CN104465402B - A kind of semiconductor device fabrication processes - Google Patents
A kind of semiconductor device fabrication processes Download PDFInfo
- Publication number
- CN104465402B CN104465402B CN201410825942.3A CN201410825942A CN104465402B CN 104465402 B CN104465402 B CN 104465402B CN 201410825942 A CN201410825942 A CN 201410825942A CN 104465402 B CN104465402 B CN 104465402B
- Authority
- CN
- China
- Prior art keywords
- layer
- semiconductor device
- sacrificial layer
- dielectric layer
- manufacturing process
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims description 52
- 238000005389 semiconductor device fabrication Methods 0.000 title 1
- 239000004065 semiconductor Substances 0.000 claims abstract description 80
- 238000004519 manufacturing process Methods 0.000 claims abstract description 36
- 239000000758 substrate Substances 0.000 claims abstract description 22
- 229910003481 amorphous carbon Inorganic materials 0.000 claims abstract description 17
- 229920002120 photoresistant polymer Polymers 0.000 claims description 22
- 238000004380 ashing Methods 0.000 claims description 12
- 238000001039 wet etching Methods 0.000 claims description 9
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 claims description 8
- 238000000206 photolithography Methods 0.000 claims description 7
- 229910052814 silicon oxide Inorganic materials 0.000 claims description 7
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 6
- 150000002500 ions Chemical class 0.000 claims description 6
- 238000002360 preparation method Methods 0.000 claims description 5
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 claims description 4
- 229910000147 aluminium phosphate Inorganic materials 0.000 claims description 4
- 229910000040 hydrogen fluoride Inorganic materials 0.000 claims description 4
- 102100022717 Atypical chemokine receptor 1 Human genes 0.000 claims 1
- 101000678879 Homo sapiens Atypical chemokine receptor 1 Proteins 0.000 claims 1
- 239000000463 material Substances 0.000 abstract description 29
- 238000005516 engineering process Methods 0.000 abstract description 4
- 238000000407 epitaxy Methods 0.000 description 18
- 238000005530 etching Methods 0.000 description 11
- 230000015556 catabolic process Effects 0.000 description 9
- 239000000243 solution Substances 0.000 description 9
- 230000000694 effects Effects 0.000 description 5
- 229910052581 Si3N4 Inorganic materials 0.000 description 4
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 4
- 239000006117 anti-reflective coating Substances 0.000 description 4
- 238000000227 grinding Methods 0.000 description 4
- 229910052710 silicon Inorganic materials 0.000 description 4
- 239000010703 silicon Substances 0.000 description 4
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 3
- 230000005684 electric field Effects 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 230000009286 beneficial effect Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 238000011049 filling Methods 0.000 description 2
- 238000007689 inspection Methods 0.000 description 2
- 238000002310 reflectometry Methods 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- 230000003321 amplification Effects 0.000 description 1
- 238000000137 annealing Methods 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000002800 charge carrier Substances 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 239000003085 diluting agent Substances 0.000 description 1
- 239000012895 dilution Substances 0.000 description 1
- 238000010790 dilution Methods 0.000 description 1
- 238000001312 dry etching Methods 0.000 description 1
- 230000005669 field effect Effects 0.000 description 1
- 229910052732 germanium Inorganic materials 0.000 description 1
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 description 1
- 239000003292 glue Substances 0.000 description 1
- 238000005468 ion implantation Methods 0.000 description 1
- 238000011068 loading method Methods 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 238000001020 plasma etching Methods 0.000 description 1
- 125000006850 spacer group Chemical group 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/01—Manufacture or treatment
- H10D30/021—Manufacture or treatment of FETs having insulated gates [IGFET]
Landscapes
- Recrystallisation Techniques (AREA)
Abstract
本发明公开了一种具有超结结构的半导体器件制备工艺,包括如下步骤:提供一第一导电类型的半导体衬底,在该半导体衬底之上制备具有若干第一沟槽的牺牲层;制备一侧墙覆盖在第一沟槽的侧壁;制备第二导电类型的第一外延层将第一沟槽进行填充;移除牺牲层和侧墙,以在第一外延层中形成第二沟槽;制备第一导电类型的第二外延层将第二沟槽进行填充。本发明通过采用先进的无定形碳工艺,使得超结结构的N型半导体材料和P型半导体材料界面垂直平整,并且N型半导体材料和P型半导体材料宽度保持精确一致,提高了超结器件性能。并且由于采用先进的无定形碳工艺,P柱和N柱宽度可以减小到40nm以下,从而大大降低元胞面积。
The invention discloses a process for preparing a semiconductor device with a super junction structure, comprising the following steps: providing a semiconductor substrate of a first conductivity type, and preparing a sacrificial layer having a plurality of first trenches on the semiconductor substrate; preparing The sidewall covers the sidewall of the first trench; preparing a first epitaxial layer of the second conductivity type to fill the first trench; removing the sacrificial layer and the sidewall to form a second trench in the first epitaxial layer groove; preparing a second epitaxial layer of the first conductivity type to fill the second groove. The present invention adopts advanced amorphous carbon technology to make the interface of N-type semiconductor material and P-type semiconductor material of super junction structure vertically flat, and the width of N-type semiconductor material and P-type semiconductor material remains accurate and consistent, which improves the performance of super-junction devices . And due to the use of advanced amorphous carbon technology, the width of P column and N column can be reduced to less than 40nm, thereby greatly reducing the cell area.
Description
技术领域technical field
本发明涉及半导体制备领域,确切的说,具体涉及一种具有超结结构的半导体器件制备工艺。The invention relates to the field of semiconductor preparation, specifically, to a preparation process of a semiconductor device with a super junction structure.
背景技术Background technique
在高压MOSFET领域(400V~1000V),超结(Super Junction)结构作为一种先进的漂移区结构越来越受到工业界的重视。超结结构的漂移区采用交替的PN结结构取代传统高压MOSFET中单一导电类型漂移区,在漂移区引入了横向电场,使得器件漂移区在较小的关断电压下即可完全耗尽,击穿电压仅与耗尽层厚度及临界电场有关。因此,在相同耐压下,超结结构漂移区的掺杂浓度可以提高一个数量级,可以降低导通电阻5~10倍。In the field of high-voltage MOSFETs (400V ~ 1000V), the super junction (Super Junction) structure, as an advanced drift region structure, has attracted more and more attention from the industry. The drift region of the super-junction structure uses an alternate PN junction structure to replace the single conductivity type drift region in the traditional high-voltage MOSFET, and a lateral electric field is introduced in the drift region, so that the device drift region can be completely exhausted at a small turn-off voltage, and the strike The breakdown voltage is only related to the thickness of the depletion layer and the critical electric field. Therefore, under the same withstand voltage, the doping concentration of the drift region of the super-junction structure can be increased by an order of magnitude, and the on-resistance can be reduced by 5 to 10 times.
功率MOSFET典型应用于需要功率转换和功率放大的器件中。对于功率转换器件来说,市场上可买到的代表性的器件譬如电性的双扩散MOSFET(DMOSFET)。在常规化的功率晶体管中,大部分的击穿电压BV都由漂移区承载,为了给器件提供较高的击穿电压BV,漂移区一般需要轻掺杂。然而轻掺杂的漂流区会产生高导通电阻Rdson。对于一个典型的晶体管而言,简化的认为导通电阻与BV2.5成正比。因此,对于传统的晶体管,随着击穿电压BV的增加,导通电阻也急剧增大。Power MOSFETs are typically used in devices requiring power conversion and power amplification. For power conversion devices, representative devices available on the market such as electrical double-diffused MOSFETs (DMOSFETs). In conventional power transistors, most of the breakdown voltage BV is carried by the drift region. In order to provide a higher breakdown voltage BV for the device, the drift region generally requires light doping. However, a lightly doped drift region will produce a high on-resistance Rdson. For a typical transistor, the simplification is that the on-resistance is directly proportional to BV 2.5 . Therefore, for conventional transistors, as the breakdown voltage BV increases, the on-resistance also increases sharply.
如附图1所示的超级结器件是一种众所周知的功率半导体器件。超级结晶体管提出了一种可以在维持很高的断开状态击穿电压BV的同时,获得很低的导通电阻的方法。超级结器件含有形成在漂移区中的交替的P‐型和N‐型掺杂立柱。在MOSFET切换为断开状态时,可以在相对比较低的电压下,立柱就完全耗尽,从而能够维持很高的击穿电压,因为立柱横向耗尽,因此整个P和N型立柱基本都耗尽。对于超级结,导通电阻的增加与击穿电压BV成正比,比传统的半导体结构增加地更加缓慢。因此,对于相同的高击穿电压BV,超级结器件比传统的MOSFET器件具有更低的导通电阻。或者换一种说法,相反地,对于特定的导通电阻,超级结器件比传统的MOSFET具有更高的BV。关于超级结的更多相关内容,如Iwamoto,Sato等人于2002年在“第十四届功率半导体器件和集成电路研讨会公报”所涉文献第241-244页揭示的“24mΩcm2680V硅超级结MOSFET”中详细的提出了超级结器件,特此引用其全文以作参考。The super junction device shown in Fig. 1 is a well-known power semiconductor device. Superjunction transistors present a way to achieve very low on-resistance while maintaining a high off-state breakdown voltage BV. Superjunction devices contain alternating P-type and N-type doped pillars formed in the drift region. When the MOSFET is switched to the off state, the column can be completely depleted at a relatively low voltage, so that a high breakdown voltage can be maintained. Because the column is depleted laterally, the entire P and N-type columns are basically depleted. do. For superjunctions, the on-resistance increases proportional to the breakdown voltage BV, which increases more slowly than conventional semiconductor structures. Therefore, for the same high breakdown voltage BV, superjunction devices have lower on-resistance than conventional MOSFET devices. Or to put it another way, conversely, for a given on-resistance, superjunction devices have a higher BV than conventional MOSFETs. More relevant content about super junctions, such as "24mΩcm 2 680V silicon superjunction" disclosed by Iwamoto, Sato et al. Superjunction devices are presented in detail in "Junction MOSFET", the full text of which is hereby incorporated by reference.
目前超级结的结构主要由二种工艺实现:多次外延、深槽外延,制造的难点在于形成具高深宽比之特征的P型半导体柱和N型半导体柱。多次外延方法是在N+型半导体衬底上采用多次外延方式生长需要厚度的漂移区,每次外延后进行P型离子注入,最后退火而形成连续的P型半导体柱。该方法工艺复杂,耗时长和成本高,且难以降低元胞面积。深槽外延方法是在一定厚度的N型半导体外延层上刻蚀深槽,然后在深槽中进行P型半导体外延生长。该方法相对多次外延工艺方法简单,也降低了成本,但深槽外延时填充较困难,刻蚀深宽比较大的沟槽工艺难度大且需要昂贵的设备。At present, the structure of the super junction is mainly realized by two processes: multiple epitaxy and deep trench epitaxy. The difficulty in manufacturing lies in the formation of P-type semiconductor pillars and N-type semiconductor pillars with high aspect ratio characteristics. The multiple epitaxy method is to grow a drift region with a required thickness on the N+ type semiconductor substrate by multiple epitaxy, perform P-type ion implantation after each epitaxy, and finally anneal to form a continuous P-type semiconductor column. This method is complex in process, time-consuming and high in cost, and it is difficult to reduce the cell area. The deep groove epitaxy method is to etch a deep groove on an N-type semiconductor epitaxial layer of a certain thickness, and then carry out P-type semiconductor epitaxial growth in the deep groove. This method is simpler than the multiple epitaxy process, and also reduces the cost, but it is difficult to fill the deep trench epitaxy, and the process of etching a trench with a large aspect ratio is difficult and requires expensive equipment.
为此,一些现有技术中在基于深槽外延的基础上提出了各种新型的工艺方法,可以降低制备超级结的工艺难度,但在进行P型半导体材料外延过程中很难使得P型半导体材料的垂直侧面平整,导致在外延N型半导体材料后就致使PN界面处也不平整,从而会影响到反向耐压。另外,通过外延来精确控制P型半导体材料和N型半导体材料宽度一致难度较大,并且难于降低元胞面积。For this reason, in some existing technologies, various new process methods have been proposed on the basis of deep trench epitaxy, which can reduce the process difficulty of preparing super junctions, but it is difficult to make P-type semiconductor materials in the epitaxy process of P-type semiconductor materials. The vertical side of the material is flat, resulting in the unevenness of the PN interface after the epitaxy of the N-type semiconductor material, which will affect the reverse withstand voltage. In addition, it is difficult to accurately control the width of the P-type semiconductor material and the N-type semiconductor material to be consistent through epitaxy, and it is difficult to reduce the cell area.
发明内容Contents of the invention
本发明提供了一种新型的超结器件制备方法,不仅有效降低超结工艺难度,同时保证了PN界面更加垂直平整,提高器件的反向耐压能力,为了实现以上技术效果,可采用如下步骤来制备超结半导体器件:在第一导电类型的半导体衬底之上制备具有若干第一沟槽的牺牲层;制备一侧墙覆盖在第一沟槽的侧壁;制备第二导电类型的第一外延层将第一沟槽进行填充;依次移除牺牲层和侧墙,以在第一外延层中形成若干第二沟槽;制备第一导电类型的第二外延层将第二沟槽进行填充。The present invention provides a new type of super junction device preparation method, which not only effectively reduces the difficulty of the super junction process, but also ensures that the PN interface is more vertical and smooth, and improves the reverse withstand voltage capability of the device. In order to achieve the above technical effects, the following steps can be adopted To prepare a super junction semiconductor device: prepare a sacrificial layer with several first trenches on a semiconductor substrate of the first conductivity type; prepare a sidewall covering the sidewalls of the first trenches; prepare a first trench of the second conductivity type filling the first trenches with an epitaxial layer; removing the sacrificial layer and sidewalls in sequence to form several second trenches in the first epitaxial layer; preparing a second epitaxial layer of the first conductivity type to fill the second trenches filling.
上述的半导体器件制备工艺,其中,半导体衬底包括底部衬底和覆盖在该底部衬底之上的缓冲层;缓冲层的离子掺杂浓度小于底部衬底的离子掺杂浓度。In the manufacturing process of the above semiconductor device, the semiconductor substrate includes a base substrate and a buffer layer covering the base substrate; the ion doping concentration of the buffer layer is lower than the ion doping concentration of the base substrate.
上述的半导体器件制备工艺,其中,制备具有若干第一沟槽的牺牲层的步骤包括:于半导体衬底之上自下而上依次形成牺牲层、第一介质层、第二介质层和光刻胶;进行光刻工艺,于光刻胶和第一介质层、第二介质层中形成若干开口;The above-mentioned semiconductor device manufacturing process, wherein, the step of preparing the sacrificial layer having several first grooves includes: sequentially forming a sacrificial layer, a first dielectric layer, a second dielectric layer and a photolithography layer on the semiconductor substrate from bottom to top glue; performing a photolithography process to form a number of openings in the photoresist and the first dielectric layer and the second dielectric layer;
利用开口对牺牲层进行刻蚀,以在牺牲层中形成若干第一沟槽。The sacrificial layer is etched using the openings to form a plurality of first trenches in the sacrificial layer.
上述的半导体器件制备工艺,其中,第一介质层为DARC层,第二介质层为BARC层。In the above semiconductor device manufacturing process, the first dielectric layer is a DARC layer, and the second dielectric layer is a BARC layer.
上述的半导体器件制备工艺,其中,在牺牲层中形成若干第一沟槽后,移除光刻胶和第二介质层,并保留位于牺牲层顶部的第一介质层。In the manufacturing process of the above-mentioned semiconductor device, after forming several first trenches in the sacrificial layer, the photoresist and the second dielectric layer are removed, and the first dielectric layer on the top of the sacrificial layer remains.
上述的半导体器件制备工艺,其中,采用湿法刻蚀工艺移除光刻胶和第二介质层,但不用灰化处理的移除方式,避免牺牲层受损伤。In the manufacturing process of the above semiconductor device, the photoresist and the second dielectric layer are removed by a wet etching process, but ashing treatment is not used to avoid damage to the sacrificial layer.
上述的半导体器件制备工艺,其中,在牺牲层中形成若干第一沟槽后,移除光刻胶、第二介质层和第一介质层。In the manufacturing process of the above semiconductor device, after forming a plurality of first trenches in the sacrificial layer, the photoresist, the second dielectric layer and the first dielectric layer are removed.
上述的半导体器件制备工艺,其中,采用湿法刻蚀工艺移除光刻胶、第二介质层和第一介质层,但不用灰化处理的移除方式,避免牺牲层受损伤。In the manufacturing process of the above semiconductor device, the photoresist, the second dielectric layer and the first dielectric layer are removed by wet etching process, but the ashing treatment is not used to avoid damage to the sacrificial layer.
上述的半导体器件制备工艺,其中,牺牲层为无定形碳;采用灰化处理移除牺牲层。In the above semiconductor device manufacturing process, wherein the sacrificial layer is amorphous carbon; the sacrificial layer is removed by ashing treatment.
上述的半导体器件制备工艺,其中,侧墙为硅的氧化物;在移除牺牲层之后,再采用氟化氢溶液移除侧墙。In the above manufacturing process of the semiconductor device, the sidewall is silicon oxide; after removing the sacrificial layer, the sidewall is removed by a hydrogen fluoride solution.
上述的半导体器件制备工艺,其中,侧墙为硅的氮化物;在移除牺牲层之后,再采用热磷酸溶液移除侧墙。In the manufacturing process of the above semiconductor device, the sidewall is made of silicon nitride; after removing the sacrificial layer, the sidewall is removed by hot phosphoric acid solution.
上述的半导体器件制备工艺,其中,侧墙厚度为5‐20μm。In the above semiconductor device manufacturing process, the thickness of the sidewall is 5-20 μm.
上述的半导体器件制备工艺,其中,牺牲层和第一介质层的厚度之和与第一沟槽宽度的比值在5:1至1:1之间。In the above semiconductor device manufacturing process, the ratio of the sum of the thicknesses of the sacrificial layer and the first dielectric layer to the width of the first trench is between 5:1 and 1:1.
上述的半导体器件制备工艺,其中,牺牲层的厚度与第一沟槽的比值在5:1至1:1之间。In the above semiconductor device manufacturing process, the ratio of the thickness of the sacrificial layer to the first trench is between 5:1 and 1:1.
上述的半导体器件制备工艺,其中,制备第一外延层时,外延速率不大于1.5μm/分钟。In the above semiconductor device manufacturing process, when preparing the first epitaxial layer, the epitaxial rate is not greater than 1.5 μm/min.
上述的半导体器件制备工艺,其中,制备第二外延层时,外延速率不大于2μm/分钟。In the above semiconductor device manufacturing process, when preparing the second epitaxial layer, the epitaxial rate is not greater than 2 μm/min.
上述的半导体器件制备工艺,其中,第一导电类型为N型,第二导电类型为P型。In the above semiconductor device manufacturing process, the first conductivity type is N-type, and the second conductivity type is P-type.
上述的半导体器件制备工艺,其中,移除牺牲层和侧墙后,形成的第二沟槽具有平坦面的垂直侧壁形貌。In the manufacturing process of the above semiconductor device, after removing the sacrificial layer and the sidewall, the formed second trench has a vertical sidewall shape with a flat surface.
附图说明Description of drawings
通过阅读参照以下附图对非限制性实施例所作的详细描述,本发明及其特征、外形和优点将会变得更明显。在全部附图中相同的标记指示相同的部分。并未刻意按照比例绘制附图,重点在于示出本发明的主旨。The invention and its characteristics, shapes and advantages will become more apparent by reading the detailed description of non-limiting embodiments made with reference to the following drawings. Like numbers designate like parts throughout the drawings. The drawings are not intended to be drawn to scale, emphasis instead being placed upon illustrating the gist of the invention.
图1为一种加入肖特基接触的超结半导体器件截面图;Fig. 1 is a cross-sectional view of a super junction semiconductor device with a Schottky contact;
图2A~2L为本发明在一种实施例中制备超结器件的主要过程图;2A to 2L are the main process diagrams of preparing a super junction device in an embodiment of the present invention;
图3A~3C为本发明在一种实施例中制备超结器件的部分过程图;3A to 3C are partial process diagrams of preparing super junction devices in an embodiment of the present invention;
图4~6为本发明制备出的超结器件的三种应用。4 to 6 show three applications of the super junction device prepared by the present invention.
具体实施方式Detailed ways
在下文的描述中,给出了大量具体的细节以便提供对本发明更为彻底的理解。然而,对于本领域技术人员而言显而易见的是,本发明可以无需一个或多个这些细节而得以实施。在其他的例子中,为了避免与本发明发生混淆,对于本领域公知的一些技术特征未进行描述。In the following description, numerous specific details are given in order to provide a more thorough understanding of the present invention. It will be apparent, however, to one skilled in the art that the present invention may be practiced without one or more of these details. In other examples, some technical features known in the art are not described in order to avoid confusion with the present invention.
为了彻底理解本发明,将在下列的描述中提出详细的步骤以及详细的结构,以便阐释本发明的技术方案。本发明的较佳实施例详细描述如下,然而除了这些详细描述外,本发明还可以具有其他实施方式。In order to thoroughly understand the present invention, detailed steps and detailed structures will be provided in the following description, so as to illustrate the technical solution of the present invention. Preferred embodiments of the present invention are described in detail below, however, the present invention may have other embodiments besides these detailed descriptions.
实施例一Embodiment one
提供一具有第一导电类型的半导体衬底。可选的,该半导体衬底包括底部衬底110和覆盖在底部衬底110上的缓冲层120,缓冲层120的离子掺杂浓度要小于底部衬底110的离子掺杂浓度。于半导体衬底之上自下而上依次形成牺牲层130、第一介质层140、第二介质层150和光刻胶(PR)160,形成的结构可参照图2A所示。可选但非限制,第一介质层140为DARC(dielectric Anti‐reflective coating,介质抗反射层)层,第二介质层150为BARC(Bottom Anti Reflective coating,底部抗反射涂层)层。在一些实施方式中,可采用CVD工艺淀积一层SiON来作为上述的DARC层。可选但非限制,上述的牺牲层130为无定形碳(amorphous carbon,AC)。其中牺牲层130厚度需大于或等于超结器件所需的P/N型半导体柱高度,而第一介质层140、第二介质层150和光刻胶160的厚度依牺牲层130厚度要求和曝光要求进行最优化。A semiconductor substrate having a first conductivity type is provided. Optionally, the semiconductor substrate includes a base substrate 110 and a buffer layer 120 covering the base substrate 110 , and the ion doping concentration of the buffer layer 120 is lower than the ion doping concentration of the base substrate 110 . A sacrificial layer 130 , a first dielectric layer 140 , a second dielectric layer 150 and a photoresist (PR) 160 are sequentially formed on the semiconductor substrate from bottom to top, and the formed structure can be referred to as shown in FIG. 2A . Optionally but not limited, the first dielectric layer 140 is a DARC (dielectric Anti-reflective coating, dielectric anti-reflective coating) layer, and the second dielectric layer 150 is a BARC (Bottom Anti Reflective coating, bottom anti-reflective coating) layer. In some embodiments, a layer of SiON may be deposited by CVD process as the above-mentioned DARC layer. Optionally but not limited, the aforementioned sacrificial layer 130 is amorphous carbon (amorphous carbon, AC). The thickness of the sacrificial layer 130 needs to be greater than or equal to the height of the P/N type semiconductor column required by the super junction device, and the thicknesses of the first dielectric layer 140, the second dielectric layer 150 and the photoresist 160 depend on the thickness requirements of the sacrificial layer 130 and the exposure optimization is required.
在本发明中,籍由光刻胶160下方的第一介质层140、第二介质层150来提升光刻效果及精度。在本发明中,采用无定形碳作为牺牲层130的原因在于:1、反射率小,有利于降低PR厚度,避免PR倒塌,同时降低了光刻成本;2、反射率小,可以小于0.5%,从而可以大大提高曝光精度;3、降低曝光后光阻边界粗糙度(LER,line edge roughness),从而提高图形边界平整度;4、能够实现较大的蚀刻工艺窗口(etch process window);5、在不同线密度区域之间具有较小的CD(关键尺寸)微负载效应(micro‐loading effect);6、有利于改善AEI(After Etch Inspection,蚀刻后检查)CDU(chemical dispense unit,化学分配单元)良好的CD一致性;7、非常容易通过灰化工艺(Ashing process)去除无定形碳,且移除效果非常好,不会产生残留。In the present invention, the photolithography effect and precision are improved by means of the first dielectric layer 140 and the second dielectric layer 150 under the photoresist 160 . In the present invention, the reasons for using amorphous carbon as the sacrificial layer 130 are: 1. The reflectivity is small, which is beneficial to reduce the thickness of PR, avoid PR collapse, and reduce the cost of photolithography; 2. The reflectivity is small, which can be less than 0.5%. , so that the exposure accuracy can be greatly improved; 3. Reduce the photoresist boundary roughness (LER, line edge roughness) after exposure, thereby improving the flatness of the graphic boundary; 4. Can achieve a larger etching process window (etch process window); 5. , There is a small CD (critical dimension) microloading effect (micro-loading effect) between different line density areas; 6, it is beneficial to improve AEI (After Etch Inspection, inspection after etching) CDU (chemical dispense unit, chemical distribution unit) good CD consistency; 7. It is very easy to remove amorphous carbon through the ashing process (Ashing process), and the removal effect is very good without residue.
采用光刻工艺(包括曝光、显影工艺)和刻蚀工艺,在缓冲层120之上的牺牲层130、第一介质层140、第二介质层150和光刻胶160中形成若干沟槽210,且在沟槽210底部,位于相邻剩余的牺牲层130之间则形成第一沟槽220,参照图2B所示。由于采用先进的无定形碳工艺,P柱和N柱宽度可以减小到40nm以下,从而大大降低元胞面积。A plurality of grooves 210 are formed in the sacrificial layer 130, the first dielectric layer 140, the second dielectric layer 150 and the photoresist 160 above the buffer layer 120 by photolithography (including exposure and development) and etching processes, And at the bottom of the trench 210, a first trench 220 is formed between adjacent remaining sacrificial layers 130, as shown in FIG. 2B. Due to the advanced amorphous carbon process, the width of P-column and N-column can be reduced to less than 40nm, thereby greatly reducing the cell area.
采用湿法刻蚀工艺移除光刻胶160、第二介质层150,参照图2C所示。为了保留和保护无定形碳层(即牺牲层130),不能采用灰化工艺(Ashing process)来去除光刻胶。在本实施例中,可选采用湿法刻蚀工艺移除光刻胶160和第二介质层150,并保留位于牺牲层130顶部的第一介质层140,以避免牺牲层130受到刻蚀损伤。The photoresist 160 and the second dielectric layer 150 are removed by a wet etching process, as shown in FIG. 2C . In order to preserve and protect the amorphous carbon layer (ie, the sacrificial layer 130 ), an ashing process (Ashing process) cannot be used to remove the photoresist. In this embodiment, a wet etching process may be used to remove the photoresist 160 and the second dielectric layer 150, and retain the first dielectric layer 140 on top of the sacrificial layer 130, so as to prevent the sacrificial layer 130 from being damaged by etching. .
为了保证后续选择性外延的质量,要求沟槽210的高宽比在5:1至1:1之间,即牺牲层130厚度+第一介质层140厚度(如果第一介质层140未去除)与第一沟槽220宽度之比在5:1至1:1之间。In order to ensure the quality of subsequent selective epitaxy, the aspect ratio of the trench 210 is required to be between 5:1 and 1:1, that is, the thickness of the sacrificial layer 130 + the thickness of the first dielectric layer 140 (if the first dielectric layer 140 is not removed) The ratio to the width of the first trench 220 is between 5:1 and 1:1.
在第一沟槽220中形成将剩余牺牲层130侧壁予以覆盖的侧墙171。具体的,制备该侧墙171的步骤可参照图2D至图2E所示:在形成图2C所示的结构之后,先沉积或生长一层侧墙材料层170覆盖在牺牲层130、第一介质层140以及缓冲层120暴露的表面;之后可采用各向异性的干法刻蚀工艺对侧墙材料层170进行刻蚀,将第一介质层140和缓冲层120顶部的侧墙材料层170予以去除,形成覆盖在牺牲层130和第一介质层140侧壁的侧墙171。Sidewalls 171 covering the remaining sidewalls of the sacrificial layer 130 are formed in the first trench 220 . Specifically, the steps of preparing the sidewall 171 can refer to those shown in FIG. 2D to FIG. 2E: after forming the structure shown in FIG. layer 140 and the exposed surface of the buffer layer 120; then anisotropic dry etching process can be used to etch the sidewall material layer 170, and the first dielectric layer 140 and the sidewall material layer 170 on top of the buffer layer 120 removed to form sidewalls 171 covering the sidewalls of the sacrificial layer 130 and the first dielectric layer 140 .
由于无定形碳的晶粒结构接近于常规半导体材料(如硅、锗),为了保证后续无定形碳沟槽中(即第一沟槽220)半导体外延的质量,需要淀积或生长一层晶粒结构与半导体相差较大的材料,例如采用硅的氧化物(如SiO2)或者硅的氮化物(如Si3N4)作为侧墙材料层170。可选但非限制,在图2E中,形成的侧墙171的厚度最好在5‐20μm之间。需要说明的是,该侧墙171优选同时将牺牲层130、第一介质层140侧壁进行覆盖,但是在其他一些实施方式中,还可以通过调整刻蚀反应条件,使得侧墙171仅仅覆盖在牺牲层130的侧壁,这对本发明并不会造成影响。Since the grain structure of amorphous carbon is close to conventional semiconductor materials (such as silicon and germanium), in order to ensure the quality of semiconductor epitaxy in the subsequent amorphous carbon trench (ie, the first trench 220), it is necessary to deposit or grow a layer of crystal grains. A material whose grain structure is quite different from that of a semiconductor, for example, silicon oxide (such as SiO 2 ) or silicon nitride (such as Si 3 N 4 ) is used as the sidewall material layer 170 . Optionally but not limited, in FIG. 2E , the thickness of the formed side wall 171 is preferably between 5-20 μm. It should be noted that the sidewalls 171 preferably cover the sidewalls of the sacrificial layer 130 and the first dielectric layer 140 at the same time, but in other implementations, the etching reaction conditions can also be adjusted so that the sidewalls 171 only cover The sidewall of the sacrificial layer 130 does not affect the present invention.
制备与半导体衬底相反导电类型的第二导电类型的第一外延层180,以将位于牺牲层中130的第一沟槽220进行填充,并籍由平坦化处理使第一外延层180和牺牲层130顶面齐平,参照图2F‐2G所示。可选但非限制,选择性外延P型半导体材料,即一边外延,一边软刻蚀(soft etch)沟槽侧壁和顶部的第一外延层180,最后使其外延上表面超过第一介质层140的上表面(若上述步骤去除了DARC层,则第一外延层180上表面超过牺牲层130的上表面)。其中soft‐etch可以选用带有Siconi模块的insitu外延+soft‐etch的机台。为了保证沟槽中第一外延层180的质量,要求外延速率不大于1.5μm/分钟。形成图2F所示的结构之后,可采用CMP工艺进行研磨,将牺牲层130顶面的第一外延层180、侧墙171和第一介质层140予以去除,使第一外延层180和牺牲层130顶面齐平。Prepare the first epitaxial layer 180 of the second conductivity type opposite to that of the semiconductor substrate, so as to fill the first trench 220 located in the sacrificial layer 130, and make the first epitaxial layer 180 and the sacrificial layer The top surface of the layer 130 is flush, as shown in FIGS. 2F-2G . Optional but not limited, selective epitaxial P-type semiconductor material, that is, while epitaxial, soft etching (soft etch) the sidewall of the trench and the first epitaxial layer 180 on the top, and finally make its epitaxial upper surface exceed the first dielectric layer 140 (if the above steps remove the DARC layer, then the upper surface of the first epitaxial layer 180 exceeds the upper surface of the sacrificial layer 130 ). Among them, the soft-etch can choose the insitu epitaxy + soft-etch machine with Siconi module. In order to ensure the quality of the first epitaxial layer 180 in the trench, it is required that the epitaxial rate is not greater than 1.5 μm/min. After the structure shown in FIG. 2F is formed, the CMP process can be used for grinding to remove the first epitaxial layer 180, the sidewall 171 and the first dielectric layer 140 on the top surface of the sacrificial layer 130, so that the first epitaxial layer 180 and the sacrificial layer 130 top flush.
依次移除牺牲层130和侧墙171,在第一外延层180中形成第二沟槽230。首先采用灰化工艺,去除无定形碳的牺牲层130,以在第一外延层180中形成第二沟槽230,如图2H所示。之后再采用湿法工艺去除侧墙171,如图2I所示。如之前侧墙171材质为硅的氧化物层则可以采用氟化氢稀释液去除侧墙171,如之前侧墙171材质为硅的氮化物则采用热磷酸液去除侧墙171。由于侧墙171选用了与第一外延层180材质相差很大的材料,因此在进行湿法刻蚀的过程中,刻蚀液能够以较高的刻蚀速率剥离侧墙171,而对第一外延层180的损伤则较小,这时P型柱非常垂直平整。请继续参阅附图2J,其表示为图2I的立体图。The sacrificial layer 130 and the sidewall 171 are sequentially removed to form a second trench 230 in the first epitaxial layer 180 . First, an ashing process is used to remove the sacrificial layer 130 of amorphous carbon to form a second trench 230 in the first epitaxial layer 180 , as shown in FIG. 2H . Afterwards, the sidewall 171 is removed by a wet process, as shown in FIG. 2I . If the material of the sidewall 171 is silicon oxide layer, the sidewall 171 can be removed by hydrogen fluoride diluent, and if the material of the sidewall 171 is silicon nitride, the sidewall 171 can be removed by hot phosphoric acid solution. Since the sidewall 171 is made of a material that is very different from the material of the first epitaxial layer 180, during the wet etching process, the etchant can strip the sidewall 171 at a relatively high etching rate, while the first The damage of the epitaxial layer 180 is relatively small, and the P-type columns are very vertical and flat at this time. Please continue to refer to accompanying drawing 2J, which is shown as a perspective view of Fig. 2I.
制备第一导电类型的第二外延层190覆盖在第一外延层180之上,以将第一外延层180中的第二沟槽230进行填充,并使第二外延层190上表面超过第一外延层180的上表面,如图2K所示。可选但非限制,可采用选择性外延工艺制备N型的第二外延层190,同时为了保证P型半导体柱间隔中N型半导体外延质量,要求外延速率不大于2μm/分钟。之后进行平坦化处理,使第二外延层190和第一外延层180顶面齐平,之后进行退火处理,以在横向方向上形成了交叠的N柱191和P柱181,其P/N界面非常垂直平整,宽度保持精确一致。相比于传统制备方法,元胞面积大大降低。Prepare the second epitaxial layer 190 of the first conductivity type to cover the first epitaxial layer 180, so as to fill the second trench 230 in the first epitaxial layer 180, and make the upper surface of the second epitaxial layer 190 exceed the first The upper surface of the epitaxial layer 180 is shown in FIG. 2K . Optional but not limiting, the N-type second epitaxial layer 190 can be prepared by a selective epitaxy process, and at the same time, in order to ensure the quality of N-type semiconductor epitaxy in the interval between P-type semiconductor pillars, the epitaxy rate is required to be no greater than 2 μm/min. Afterwards, a planarization treatment is performed to make the top surfaces of the second epitaxial layer 190 and the first epitaxial layer 180 flush, and then an annealing treatment is performed to form overlapping N columns 191 and P columns 181 in the lateral direction, and the P/N The interface is very vertically flat, with a precise and consistent width. Compared with traditional preparation methods, the cell area is greatly reduced.
同时,在本发明另一些实施例中,在形成图2B所示的结构之后,亦可将牺牲层130顶部的第一介质层140、第二介质层150均予以去除,之后沉积侧墙材料层170覆盖在牺牲层130和缓冲层120暴露的表面,那么可选的,牺牲层130的厚度与第一沟槽220的比值最好在5:1至1:1之间,可参照图3A所示;之后采用等离子刻蚀工艺将牺牲层130和缓冲层120顶部的侧墙材料层170去除,形成图3B所示的结构;之后制备第一导电类型的第一外延层180将位于牺牲层中的沟槽进行填充,如图3C所示。之后进行研磨处理,使得第一外延层180的顶面与牺牲层130的顶面齐平,图3C之后的工序与前文所述的工序基本相同,可参照附图2G~2L及相关描述,在此不予赘述。Meanwhile, in other embodiments of the present invention, after the structure shown in FIG. 2B is formed, the first dielectric layer 140 and the second dielectric layer 150 on the top of the sacrificial layer 130 can also be removed, and then a spacer material layer is deposited. 170 covers the exposed surface of the sacrificial layer 130 and the buffer layer 120, then optionally, the ratio of the thickness of the sacrificial layer 130 to the first groove 220 is preferably between 5:1 and 1:1, as shown in FIG. 3A shown; then the sacrificial layer 130 and the sidewall material layer 170 on top of the buffer layer 120 are removed by a plasma etching process to form the structure shown in FIG. The trenches are filled, as shown in Figure 3C. Afterwards, a grinding treatment is performed so that the top surface of the first epitaxial layer 180 is flush with the top surface of the sacrificial layer 130. The process after FIG. This will not be repeated.
实施例二Embodiment two
本实施例提供了一种半导体器件制备工艺,包括如下步骤:This embodiment provides a semiconductor device manufacturing process, including the following steps:
步骤S1:首先刻蚀一牺牲层,在牺牲层中形成多条相互间隔开的第一沟槽。可选但非限制,该牺牲层选用无定形碳,并采用光刻和刻蚀工艺来对该牺牲层进行刻蚀,以在其中形成多条相互间隔开的第一沟槽。Step S1: firstly etching a sacrificial layer to form a plurality of first grooves spaced apart from each other in the sacrificial layer. Optionally but not limited, the sacrificial layer is made of amorphous carbon, and the sacrificial layer is etched by using photolithography and etching processes, so as to form a plurality of first trenches spaced apart therein.
步骤S2:制备一侧墙覆盖在第一沟槽的侧壁上。可选但非限制,该侧墙的材质可以为硅的氧化物,或硅的氮化物。制备该侧墙的步骤主要包括:首先沉积一侧墙材料层将器件暴露的表面进行覆盖,之后采用各向异性刻蚀工艺对侧墙材料层进行刻蚀,以保留覆盖在第一沟槽的侧壁上的侧墙。Step S2: preparing a side wall to cover the side wall of the first trench. Optionally but not limited, the sidewall can be made of silicon oxide or silicon nitride. The steps of preparing the sidewall mainly include: first depositing a sidewall material layer to cover the exposed surface of the device, and then using an anisotropic etching process to etch the sidewall material layer to retain the Side walls on side walls.
步骤S3:在第一沟槽中外延生长第一导电类型(例如P型)的第一外延层,并在之后进行研磨处理,使得第一外延层与牺牲层的顶面相齐平。Step S3: epitaxially growing a first epitaxial layer of a first conductivity type (for example, P-type) in the first trench, and then performing grinding treatment so that the first epitaxial layer is flush with the top surface of the sacrificial layer.
步骤S4:依次移除牺牲层和侧墙,在第一外延层中形成多条相互间隔开的第二沟槽。可选但非限制,先采用灰化工艺移除牺牲层(即无定形碳),之后采用湿法刻蚀工艺来移除侧墙。其中,在移除侧墙时,根据材质的不同来选择不同的湿法刻蚀液,例如当侧墙为硅的氧化物时,采用氟化氢稀释液移除侧墙;而当侧墙为硅的氮化物时,采用热磷酸液移除侧墙。Step S4: removing the sacrificial layer and sidewalls in sequence, forming a plurality of second trenches spaced apart from each other in the first epitaxial layer. Optionally but not limited, the sacrificial layer (namely amorphous carbon) is removed by an ashing process first, and then the sidewall is removed by a wet etching process. Among them, when removing the sidewall, different wet etching solutions are selected according to different materials, for example, when the sidewall is silicon oxide, hydrogen fluoride dilution is used to remove the sidewall; For nitride, remove the sidewalls with hot phosphoric acid.
步骤S5:在第二沟槽中外延生长与第一导电类型相反的第二导电类型(例如N型)的第二外延层,并进行研磨处理,使得第二外延层与第一外延层的顶面相齐平。其中,在先前的步骤S4中移除侧墙之后,所形成第二沟槽的具有平坦面的垂直侧壁形貌,保障第二沟槽中第二导电类型的第二外延层与第一导电类型的第一外延层在界面处的PN结是平面平行结。并籍由第二沟槽内具有第二导电类型的第二外延层构成的立柱,和第二沟槽之间具有第一导电类型的第一外延层构成的立柱,相互交替间隔配置成超级结结构。Step S5: Epitaxially grow a second epitaxial layer of a second conductivity type (for example, N-type) opposite to the first conductivity type in the second trench, and perform grinding treatment, so that the second epitaxial layer and the top of the first epitaxial layer Face flush. Wherein, after the sidewall is removed in the previous step S4, the vertical sidewall profile of the formed second trench with a flat surface ensures that the second epitaxial layer of the second conductivity type in the second trench is compatible with the first conductivity type. The type of PN junction at the interface of the first epitaxial layer is a plane-parallel junction. And by virtue of the pillars formed by the second epitaxial layer with the second conductivity type in the second trench, and the pillars formed by the first epitaxial layer with the first conductivity type between the second trenches, they are alternately arranged at intervals to form a super junction structure.
综上所述,由于本发明采用了如上技术方案,与现有技术相比,通过采用先进的无定形碳工艺,使得超结结构的N型半导体材料和P型半导体材料界面垂直平整,并且N型半导体材料和P型半导体材料宽度保持精确一致,提高了超结器件性能。并且由于采用先进的无定形碳工艺,P柱和N柱宽度可以减小到40nm以下,从而大大降低元胞面积。本发明制程变动小,实现成本较低,适合推广生产。In summary, since the present invention adopts the above technical scheme, compared with the prior art, by adopting an advanced amorphous carbon process, the interface between the N-type semiconductor material and the P-type semiconductor material of the superjunction structure is vertically flat, and the N The width of the P-type semiconductor material and the P-type semiconductor material are kept exactly the same, which improves the performance of the superjunction device. And due to the use of advanced amorphous carbon technology, the width of P column and N column can be reduced to less than 40nm, thereby greatly reducing the cell area. The invention has little change in the manufacturing process, lower implementation cost, and is suitable for popularization and production.
图4‐6概述了利用超级结器件,超级结的应用同时改善功率MOSFET的Vbd和Rdson的概念。按照起始于二十世纪八十年代初期的最初的发明,超级结晶体管器件的漂流区是由多个交替的n和p半导体条纹构成的。只要条纹非常狭窄,并且邻近的条纹中的电荷载流子的数量大致相等,或达到所谓的电荷平衡,那么就有可能在相对较低的电压下使条纹耗尽。一旦耗尽,条纹就好像是一个本征硅,实现了近似均匀的电场分布,从而获得高击穿电压。横向超级结器件(图4)以及垂直超级结器件(图5和图6)都可以利用超级结的概念制备。然而横向器件更适合于集成电路,垂直超级结器件更适用于分立器件。图4表示在横向结构中,条纹在第三维度上的排列情况,称为3D Resurf。图5和图6表示适用于垂直金属‐氧化物‐半导体场效应管(Cool MOS、MDMesh)的布局。所有超级结器件都具有的最突出的特点在于,它们打破了在加载在传统的非超级结的硅器件上的极限。Figure 4-6 outlines the concept of simultaneously improving Vbd and Rdson of power MOSFETs by superjunction devices using superjunction devices. According to the original invention starting in the early 1980s, the drift region of a superjunction transistor device is formed by a plurality of alternating n and p semiconductor stripes. As long as the stripes are very narrow and the number of charge carriers in adjacent stripes is approximately equal, or so-called charge balanced, it is possible to deplete the stripes at relatively low voltages. Once depleted, the stripe acts as if it were an intrinsic silicon, achieving a near-uniform electric field distribution and thus a high breakdown voltage. Both lateral superjunction devices (Figure 4) and vertical superjunction devices (Figures 5 and 6) can be fabricated using the superjunction concept. However, lateral devices are more suitable for integrated circuits, and vertical superjunction devices are more suitable for discrete devices. Figure 4 shows the arrangement of stripes in the third dimension in the transverse structure, which is called 3D Resurf. Figures 5 and 6 show layouts suitable for vertical Metal-Oxide-Semiconductor Field Effect Transistors (Cool MOS, MDMesh). The most outstanding feature shared by all superjunction devices is that they break the limits imposed on conventional non-superjunction silicon devices.
以上对本发明的较佳实施例进行了描述。需要理解的是,本发明并不局限于上述特定实施方式,其中未尽详细描述的设备和结构应该理解为用本领域中的普通方式予以实施;任何熟悉本领域的技术人员,在不脱离本发明技术方案范围情况下,都可利用上述揭示的方法和技术内容对本发明技术方案做出许多可能的变动和修饰,或修改为等同变化的等效实施例,这并不影响本发明的实质内容。因此,凡是未脱离本发明技术方案的内容,依据本发明的技术实质对以上实施例所做的任何简单修改、等同变化及修饰,均仍属于本发明技术方案保护的范围内。The preferred embodiments of the present invention have been described above. It should be understood that the present invention is not limited to the specific embodiments described above, and the devices and structures that are not described in detail should be understood to be implemented in a common manner in the art; Under the circumstances of the technical solution of the invention, many possible changes and modifications can be made to the technical solution of the present invention by using the methods and technical contents disclosed above, or be modified into equivalent embodiments with equivalent changes, which does not affect the essence of the present invention . Therefore, any simple modifications, equivalent changes and modifications made to the above embodiments according to the technical essence of the present invention, which do not deviate from the technical solution of the present invention, still fall within the protection scope of the technical solution of the present invention.
Claims (15)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410825942.3A CN104465402B (en) | 2014-12-25 | 2014-12-25 | A kind of semiconductor device fabrication processes |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410825942.3A CN104465402B (en) | 2014-12-25 | 2014-12-25 | A kind of semiconductor device fabrication processes |
Publications (2)
Publication Number | Publication Date |
---|---|
CN104465402A CN104465402A (en) | 2015-03-25 |
CN104465402B true CN104465402B (en) | 2018-03-06 |
Family
ID=52911260
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201410825942.3A Active CN104465402B (en) | 2014-12-25 | 2014-12-25 | A kind of semiconductor device fabrication processes |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN104465402B (en) |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20080100265A (en) * | 2003-12-19 | 2008-11-14 | 써드 디멘존 세미컨덕터, 인코포레이티드 | Method of manufacturing a super junction device having a conventional termination |
CN102652353B (en) * | 2009-12-09 | 2016-12-07 | 诺发系统有限公司 | Novel gap fill integration |
CN102347227B (en) * | 2010-07-30 | 2013-08-14 | 中芯国际集成电路制造(上海)有限公司 | Metal gate formation method |
KR101339265B1 (en) * | 2012-12-31 | 2013-12-09 | 현대자동차 주식회사 | Method manufacturing for semiconductor device |
-
2014
- 2014-12-25 CN CN201410825942.3A patent/CN104465402B/en active Active
Also Published As
Publication number | Publication date |
---|---|
CN104465402A (en) | 2015-03-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI616935B (en) | Tapered gate oxide in laterally diffused MOS devices | |
TWI478290B (en) | Double gate 4F2 dynamic random access memory CHC unit and manufacturing method thereof | |
TWI515905B (en) | Semiconductor device and its forming method and fin field effect diode | |
CN103811344B (en) | Semiconductor device and method for manufacturing the same | |
CN103367441B (en) | There is MOSFET of unsettled raceway groove and forming method thereof | |
CN103811345B (en) | Semiconductor device and method for manufacturing the same | |
US20140327088A1 (en) | Finfet semiconductor device with a recessed liner that defines a fin height of the finfet device | |
US9748141B2 (en) | Semiconductor device and method for manufacturing the same | |
CN104637821B (en) | The manufacturing method of super-junction device | |
CN102446972A (en) | Transistor with notched fin structure and method of manufacturing the same | |
CN107359118B (en) | A kind of production method of super junction power device Withstand voltage layer | |
KR20190013400A (en) | Epitaxy source/drain regions of finfets and method forming same | |
CN107045980B (en) | The forming method of transistor | |
CN104112670B (en) | A kind of semiconductor devices and preparation method thereof | |
KR20240100487A (en) | Semiconductor device and manufacturing method therefor, and electronic device comprising semiconductor device | |
CN103811339B (en) | Semiconductor device and method for manufacturing the same | |
CN104409334B (en) | A kind of preparation method of superjunction devices | |
CN107342226B (en) | Manufacturing method of ultra-small unit size longitudinal super junction semiconductor device | |
CN104716179A (en) | LDMOS device with deep hole and manufacturing method thereof | |
JP2010161114A (en) | Process of fabricating semiconductor device | |
CN103579003A (en) | Method for manufacturing super joint MOSFET | |
CN106158922A (en) | A kind of epitaxial wafer of super-junction semiconductor device and preparation method thereof | |
CN114823531A (en) | Manufacturing method of super junction device, super junction device, chip and circuit | |
CN112466747B (en) | Trench gate and trench gate power device fabrication method | |
CN104485285B (en) | A kind of superjunction devices preparation technology |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CP01 | Change in the name or title of a patent holder | ||
CP01 | Change in the name or title of a patent holder |
Address after: 401331 No. 25 Xiyong Avenue, Xiyong Town, Shapingba District, Chongqing Patentee after: Huarun Microelectronics (Chongqing) Co., Ltd. Address before: 401331 No. 25 Xiyong Avenue, Xiyong Town, Shapingba District, Chongqing Patentee before: China Aviation (Chongqing) Microelectronics Co., Ltd. |
|
CP02 | Change in the address of a patent holder | ||
CP02 | Change in the address of a patent holder |
Address after: 401331 No. 25 Xiyong Avenue, Shapingba District, Chongqing Patentee after: Huarun Microelectronics (Chongqing) Co., Ltd. Address before: 401331 No. 25 Xiyong Avenue, Xiyong Town, Shapingba District, Chongqing Patentee before: Huarun Microelectronics (Chongqing) Co., Ltd. |