CN104458435A - 高温及超高温环境下弹性模量测试用装置和测试方法 - Google Patents

高温及超高温环境下弹性模量测试用装置和测试方法 Download PDF

Info

Publication number
CN104458435A
CN104458435A CN201410737819.6A CN201410737819A CN104458435A CN 104458435 A CN104458435 A CN 104458435A CN 201410737819 A CN201410737819 A CN 201410737819A CN 104458435 A CN104458435 A CN 104458435A
Authority
CN
China
Prior art keywords
test specimen
landolsring
high temperature
temperature
testing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201410737819.6A
Other languages
English (en)
Other versions
CN104458435B (zh
Inventor
包亦望
刘钊
万德田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China Building Materials Academy CBMA
China Building Material Test and Certification Group Co Ltd
Original Assignee
China Building Materials Academy CBMA
China Building Material Test and Certification Group Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Building Materials Academy CBMA, China Building Material Test and Certification Group Co Ltd filed Critical China Building Materials Academy CBMA
Priority to CN201410737819.6A priority Critical patent/CN104458435B/zh
Publication of CN104458435A publication Critical patent/CN104458435A/zh
Application granted granted Critical
Publication of CN104458435B publication Critical patent/CN104458435B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)
  • Investigating Or Analyzing Materials Using Thermal Means (AREA)

Abstract

高温及超高温环境下弹性模量测试用装置和测试方法。本发明提供一种利用缺口环试件测试陶瓷等耐高温材料在高温及超高温极端环境下弹性模量的测试用装置和测试方法。本发明的测试用装置包括缺口环试件以及具有基台和止动辊的十字槽夹具,缺口环试件放置于该装置的十字型水平槽内,解决了缺口环试件在高温及超高温炉中的定位问题。本发明的测试方法包括在完全相同条件下采用相同载荷对缺口环试件和对比试件分别加载,得到两个不同的压缩位移量,其差值为缺口环试件的真实形变量,从而排除了高温及超高温环境下的变形测量的系统误差。本发明可以测量在高温及超高温环境下材料的弹性模量值,对航天航空以及耐火材料等材料的结构设计和安全评价都具有十分重要的意义。

Description

高温及超高温环境下弹性模量测试用装置和测试方法
技术领域
本发明涉及一种在高温及超高温极端环境下测试陶瓷等耐高温材料的弹性模量的测试用装置和测试方法。特别涉及利用缺口环试件,在针对1000℃以上的高温及1500℃以上的超高温极端环境、常规方法无法获得材料弹性模量的情况下的一种间接评价弹性模量的测试用装置和测试方法。
背景技术
随着新材料和航天航空技术的飞速发展,对于耐高温、抗氧化、耐磨损等高温结构材料日益增多的需求,如飞行器在大气中飞行时,其光学窗口及整流罩要求能够在同空气剧烈摩擦而产生的高温环境下工作,这就要求相关材料具有足够的耐高温性能。而且火箭、卫星、飞行器等的研制过程大多投资数亿元,若因选材不当导致发射失败则会造成巨额损失。因此,在设计极端环境下工作的超高温部件时,了解材料在服役条件下的各力学性能参数是保障构件安全服役的必不可少的基本要求。目前,国内外对耐高温材料在高温及超高温下的一些力学性能评价还缺乏十分有效的方法和技术。而现代高技术和航天工业的发展又急需检测和评价超高温材料力学性能的手段。因此,开发、建立和完善高温及超高温等极端环境下材料性能的测试方法、表征技术和评价标准,对保障国家航天航空器件的可靠性和安全设计具有举足轻重的意义。
超高温极端环境下的弹性模量是高温力学性能评价体系中不可或缺的一项重要性能指标,也是当前国内外的一个难题。利用高温及超高温下的弹性模量并结合其他力学性能参数,可以很好地判断脆性部件服役的稳定性,同时还可进行高温寿命和高温变形的预测。一般来讲,脆性材料弹性模量的传统测试方法有静态法和动态法之分。静态法主要以三点弯曲及四点弯曲测试方法为主,但由于陶瓷弯曲试件的挠度非常小,高温下实现精确测量非常地困难,这使得高温下用该法测得的弹性模量值具有较大误差;动态法主要以共振激励及超声波测试方法为主,但由于高温支承条件的限制和高温下振动响应的获取非常困难,动态法测量耐高温陶瓷材料的弹性模量的最高温度无法超过1500℃。
理论和实验都表明,在相同载荷下,横截面相似的缺口环试样的位移量比弯曲梁试样要大得多,这就方便了变形的精确测试。
包亦望等人提出了一种评价圆环或圆管状脆性材料弹性模量和强度的方法(简称缺口环法),并推导出了弹性模量的计算公式(详见专利号:ZL201010544550.1),即:
E = 3 π 4000 b × ΔP Δδ × ( R + r ) 3 ( R - r ) 3 - - - ( 1 )
其中,ΔP为试件在弹性变形范围内载荷增加量,Δδ为对应试件的压缩位移变化量,R为缺口环试件外半径,r为缺口环试件内半径,b为试件宽度。
然而,上述缺口环法的弹性模量计算公式不能直接用于测量高温及超高温环境下的弹性模量。因为加载系统和压头等连接部位在施加载荷时自身也存在变形,常温下消除这部分误差可使用外接的高精度位移测量仪(如电感量仪)测量试件的变形。但这种电感量仪装置又无法在高温大气或超高温真空环境中使用。这就使得目前陶瓷等耐高温材料在高温下的位移变化量Δδ还没有十分有效的测试方式。另外,当缺口环摆放在高温炉中后,在整个试验过程中不允许产生任何移动和滚动,如何固定试件并且使其外表面不受力是试验的基本保障。
发明内容
本发明鉴于上述现有技术中存在的问题,提出了一种利用缺口环试件并结合相对法在高温(1000℃以上)及超高温(1500℃以上)的极端环境下测试陶瓷等耐高温材料的弹性模量的测试用夹具和测试方法。
本发明的目的是采用相对法消除压头产生的系统误差,从而得到缺口环试件在高温及超高温下的位移变化量(Δδ*),来替换包亦望等人推导出的弹性模量计算公式(1)中的Δδ,从而计算缺口环试件的弹性模量;并且,本发明还设计一种在高温炉及超高温炉中放置和固定缺口环试件的十字槽夹具(包括一个基台和一个止动辊),将试件放置在基台的槽中央并使其缺口处于垂直立起时的中央高度,通过垂直加载挤压缺口环试件并测试其在高度方向的变形(利用相对法消除高温及超高温下位移测量的系统误差),结合校正后的位移—载荷关系、试件尺寸以及上述公式(1),就可以简便、快捷地计算出不同温度下材料的弹性模量值。
本发明的核心的目的在于评价高温和超高温环境下材料的弹性模量。
本发明第一方面的目的在于提供一种高温及超高温环境下弹性模量测试用装置,包括:开有缺口的圆环状的缺口环试件和十字槽夹具,上述十字槽夹具包括:基台和半圆柱状的止动辊,上述基台为柱体平台,在其上表面加工有两条相互正交的十字型水平槽,上述缺口环试件竖直嵌入上述基台的一条水平槽中,上述缺口在上述缺口环试件的竖直高度方向上位于该竖直高度的一半的位置,上述止动辊以其曲面与上述缺口环试件接触的方式放置于上述缺口环试件上、并嵌入上述基台的另一条水平槽中,上述止动辊的长度大于上述水平槽的宽度。
本发明第二方面的目的在于提供一种高温及超高温环境下弹性模量测试方法,使用上述第一方面所述的高温及超高温环境下弹性模量测试用装置,所述方法包括:
(1)准备测试用试件:加工一个上述缺口环试件和一个与上述缺口环试件大小相同的校正用圆板,并测量上述试件及上述圆板的尺寸;
(2)安装测试用试件:将上述步骤(1)的上述缺口环试件安装于上述十字槽夹具中;
(3)加热上述缺口环试件:将安装有上述缺口环试件的上述十字槽夹具放入加热系统内,上述加热系统按照配备的控温程序对上述缺口环试件进行加热,达到设定的温度后保温一段时间;
(4)对上述缺口环试件施加荷载:加载系统对上述缺口环试件施加垂直向下的压缩载荷直至上述试件断裂载荷的一半时停止加载,记录上述试件不同载荷量ΔP下对应的位移量Δδ,压缩载荷的施力点与上述缺口环的圆心在同一条直线上;
(5)测试上述校正用的实心圆板:关闭上述加热系统,待实验环境温度接近室温时取出上述缺口环试件,放入上述校正用的实心圆板,反复上述步骤(3)和(4),记录与上述缺口环试件相同载荷量ΔP处的位移量Δδ',得到上述缺口环试件在高温下的形变量Δδ*=Δδ-Δδ';
(6)利用以下算式计算上述缺口环试件的弹性模量值:
E = 3 π 4000 b × ΔP Δ δ * × ( R + r ) 3 ( R - r ) 3
其中,E为材料弹性模量,单位:GPa,
ΔP为上述试件在弹性变形范围内的压缩载荷增加量,单位:N,
Δδ*为同载荷变化下上述缺口环试件与上述校正用实心圆板的压缩位移变化量的差值,单位:mm,
R为上述缺口环试件的外半径,单位:mm,
r为上述缺口环试件的内半径,单位:mm,
b为上述缺口环试件的宽度,单位:mm;
(7)关闭加热系统,结束实验。
本发明第三方面的目的在于提供一种高温及超高温环境下测试弹性模量的测试方法,上述第一方面所述的加热系统为高温大气设备,并采用硅钼棒加热。
本发明第四方面的目的在于提供一种高温及超高温环境下测试弹性模量的测试方法,上述第三方面所述的加热系统为超高温真空设备,并采用石墨体加热。
本发明第五方面的目的在于提供一种高温及超高温环境下测试弹性模量的测试方法,在实施上述第二方面的步骤(3)中加热操作之前对上述加热系统内实施抽真空。
本发明将待测材料加工成一个具有缺口的圆环(见图1),并设计出一种在高温炉及超高温炉中放置缺口环试件的具有十字型水平槽的夹具,即在圆柱形基台上切割出两个相互正交的十字型水平槽:一个槽放置缺口环试件,另一个槽则放置止动辊。本发明还利用相对法针对高温下缺口环试件的载荷—位移关系进行校正,再通过试件尺寸及相关推导公式就可以计算出不同温度下材料的弹性模量值。
采用本发明的技术方案,可以测得陶瓷等耐高温材料在高温及超高温环境下的弹性模量,填补了目前此温度范围内弹性模量测试技术领域的空白,实现了简单、便捷、准确地评价陶瓷等耐高温材料在高温及超高温环境下的弹性模量性能。
附图说明
图1为缺口环试件及加载过程中变形的示意图,图1的(a)表示加载前的缺口环试件,图1的(b)表示在外加荷载下受力变形的缺口环试件,图1的(c)表示缺口环试件的截面示意图。
图2为校正圆板和缺口环试件的示意图,图2的(a)为校正圆板的主视图,图2的(b)为校正圆板的俯视图,图2的(c)为缺口环试件的主视图,图2的(d)为缺口环试件的俯视图。
图3为本发明的高温及超高温环境下缺口环试件、十字型水平槽夹具K组装后的三维立体图,1为缺口环试件,2为十字型水平槽夹具K中的基台,3为十字型水平槽夹具K中的止动辊。
图4为本发明的高温及超高温环境下缺口环基台的结构示意图,图4的(a)为基台的主视图,图4的(b)为基台的侧视图,图4的(c)为基台的俯视图。
图5为本发明的高温及超高温环境的止动辊的结构示意图,图5的(a)为止动辊的主视图,图5的(b)为止动辊的侧视图,图5的(c)为止动辊的俯视图。
图6为本发明中采用的高温及超高温力学加载试验机的结构示意图,4为加热炉炉体,401为保温隔热材料(虚线框内表示高温或超高温加热区),402为耐高温压头,1为缺口环试件,K为十字槽夹具(包括基台2和止动辊3),403为耐高温支座,404为耐高温支撑杆,501为金属连接传动装置,5为加载系统。
图7为石英玻璃缺口环试件在不同温度下测量的弹性模量。
图8为刚玉陶瓷缺口环试件在不同温度下测量的弹性模量。
具体实施方式
以下结合具体实施方式对本发明进行详细说明。本发明的具体实施方式只为具体公开本发明测试高温及超高温下材料弹性模量的实施方案,不作为对本发明其他实施方式的限制。
本发明首先提供一种高温及超高温环境下弹性模量测试用装置,具体而言,涉及一种利用缺口环试件测试陶瓷等耐高温材料在1000℃以上的高温及1500℃以上的超高温极端环境下弹性模量的测试用装置,包括:缺口环试件1,基台2和止动辊3。
图1的(a)为缺口环试件在未受压状态下的示意图。缺口环试件1的内圆半径为r,外圆半径为R,内、外圆半径以及试件宽度可根据需要制作成适宜的大小,缺口环试件的材料根据需要选择,表面可实施打磨倒角处理。在本实施方式中,缺口环试件的宽度优选在6~8mm的范围内。在该缺口环试件的任意位置开有缺口S,缺口S的长度约为内径长度的四分之一。
图3为高温及超高温环境下缺口环试件1、十字型水平槽夹具K组装后的三维立体图。如图3所示,十字型水平槽夹具K包括基台2和止动辊3。本实施方式中,在高温大气环境下(1000℃以上)进行实验时,十字型水平槽夹具K选用耐高温、抗氧化的碳化硅陶瓷夹具;在超高温环境真空下(1500℃以上)进行实验时,十字型水平槽夹具K选用耐高温的石墨材料。图4为基台2的结构示意图,图4的(a)为基台的主视图,图4的(b)为基台的侧视图,图4的(c)为基台的俯视图。在本实施方式中,基台2为圆柱体平台,也可以是正方体,长方体等其它柱体平台。如图3和图4所示,在基台2的上表面加工有两个相互正交的十字型水平槽,其中一个水平槽用于放置缺口环试件1,另一个水平槽用于放置防止缺口环试件1移动的止动辊3。水平槽的宽度以缺口环1或止动辊3放置其中时不移动为宜。
图5为止动辊3的结构示意图,图5的(a)为止动辊3的主视图,图5的(b)为止动辊3的侧视图,图5的(c)为止动辊3的俯视图。止动辊3的长度大于水平槽的宽度,在本实施方式中,止动辊3为类半圆柱型。缺口环试件1竖直嵌入基台2的一个水平槽中,缺口S在缺口环试件1的竖直立起高度方向上位于该试件竖直立起高度一半的位置,止动辊3放置于缺口环试件1上并嵌入基台2的另一个水平槽中用来防止缺口环试件1的移动,止动辊3的曲面与缺口环试件1接触。这样的组装形式可以保证缺口环试件1在高温炉及超高温炉中不会发生水平方向的滚动和平移,确保加载过程的顺利进行。
图6为本发明中采用的高温及超高温力学加载试验机的结构示意图,主要包括加热系统和耐高温加载系统两大部分,以及数据记录等其他配套实验装置。高温环境提供的实验氛围为大气环境,采用的加热方式为硅钼棒加热;超高温环境提供的实验氛围为真空环境,采用的加热方式为石墨体加热。高温及超高温力学加载系统采用的是中国建材检验认证集团股份有限公司自主研发的硬脆材料性能检测仪(型号为DZS-Ⅲ),并将其在高温及超高温加热区周围的金属加载部件全部换为耐高温材料。如图6所示,1为缺口环试件,K为十字槽夹具(包括基台2和止动辊3),4为加热炉体,401为保温隔热材料(虚线框内表示高温及超高温加热区),402为耐高温压头,403为耐高温支座,404为耐高温支承杆,5为力学加载试验机,501为金属连接传动装置,缺口环试件1放置于十字槽夹具K上。在本发明实验中,加载系统安装在整个设备的下方,目的是为了保证加热炉体上方处于封闭状态,防止热量向上散失。此外,耐高温支座403的上表面为平面,并与十字槽夹具K的基台3的下表面平行。同样,耐高温压头402的下表面也为平面,并与十字槽夹具K的基台3的上表面平行。耐高温压头402、耐高温支座403和耐高温支承杆404在高温大气环境下(1000℃以上)选用耐高温、抗氧化的陶瓷材料,如碳化硅等;在超高温真空环境下(1500℃以上)则选用石墨材料制成。在本实施方式中,测试环境分别为高温大气硅钼棒加热炉(1300℃以下的大气环境)和超高温真空石墨加热炉(1300℃~2100℃的真空环境)。
将安装有缺口环试件1(试件缺口部位应保持水平)的十字槽夹具K(图3)放入高温及超高温力学加载装置内,加热系统(加热炉)以合适的加热速率对缺口环试件1进行加热,达到设定的温度并保温一段时间,确保试件内外温度保持一致。加载系统在缺口环试件1上方施加垂直向下的压缩荷载P,压缩荷载P的施力点与缺口环试件的圆心在同一条直线上(图1的(a))。加载系统以一定的速率对缺口环试件施加压缩荷载P,在弹性范围内记录载荷的增加值ΔP和缺口环试件1在施力方向的压缩位移变化量Δδ(图1的(b)),利用弹性模量计算公式来计算缺口环试件高温及超高温环境下的弹性模量。
采用本发明的测试用十字槽夹具K,可以保证缺口环试件1在高温炉中不会发生水平方向的滚动和平移,能够确保加载过程的顺利进行。
本发明还提供一种高温及超高温环境下弹性模量的测试方法,具体而言,提供一种采用相对法消除压头产生的系统误差并利用缺口环试件来测试陶瓷等耐高温材料在1000℃以上的高温及1500℃以上的超高温极端环境下弹性模量的测试方法。
具体而言,图1的(a)和图1的(b)分别展示了缺口环试件在加载前后的结构原理示意图。图1的(b)表示缺口环试件在加载过程中当压缩载荷为P+ΔP(即载荷增加量为ΔP)时的试件形态,此时对应的试件在施力方向的位移压缩量为Δδ。本发明采用包亦望等人推导出的常温下弹性模量计算公式(1)(详见专利号:ZL201010544550.1),即:
E = 3 π 4000 b × ΔP Δδ × ( R + r ) 3 ( R - r ) 3 - - - ( 1 )
其中,
E为材料弹性模量,单位:GPa;
ΔP为试件在弹性变形范围内的压缩载荷增加量,单位:N;
Δδ为所对应的试件压缩位移变化量,单位:mm;
R为缺口环试件的外半径,单位:mm;
r为缺口环试件的内半径,单位:mm;
b为缺口环试件的宽度,单位:mm。
然而,由于力学加载装置和压头等连接部位在施加载荷时自身也存在变形,而且常温下测量精确位移用的金属电感量仪装置又无法在高温环境中使用,因此公式(1)不能直接用于计算高温及超高温环境下的弹性模量。
图2为校正圆板和缺口环试件的示意图,图2的(a)为校正圆板的主视图,图2的(b)为校正圆板的俯视图,图2的(c)为缺口环试件的主视图,图2的(d)为缺口环试件的俯视图。本发明采用相对法消除加载系统各连接处产生的系统误差,从而得到缺口环试件在高温下的形变量。具体是:通过挤压一个与缺口环试件大小相似的刚性实心圆板(图2的(a)),同样也可得到一条载荷—位移曲线。由于加载量很小,实心圆块自身的形变量可以忽略不计。因此就可以用同载荷变化下,缺口环试件与实心圆板的压缩位移变化量的差值来替代缺口环试件在高温下的形变量,记为Δδ*,替换掉公式(1)中的Δδ,即:
E = 3 π 4000 b × ΔP Δ δ * × ( R + r ) 3 ( R - r ) 3 - - - ( 2 )
从而简便、快捷地计算缺口环试件在高温及超高温环境下的弹性模量。
公式(2)中,Δδ*为同载荷变化下缺口环试件与实心圆板的压缩位移变化量的差值,单位:mm,其它物理参数与公式(1)相同,此处省略赘述。上述方法因为是通过比较圆板和缺口环试件的形变量参数来确定高温及超高温环境下材料真实的形变量,本发明把这种方法称为相对法。
本发明的高温及超高温环境下弹性模量的测试方法,利用上述本发明的测试装置,具体通过以下步骤实施:
步骤一,加工缺口环试件和校正用的校正圆板。
①将陶瓷等管材加工成宽度为例如8mm左右的环状,形成缺口环试件,对该缺口环试件表面进行抛光倒角处理后,在该缺口环试件的任意位置切出一个水平缺口S,缺口S的长度约为内径长度的四分之一;
②加工一个与缺口环试件大小相似的校正圆板,对其表面进行抛光倒角处理。
步骤二,将步骤一的缺口环试件组装于本发明测试装置的十字槽夹具K中(参照图3、4)。
将缺口环试件1竖直设置于基台的一个水平槽中,缺口S在缺口环试件的竖直立起高度方向上位于试件高度一半的位置,止动辊3置于缺口环试件1上并嵌入基台2的另一个槽中,止动辊3的曲面与缺口环试件1接触。
步骤三,测试缺口环试件在高温或超高温环境下被施加荷载后的位移。
①将按步骤二设置好缺口环试件的十字槽夹具放入本发明测试装置的加热炉内,加热炉根据所需环境变换,高温大气环境时选用硅钼棒加热炉,超高温真空环境时选用石墨加热炉;
②按照加热炉配备的控温程序对试件进行加热(石墨炉加热前还需要抽真空),达到设定的温度后保温一段时间,确保炉体内的温度能够基本保持一致;
③加载部件在缺口环试件上方施加垂直向下的压缩载荷P,压缩载荷P的施力点与缺口环的圆心在同一条直线上,对缺口环试件施加压缩载荷直至试件断裂载荷的一半时停止加载,记录试件在不同载荷量ΔP下对应的位移量Δδ;
④关闭加热装置,待实验环境温度接近室温时取出缺口环试件,放入校正用的实心圆板,反复上述步骤②和步骤③,记录与缺口环试件相同载荷量ΔP处的位移量Δδ',用此来校正缺口环试件从而得到其在高温下的形变量Δδ*=Δδ-Δδ';
⑤将得到的Δδ*、ΔP及试件尺寸代入公式(2),就可以计算出该缺口环材料在各个温度下的弹性模量值;
⑥关闭加热系统,结束实验。
本发明通过上述采用相对法及相关实验装置,消除了压缩部件的压头产生的系统误差,能够实现对陶瓷等耐高温材料在1000℃以上的高温及1500℃以上的超高温极端环境下的弹性模量评价,方法简便,准确。
实施例1:测量石英玻璃材料在高温大气环境下的弹性模量
试件准备:利用线切割机将石英玻璃管材(外径48mm,内径43mm)切成宽度为7.5mm的缺口环试件若干个,然后将表面进行抛光倒角;再将缺口环试件切出一个水平缺口,缺口长度为10mm。然后再加工一个与缺口环试件大小相似的石英玻璃圆板(直径50mm,宽度8mm)用于校正。
具体实验操作步骤为:
①取一个缺口环实验试件,测量其尺寸为47.87mm(外径D=2R),42.76mm(内径d=2r),7.74mm(宽度b);
②将试件放置在设计好的十字槽夹具上(见图3),然后放入硅钼棒加热炉中,依次从室温(17℃)加热到600℃、800℃、1000℃、1100℃及1200℃,升温速率为8℃/min,在每一个设定的温度点保温15min;
③在室温及各个温度点,分别对试件施加一个压缩载荷直至试件最大承受载荷一半处(此处设为15N)停止加载,加载速率为0.2mm/min,记录试件在不同载荷量下对应的位移量,即ΔP/Δδ;
④关闭加热系统;待实验环境温度接近室温时,取出缺口环试件并放入与其大小相似的实心圆板材料,重复上述步骤②、③(此时的加载速率调整为0.005mm/min,其余操作相同),得到校正后的载荷—位移关系,即ΔP/Δδ*
⑤将得到的ΔP/Δδ*及试件尺寸代入公式(2),可以计算得到该石英玻璃材料在室温及各个温度点下的弹性模量值(见表1),结果如图7所示;
⑥关闭加热系统,结束实验。
表1石英玻璃缺口环试件在不同温度下测量的弹性模量
测试温度/℃ 17 600 800 1000 1100 1200
弹性模量/GPa 75.35 83.71 87.20 81.65 74.47 25.03
实施例2:测量刚玉陶瓷材料在超高温真空环境下的弹性模量
试件准备:利用线切割机将刚玉材料耐高温管材(外径40mm,内径34mm)切成宽度为8mm的缺口环试件若干个,将表面进行抛光倒角;再将环切出一个水平缺口,缺口长度为9mm。然后再加工一个与缺口环大小相似的石墨圆板(直径40mm,宽度8mm)用于校正。
具体实验操作步骤为:
①取一个缺口环实验试件,测量其尺寸为39.94mm(外径D=2R),33.96mm(内径d=2r),7.90mm(宽度b);
②将试件放置在设计好的十字槽夹具上(见图3),然后放入石墨加热炉中,先抽真空,依次从室温(17℃)加热到1000℃、1300℃、1500℃、1600℃及1700℃,升温速率为10℃/min,在每一个设定的温度点保温15min;
③在室温及各个温度点,分别对试件施加一个压缩载荷直至试件最大承受载荷一半处(此处设为100N)停止加载,加载速率为0.05mm/min,记录下试件在不同载荷量下对应的位移量,即ΔP/Δδ;
④关闭加热系统;待实验环境温度接近室温时,取出缺口环试件并放入与其大小相似的实心圆板材料,重复上述步骤②,③(此时的加载速率调整为0.01mm/min,其余操作相同),得到校正后的载荷位移关系,即ΔP/Δδ*
⑤将得到的ΔP/Δδ*及试件尺寸代入公式(2),计算得到该刚玉陶瓷材料在室温及各个温度点下的弹性模量值(见表2),结果如图8所示;
⑥关闭加热系统,结束实验。
表2刚玉陶瓷材料在不同温度下测量的弹性模量
测试温度/℃ 17 1000 1300 1500 1600 1700
弹性模量/GPa 376.54 368.99 362.55 298.43 216.64 81.79
采用本发明的技术方案,可以测得陶瓷等耐高温材料在高温及超高温环境下的弹性模量,填补了目前此温度范围内弹性模量测试技术领域的空白,实现了简单、便捷、准确地评价陶瓷等耐高温材料在高温及超高温环境下的弹性模量性能。

Claims (10)

1.一种高温及超高温环境下弹性模量测试用装置,其特征在于,包括:开有缺口的圆环状的缺口环试件和十字槽夹具,
所述十字槽夹具包括:基台和半圆柱状的止动辊,
所述基台为柱体平台,在其上表面加工有两条相互正交的十字型水平槽,
所述缺口环试件竖直嵌入所述基台的一条水平槽中,所述缺口在所述缺口环试件的竖直高度方向上位于该竖直高度的一半的位置,
所述止动辊以其曲面与所述缺口环试件接触的方式放置于所述缺口环试件上、并嵌入所述基台的另一条水平槽中,所述止动辊的长度大于所述水平槽的宽度。
2.如权利要求1所述的高温及超高温环境下弹性模量测试用装置,其特征在于:所述缺口环试件的缺口的长度为所述缺口环试件内径长度的四分之一。
3.如权利要求1或2所述的高温及超高温环境下弹性模量测试用装置,其特征在于:所述缺口环试件的宽度为6~8mm。
4.如权利要求3所述的高温及超高温环境下弹性模量测试用装置,其特征在于:所述缺口环试件经打磨倒角处理。
5.如权利要求4所述的高温及超高温环境下弹性模量测试用装置,其特征在于:所述十字槽夹具,在高温大气环境下采用碳化硅材料;在超高温真空环境下采用石墨材料。
6.如权利要求5所述的高温及超高温环境下弹性模量测试用装置,其特征在于:所述十字型水平槽的底面平整并且光滑。
7.一种高温及超高温环境下测试弹性模量的测试方法,其特征在于:使用如权利要求6所述的高温及超高温环境下弹性模量测试用装置,所述方法包括以下步骤:
(1)准备测试用试件:加工一个所述缺口环试件和一个与所述缺口环试件大小相同的校正用圆板,并测量所述试件及所述圆板的尺寸;
(2)安装测试用试件:将所述步骤(1)的所述缺口环试件安装于所述十字槽夹具中;
(3)加热所述缺口环试件:将安装有所述缺口环试件的所述十字槽夹具放入加热系统内,所述加热系统按照配备的控温程序对所述缺口环试件进行加热,达到设定的温度后保温一段时间;
(4)对所述缺口环试件施加荷载:加载系统对所述缺口环试件施加垂直向下的压缩载荷直至所述试件断裂载荷的一半时停止加载,记录所述试件不同载荷量ΔP下对应的位移量Δδ,所述压缩载荷的施力点与所述缺口环的圆心在同一条直线上;
(5)测试所述校正用的实心圆板:关闭所述加热系统,待实验环境温度接近室温时取出所述缺口环试件,放入所述校正用的实心圆板,反复上述步骤(3)和(4),记录与所述缺口环试件相同载荷量ΔP处的位移量Δδ',得到所述缺口环试件在高温下的形变量Δδ*=Δδ-Δδ';
(6)利用下列算式计算所述缺口环试件的弹性模量值:
E = 3 π 4000 b × ΔP Δ δ * × ( R + r ) 3 ( R - r ) 3
其中,E为材料弹性模量,单位:GPa,
ΔP为所述试件在弹性变形范围内的压缩载荷增加量,单位:N,
Δδ*为同载荷变化下所述缺口环试件与所述校正用实心圆板的压缩位移变化量的差值,单位:mm,
R为所述缺口环试件的外半径,单位:mm,
r为所述缺口环试件的内半径,单位:mm,
b为所述缺口环试件的宽度,单位:mm;
(7)关闭加热系统,结束实验。
8.如权利要求7所述的高温及超高温环境下测试弹性模量的测试方法,其特征在于:所述加热系统为高温大气设备,并采用硅钼棒加热。
9.如权利要求7所述的高温及超高温环境下测试弹性模量的测试方法,其特征在于:在实施所述步骤(3)的加热操作前对所述加热系统内实施抽真空。
10.如权利要求9所述的高温及超高温环境下测试弹性模量的测试方法,其特征在于:所述加热系统为超高温真空设备,并采用石墨体加热。
CN201410737819.6A 2014-12-04 2014-12-04 高温及超高温环境下弹性模量测试用装置和测试方法 Active CN104458435B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410737819.6A CN104458435B (zh) 2014-12-04 2014-12-04 高温及超高温环境下弹性模量测试用装置和测试方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410737819.6A CN104458435B (zh) 2014-12-04 2014-12-04 高温及超高温环境下弹性模量测试用装置和测试方法

Publications (2)

Publication Number Publication Date
CN104458435A true CN104458435A (zh) 2015-03-25
CN104458435B CN104458435B (zh) 2017-03-15

Family

ID=52904849

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410737819.6A Active CN104458435B (zh) 2014-12-04 2014-12-04 高温及超高温环境下弹性模量测试用装置和测试方法

Country Status (1)

Country Link
CN (1) CN104458435B (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106053248A (zh) * 2016-08-24 2016-10-26 中钢集团洛阳耐火材料研究院有限公司 一种多试样高温弹性模量测试仪
CN106053226A (zh) * 2016-07-06 2016-10-26 上海卫星装备研究所 一种弧形试验件整环等效力学性能试验装置
CN106289978A (zh) * 2016-08-31 2017-01-04 中国建材检验认证集团股份有限公司 测量管材涂层弹性模量的方法
CN107014699A (zh) * 2017-05-12 2017-08-04 清华大学 用于测量材料高温压缩性能的外辅热装置及测试装置
CN107356477A (zh) * 2017-06-21 2017-11-17 中国建材检验认证集团股份有限公司 水泥基管材力学性能测试方法
CN107560939A (zh) * 2017-08-25 2018-01-09 贵州安吉航空精密铸造有限责任公司 一种开口胀圈弹性模量的测量方法
CN107709969A (zh) * 2016-02-24 2018-02-16 中国建材检验认证集团股份有限公司 涂层残余应力测试方法及仪器

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3604841A1 (de) * 1986-02-15 1987-08-20 Zwick Gmbh & Co Spannkopf fuer eine werkstoffpruefmaschine
JPH08285748A (ja) * 1995-04-18 1996-11-01 Shimadzu Corp 試験片つかみ具
CN101149320A (zh) * 2007-11-02 2008-03-26 中国建筑材料科学研究总院 一种材料超高温力学性能测试方法及系统
CN102095637A (zh) * 2010-11-12 2011-06-15 中国建筑材料检验认证中心有限公司 一种评价圆环或圆管状脆性材料弹性模量和强度的方法
CN204302112U (zh) * 2014-12-04 2015-04-29 中国建材检验认证集团股份有限公司 高温及超高温环境下弹性模量测试用装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3604841A1 (de) * 1986-02-15 1987-08-20 Zwick Gmbh & Co Spannkopf fuer eine werkstoffpruefmaschine
JPH08285748A (ja) * 1995-04-18 1996-11-01 Shimadzu Corp 試験片つかみ具
CN101149320A (zh) * 2007-11-02 2008-03-26 中国建筑材料科学研究总院 一种材料超高温力学性能测试方法及系统
CN102095637A (zh) * 2010-11-12 2011-06-15 中国建筑材料检验认证中心有限公司 一种评价圆环或圆管状脆性材料弹性模量和强度的方法
CN204302112U (zh) * 2014-12-04 2015-04-29 中国建材检验认证集团股份有限公司 高温及超高温环境下弹性模量测试用装置

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107709969A (zh) * 2016-02-24 2018-02-16 中国建材检验认证集团股份有限公司 涂层残余应力测试方法及仪器
CN106053226A (zh) * 2016-07-06 2016-10-26 上海卫星装备研究所 一种弧形试验件整环等效力学性能试验装置
CN106053226B (zh) * 2016-07-06 2019-03-29 上海卫星装备研究所 一种弧形试验件整环等效力学性能试验装置
CN106053248A (zh) * 2016-08-24 2016-10-26 中钢集团洛阳耐火材料研究院有限公司 一种多试样高温弹性模量测试仪
CN106289978A (zh) * 2016-08-31 2017-01-04 中国建材检验认证集团股份有限公司 测量管材涂层弹性模量的方法
CN107014699A (zh) * 2017-05-12 2017-08-04 清华大学 用于测量材料高温压缩性能的外辅热装置及测试装置
CN107014699B (zh) * 2017-05-12 2019-11-22 清华大学 用于测量材料高温压缩性能的外辅热装置及测试装置
CN107356477A (zh) * 2017-06-21 2017-11-17 中国建材检验认证集团股份有限公司 水泥基管材力学性能测试方法
CN107356477B (zh) * 2017-06-21 2019-06-11 中国建材检验认证集团股份有限公司 水泥基管材力学性能测试方法
CN107560939A (zh) * 2017-08-25 2018-01-09 贵州安吉航空精密铸造有限责任公司 一种开口胀圈弹性模量的测量方法

Also Published As

Publication number Publication date
CN104458435B (zh) 2017-03-15

Similar Documents

Publication Publication Date Title
CN104458435A (zh) 高温及超高温环境下弹性模量测试用装置和测试方法
CN102095637B (zh) 一种评价圆环或圆管状脆性材料弹性模量和强度的方法
CN107709969B (zh) 涂层残余应力测试方法及仪器
CN102519803B (zh) 一种多头微型试样蠕变试验装置及测试方法
KR100972785B1 (ko) 콘크리트 고온특성 시험장치 및 콘크리트 고온특성평가방법
KR101365972B1 (ko) 콘크리트 열팽창계수 측정 방법 및 장치
CN204302112U (zh) 高温及超高温环境下弹性模量测试用装置
CN101206148A (zh) 一种能准确测量高温应力应变的方法
CN103063329A (zh) 船用柴油机测温热电偶的校验方法
CN104155333A (zh) 一种电线电缆线膨胀系数测量装置及测量方法
CN104390998B (zh) 一种玻璃软化点测试装置
CN108827795A (zh) 一种改性双基推进剂中应变率高低温压缩响应测试方法
CN107505213B (zh) 一种新型小冲杆试验装置及其试验方法
CN103048353B (zh) 一种高弹性模量金属丝材料线膨胀系数的测量方法
CN112763341A (zh) 一种用于中子衍射测量的原位感应加热装置
CN210922897U (zh) 一种负载状况下管式炉温场测试用定位支架
CN111044556B (zh) 高温下混凝土试件荷载温度应变系数测量方法及测量装置
CN108548839A (zh) 一种高精度零部件热变形测试装置及测试方法
Molla et al. Development of high temperature mechanical rig for characterizing the viscoplastic properties of alloys used in solid oxide cells
CN209927639U (zh) 一种耐火材料荷重软化温度和压蠕变加荷装置
CN112414862A (zh) 一种蠕变性能测试装置
CN202141646U (zh) 旋转式三段控温多炉装置
CN109580704A (zh) 一种用于检测炸药药柱在受热状态下膨胀量的测试装置
CN106323759A (zh) 一种热变形维卡测定仪
CN105738224B (zh) 电子枪热子组件的力学性能测试方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant