艺,其特征在于:所述的预热器分为一级预热器和二级预热器。
7.根据权利要求6所述的一种利用烟气净化副产物制备化肥的热泵蒸发工艺,其特征在于:所述二级预热器与换热器的冷凝液作为一级预热器的热源;所述的一级预热器的冷凝液回到烟气净化工段作为补水使用。
8.根据权利要求6所述的一种利用烟气净化副产物制备化肥的热泵蒸发工艺,其特征在于:所述的原料液在一级预热器内加热至50~70℃;在二级预热器内加热至90~100℃。
9.根据权利要求1所述的一种利用烟气净化副产物制备化肥的热泵蒸发工艺,其特征在于:所述的原料液在预热器中的流速为0.5~3m/s。
10.根据权利要求1所述的一种利用烟气净化副产物制备化肥的热泵蒸发工艺,其特征在于:所述的原料液在换热器内加热至105~108℃。
11.根据权利要求1所述的一种利用烟气净化副产物制备化肥的热泵蒸发工艺,其特征在于:所述强制循环泵的表压为0.03~0.05MPa。
12.根据权利要求1所述的一种利用烟气净化副产物制备化肥的热泵蒸发工艺,其特征在于:所述的原料液进入结晶分离器的流速为1~2.5m/s。
13.根据权利要求1所述的一种利用烟气净化副产物制备化肥的热泵蒸发工艺,其特征在于:所述的原料液在结晶分离器内产生闪蒸,闪蒸产生的二次蒸汽的温度为80~85℃,压力为40~50kPa。
14.根据权利要求1所述的一种利用烟气净化副产物制备化肥的热泵蒸发工艺,其特征在于:所述的二次蒸汽在压缩机内被压缩升高至106℃。
15.根据权利要求1所述的一种利用烟气净化副产物制备化肥的热泵蒸发工艺,其特征在于:所述的冷却结晶是指,液体经过一次冷却结晶,取清液蒸馏后进行二次冷却结晶。
16.根据权利要求15所述的一种利用烟气净化副产物制备化肥的热泵蒸发工艺,其特征在于:所述的一次冷却结晶得到的清液加热至60℃以上后,再进行蒸馏;所述的二次冷却结晶得到的清液加热至60℃以上后,再作为原料液泵入预热器。
17.根据权利要求15所述的一种利用烟气净化副产物制备化肥的热泵蒸发工艺,其特征在于:所述的一次冷却结晶析出的固体返回到反应器中继续反应;所述的二次冷却结晶析出的固体返回到一次冷却结晶工序中冷却结晶。
18.根据权利要求15所述的一种利用烟气净化副产物制备化肥的热泵蒸发工艺,其特征在于:所述蒸馏得到的气体返回反应器中继续反应。
19.根据权利要求15所述的一种利用烟气净化副产物制备化肥的热泵蒸发工艺,其特征在于:结晶分离器出来的晶浆经离心分离得到的清液回到二次冷却结晶工序中冷却结晶。
20.根据权利要求16所述的一种利用烟气净化副产物制备化肥的热泵蒸发工艺,其特征在于:所述一次冷却结晶的清液加热用的热源为蒸馏后的料液。
21.根据权利要求18所述的一种利用烟气净化副产物制备化肥的热泵蒸发工艺,其特征在于:所述的气体经风机加压至0.05~0.08Mpa后,从反应器的底部进入。
CN201410716525.5A 2014-12-02 2014-12-02 一种利用烟气净化副产物制备化肥的热泵蒸发工艺 Active CN104478514B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410716525.5A CN104478514B (zh) 2014-12-02 2014-12-02 一种利用烟气净化副产物制备化肥的热泵蒸发工艺

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410716525.5A CN104478514B (zh) 2014-12-02 2014-12-02 一种利用烟气净化副产物制备化肥的热泵蒸发工艺

Publications (2)

Publication Number Publication Date
CN104478514A CN104478514A (zh) 2015-04-01
CN104478514B true CN104478514B (zh) 2017-06-20

Family

ID=52753154

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410716525.5A Active CN104478514B (zh) 2014-12-02 2014-12-02 一种利用烟气净化副产物制备化肥的热泵蒸发工艺

Country Status (1)

Country Link
CN (1) CN104478514B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105060995A (zh) * 2015-09-01 2015-11-18 中石化南京工程有限公司 利用烟气脱硫脱硝产生的废液制备混合肥料的方法及装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101053742A (zh) * 2007-02-13 2007-10-17 上海交通大学 利用镁化合物和氨循环再生烟气脱硫的方法
EP2226292A1 (en) * 2009-02-18 2010-09-08 Convex B.V. Process and apparatus for the production of ammonium salts
CN102205201A (zh) * 2011-06-10 2011-10-05 赵玉斌 脱硫后的硫酸铵/硫酸镁回收技术
CN202193626U (zh) * 2011-08-31 2012-04-18 上海克硫环保科技股份有限公司 一种氨法烟气脱硫生产硫铵化肥的装置
CN102850092A (zh) * 2011-08-31 2013-01-02 上海克硫环保科技股份有限公司 一种氨法烟气脱硫生产硫铵化肥的工艺及装置
CN103212284A (zh) * 2013-03-15 2013-07-24 孙琦 一种联合脱除烟气中的氮氧化物和硫化物的方法及装置
CN203428931U (zh) * 2013-07-24 2014-02-12 深圳市捷晶能源科技有限公司 一种氯化铵的浓缩结晶设备

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101053742A (zh) * 2007-02-13 2007-10-17 上海交通大学 利用镁化合物和氨循环再生烟气脱硫的方法
EP2226292A1 (en) * 2009-02-18 2010-09-08 Convex B.V. Process and apparatus for the production of ammonium salts
CN102205201A (zh) * 2011-06-10 2011-10-05 赵玉斌 脱硫后的硫酸铵/硫酸镁回收技术
CN202193626U (zh) * 2011-08-31 2012-04-18 上海克硫环保科技股份有限公司 一种氨法烟气脱硫生产硫铵化肥的装置
CN102850092A (zh) * 2011-08-31 2013-01-02 上海克硫环保科技股份有限公司 一种氨法烟气脱硫生产硫铵化肥的工艺及装置
CN103212284A (zh) * 2013-03-15 2013-07-24 孙琦 一种联合脱除烟气中的氮氧化物和硫化物的方法及装置
CN203428931U (zh) * 2013-07-24 2014-02-12 深圳市捷晶能源科技有限公司 一种氯化铵的浓缩结晶设备

Also Published As

Publication number Publication date
CN104478514A (zh) 2015-04-01

Similar Documents

Publication Publication Date Title
CN103785263B (zh) 一种氨尾气处理回收的方法
CN104383797B (zh) 一种烟气的干湿法净化回收处理工艺
US10099939B2 (en) System and method for producing high-purity vanadium pentoxide powder
US10125024B2 (en) System and method for purifying and preparing high-purity vanadium pentoxide powder
CN105984899B (zh) 一种提纯五氧化二钒的系统及方法
US10053371B2 (en) System and method for preparing high-purity vanadium pentoxide powder
CN104445306B (zh) 制造硫酸镁的装置与方法
CN102145912A (zh) 利用氨碱滤过母液制备氯化钙溶液的工艺方法
CN104495886A (zh) 生产硫酸镁的装置及方法
CN206580583U (zh) Fgd废水零排放系统
WO2017173716A1 (zh) 一种磷石膏分解气联合湿法磷酸生产的方法
CN103588220B (zh) 一种氯化铵分解制备氨与盐酸的酸碱联产工艺与系统
CN204325056U (zh) 一种回收利用烟气净化副产物的热泵蒸发系统
CN104478514B (zh) 一种利用烟气净化副产物制备化肥的热泵蒸发工艺
CN104445275B (zh) 一种回收利用烟气净化废液制备铵盐的工艺
CN1554570A (zh) 一种磷肥副产物综合利用的方法
CN108128788A (zh) 一种从脱硫脱硝废水中回收硫酸钠的方法
CN104310429A (zh) 一种氨法脱硫离心分离硫酸铵后母液处理新方法
CN104496101B (zh) 一种回收利用烟气净化副产物的热泵蒸发工艺
CN104772033B (zh) 一种烟气干湿法净化回收处理系统
CN206843088U (zh) 镁法脱硫副产物精制七水硫酸镁工艺的处理系统
CN204237570U (zh) 以烟气净化的废液为原料制备铵盐的系统
CN206970384U (zh) 一种脱硫废水的零排放系统
CN216073085U (zh) 一种生活垃圾焚烧飞灰资源化处理系统
CN104446796B (zh) 一种利用烟气净化副产物制备化肥的热泵蒸发系统

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant