CN104439269B - 锰铋纳米粒子的合成和退火 - Google Patents

锰铋纳米粒子的合成和退火 Download PDF

Info

Publication number
CN104439269B
CN104439269B CN201410392522.0A CN201410392522A CN104439269B CN 104439269 B CN104439269 B CN 104439269B CN 201410392522 A CN201410392522 A CN 201410392522A CN 104439269 B CN104439269 B CN 104439269B
Authority
CN
China
Prior art keywords
nanoparticle
mnbi
hydride
annealing
method described
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201410392522.0A
Other languages
English (en)
Other versions
CN104439269A (zh
Inventor
M·P·罗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Engineering and Manufacturing North America Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Engineering and Manufacturing North America Inc filed Critical Toyota Engineering and Manufacturing North America Inc
Publication of CN104439269A publication Critical patent/CN104439269A/zh
Application granted granted Critical
Publication of CN104439269B publication Critical patent/CN104439269B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/054Nanosized particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/14Treatment of metallic powder
    • B22F1/142Thermal or thermo-mechanical treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/18Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
    • B22F9/20Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from solid metal compounds
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C12/00Alloys based on antimony or bismuth
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C22/00Alloys based on manganese
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/06Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys in the form of particles, e.g. powder
    • H01F1/065Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys in the form of particles, e.g. powder obtained by a reduction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2304/00Physical aspects of the powder
    • B22F2304/05Submicron size particles
    • B22F2304/054Particle size between 1 and 100 nm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2304/00Physical aspects of the powder
    • B22F2304/05Submicron size particles
    • B22F2304/056Particle size above 100 nm up to 300 nm
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C2202/00Physical properties
    • C22C2202/02Magnetic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/0036Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties showing low dimensional magnetism, i.e. spin rearrangements due to a restriction of dimensions, e.g. showing giant magnetoresistivity
    • H01F1/0045Zero dimensional, e.g. nanoparticles, soft nanoparticles for medical/biological use

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Thermal Sciences (AREA)
  • Nanotechnology (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Hard Magnetic Materials (AREA)
  • Powder Metallurgy (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Abstract

本发明涉及锰铋纳米粒子的合成和退火。本发明还提供了一种制备具有5至200nm的粒径的锰铋纳米粒子的湿化学方法。当在0至3T的场中在550至600K下退火时,该纳米粒子显示出约1T的矫顽力,并且适合用作永磁体材料。还提供了一种包含该退火的MnBi纳米粒子的永磁体。

Description

锰铋纳米粒子的合成和退火
背景技术
本发明涉及用作强的永久硬磁体的新材料的合成和制备。现在许多的先进技术需要有效和强的硬磁体作为设备结构的基本部件。这样的设备范围从移动电话到高性能电动机,并且在整个行业中持续进行显著的努力以寻找不仅能满足当前需要而且满足对于有效、较廉价以及容易制备的硬磁体材料日益增长的需求的材料。
按照惯例,硼酸钕铁一般被认为是可得到的最强的、表现最好的硬磁体材料之一。但是,由于该材料基于稀土元素钕,因而它是昂贵的,并且可得到的供应经常不稳定。因此,需要一种材料,其作为硬磁铁表现等同于或优于硼酸钕铁但其基于容易得到且较廉价的组分材料。
在评估的作为硼酸钕铁替代物的各种候选材料中,确定了锰铋合金纳米粒子(MnBi)作为非常关注的材料。
Yang等人(Applied Physics Letters,99 082502(2011))和(Journal ofMagnetism and Magnetic Materials,330(2013)106-110)将许多有利的性能性质归因于低温相锰铋纳米粒子并且描述了通过熔融旋凝和退火方法制备MnBi纳米粒子。通过电弧熔炼制备MnBi锭并且熔化该锭材料并将熔体喷射到旋转的铜轮表面上。退火后,将获得的MnBi带材研磨至如20-30纳米小的晶粒尺寸。
Suzuki等人(Journal of Applied Physics 111,07E303(2012年))描述了机械研磨对通过熔融旋凝和退火制备的MnBi的自旋再取向转变温度(TSR)的影响的研究。
Iftime等人(US 2012/0236092)描述了作为相变磁性油墨的组分的核壳金属纳米粒子。包括MnBi作为合适的核金属材料的一个例子。这样的材料的制备一般被描述为球磨磨碎接着退火,以实施无定形磨碎产物的结晶化。没有提供制备MnBi纳米粒子的明确描述,并且实施例描述了钴纳米粒子核和铁纳米粒子核。
Baker等人(US 2010/0218858)描述了纳米结构Mn-Al和Mn-Al-C合金的永磁体。通过合金金属的机械磨碎来制备纳米粒子并且将所得的磨碎材料退火。通过熔化金属混合物然后将熔体淬火来制备初始合金。
Shoji等人(US 2010/0215851)描述了一种制备核-壳复合物纳米粒子的方法,其中在施加壳之前加热核粒子。MnBi被列为磁性纳米粒子材料的一个例子。虽然指出了通过化学合成方法形成,但是没有提供制备任何合金的具体描述。
Kitahata等人(US 6143096)描述了一种制备粉末形式Mn-Bi合金的方法,其中将原料混合并加热至高于组分的熔点的温度;将获得的粉末热处理然后湿法磨碎以获得粒径小于5μm的粉末。
Kishimoto等人(US 5,648,160)描述了一种用于制备MnBi粉末的方法,其中混合Mn粉末和Bi粉末。两种粉末均具有50至300目的粒度。将混合物模压成型然后在不高于Bi的熔点的温度下在非氧化性或还原性气氛中热处理。随后将该Mn-Bi锭研磨到0.1至20μm的粒度。
Majetich等人(US 5,456,986)描述了通过包装有锰和铋的石墨棒的碳弧分解获得的直径为5至60nm的涂覆有碳的Mn-Bi纳米颗粒。
这些文献中均没有描述或建议用于合成具有小于20nm的粒度的MnBi纳米粒子的简单湿化学方法。因此本发明的一个目的是提供一种制备具有20nm或更小的粒度的MnBi纳米粒子的湿式合成方法。
本发明的另一个目的是提供具有20nm或更小的粒度的低温相的MnBi纳米粒子。
发明内容
根据本发明实现了这些和其它的目的,本发明的第一实施方案包括制备锰-铋合金纳米粒子的方法,其包括:伴随搅拌在醚溶剂中用氢化物还原剂处理Mn粉末;
向Mn-氢化物还原剂混合物添加长链羧酸的铋盐溶液同时继续搅拌;
在完成铋盐溶液添加时,添加有机胺同时继续搅拌;以及
继续搅拌以形成聚集的MnBi纳米粒子。
在本发明的一个实施方案中,氢化物处理包括在20-25℃下处理10至48小时,接着在50至70℃下处理10至48小时。
在本发明的一个特定实施方案中,氢化物还原剂为硼氢化锂以及进一步地氢化物与Mn的当量比为1/1至100/1。
在另一个实施方案中,本发明提供了具有5至200nm的粒度和约1T的矫顽力的MnBi纳米粒子,其中根据任何上述的实施方案的方法制备纳米粒子并且还在3T场中在600K下将其退火。
在一个应用实施方案中,本发明提供了包含多个具有5至200nm的粒度和约1T的矫顽力的MnBi纳米粒子的硬磁体。
以上的描述旨在提供本发明的简要概述而并不旨在进行限制。本领域的普通技术人员将会容易地意识到上述内容以及接下来的详细说明和权利要求书的各种改变。所有这样的改变均被认为处于本发明的范围内。
除非另有说明,在整个说明书中描述的所有范围均包括其中所有的值和子范围。另外,除非另有说明,在整个说明书中不定冠词“一个(a)”或“一种(an)”具有“一个(种)或多个(种)”的含义。
附图说明
图1显示了实施例1中制备的MnBi纳米粒子的XRD谱。
图2a显示了实施例1中制备的MnBi纳米粒子的FE-SEM图像(x10,000)。
图2b显示了实施例1中制备的MnBi纳米粒子的FE-SEM图像(x200,000)。
图3显示了在600K下和在3T外加场下将实施例1中制备的MnBi纳米粒子退火的过程中的M(H)曲线。
图4显示了退火时间和外加场对实施例1中制备的MnBi纳米粒子的Hc值的影响。
图5a显示了MnBi相图。
图5b显示了加热形成高温相(在相图中列为HTP)的实施例1的MnBi纳米粒子的M(H)曲线。
具体实施方式
在磁性材料并且尤其是纳米粒子磁性材料的不断研究中,本发明人确定了纳米粒子形式的锰铋合金作为具有作为用于制造永磁体的硼酸钕铁的替代物的潜在效用的材料。预测MnBi纳米粒子表现出高达4T的矫顽力。当与软磁性纳米粒子基体结合时,所得的纳米复合物应产生标准硼酸钕铁永磁体的不含稀土元素的替代物。
通常,由MnBi锭的自顶向下球磨制备MnBi纳米粒子。但是,MnBi锭的自顶向下球磨显示了没有产生小于20nm的纳米粒子的限制,恰好缺少了理想的7nm纳米粒子直径。为了制备具有比在球磨法中获得的那些一致地更小的尺寸的纳米粒子,发明人研究了纳米粒子湿式合成,并且发现了本发明中所描述的方法。此外,发明人发现退火处理该湿式合成获得的MnBi纳米粒子导致了作为硬磁性组合物其性能等同于硼酸钕铁的材料。预测MnBi纳米粒子表现出高达4T的矫顽力,并且因此当与软磁纳米粒子基体结合时,所得的纳米复合物应产生作为标准硼酸钕铁永磁体的不含稀土元素的替代物。
在第一实施方案中,本发明提供了一种制备锰铋合金纳米粒子的方法,包括:伴随搅拌在醚溶剂中用氢化物还原剂处理Mn粉末;向Mn-氢化物还原剂混合物添加长链羧酸的铋盐溶液同时继续搅拌;在完成铋盐溶液添加时,添加有机胺同时继续搅拌;以及继续搅拌以形成聚集的MnBi纳米粒子。
用于氢化物处理的醚溶剂可以是与氢化物反应条件相容的任何醚。合适的醚溶剂包括四氢呋喃(THF)、2-甲基-四氢呋喃、二乙醚、二异丙醚、1,4-二氧六环、二甲氧基乙烷、二乙二醇二乙醚、2-(2-甲氧基乙氧基)乙醇和甲基叔丁基醚。THF可以是优选的溶剂。
氢化物还原剂可以是能够与锰反应的任何材料并且包括NaH、LiH、CaH2、LiAlH4和LiBH4。LiBH4可以是优选的氢化物处理剂。
氢化物处理包括至少两个阶段,其中在初始阶段中在20-25℃下搅拌该混合物10至48小时,接着是在50至70℃下处理10至48小时的第二阶段。如本领域的普通技术人员将会理解的那样,可以优化这些阶段的变量以适当地改变所获得的纳米粒子的性质例如尺寸和结构。
另外,可以改变氢化物处理剂的量以改变条件和所获得的纳米粒子的性质并且该量可以以1/1至100/1的氢化物与Mn的当量比变化。
可以以任何醚溶性盐形式添加铋并且优选以长链羧酸的盐添加。在一个优选的实施方案中,以新癸酸铋添加Bi。Bi与Mn的摩尔比可以在0.8/1至1.2/1之间变化。优选地,Bi/Mn的比例是0.9/1至1.1/1,并且最优选地,Bi/Mn的比例是1/1。可以改变铋化合物的添加时间以优化和改变MnBi纳米粒子的性质。优选地,添加时间小于一小时,并且在一个优选的实施方案中添加时间大约是20分钟。
在完成铋化合物添加时,向合金反应混合物添加有机胺、优选具有6至12个碳的碳链的伯胺以沉淀和聚集MnBi纳米粒子。可以从反应母液移除所得的固体并且用水洗去可溶性杂质。
通过根据本发明的湿式化学合成法获得的纳米粒子的XRD分析(图1)表明该MnBi纳米粒子具有30nm或更小的粒径。通过FE-SEM显微镜法(图2a和2b)证实了该粒度,这也证实了在合成工艺中消耗了Mn粉末。
合成状态的MnBi纳米粒子具有相对弱的磁饱和(Ms)和矫顽力(Hc)。然而,发明人发现在3T场中在600K下退火该纳米粒子,对磁饱和(Ms)和矫顽力(Hc)均产生了改进。此外,用这种退火方案可以改进Mr/Ms。测得约1T的Hc值,Mr/Ms比例为45%(图3)。
因此,在另一个实施方案中,本发明提供了具有5至200nm的粒度和约1T的矫顽力的MnBi纳米粒子,其中根据上述的方法制备该纳米粒子并且将其进一步退火。
可以在具有0至5T的矫顽力的场中在550至600K的温度下进行该退火处理。退火时间将根据温度而变化并且如实施例所述在600K下需要约11小时并且在550K下增加至约40小时(图4)。优选地,在3T场中在600K下进行该退火。
如图4所示,在650K下退火不增加矫顽力或磁饱和。
已知铁磁性MnBi存在于MnBi相图(图5a)的所谓“低温相”区域中。在它的上方存在所谓“高温相”。已知该高温相显示出反铁磁性行为。
发明人已经确定,当将该湿式合成MnBi纳米粒子加热至800K的温度时,发生从铁磁性低温相至反铁磁性高温相的变化(图5b)。
在一个应用实施方案中,本发明提供了包含多个具有5至200nm的粒度和约1T的矫顽力的MnBi纳米粒子的硬磁体。优选地,通过根据本发明的湿式合成方法获得MnBi纳米粒子并且在3T场中在600K下将其退火至少10小时。
上面的描述提供了本发明的整体概述和一些优选的实施方案。本领域的普通技术人员将意识到本发明的各种不同的变换和变化是可能的,并且这些变化被视为处于本发明的范围内。
已经大体上描述了本发明,可以通过考虑以下实施例来获得本发明的进一步理解,以下实施例并不旨在进行限制,除非如此指出。
实施例
实施例1.MnBi纳米粒子合成
组合200mL的THF、0.371g Mn粉末和11.5mL的2M LiBH4/THF溶液。首先在23℃下搅拌该反应24小时,然后在60℃下再搅拌24小时。向所得的混合物添加溶解在200mL THF中的4.413g新癸酸铋的溶液。在20分钟内缓慢向搅拌的Mn/LiBH4溶液添加该新癸酸铋溶液。在完成新癸酸铋添加后,向产物溶液添加0.513g辛胺。纳米粒子在随后的5分钟内聚集并且用水将其洗涤以移除反应副产物。
MnBi纳米粒子的表征
XRD分析
MnBi纳米粒子的XRD谱表明在试样中存在三种不同的结晶材料:MnBi合金、Mn金属和Bi金属(参见图1)。基于该XRD谱中的峰宽计算该MnBi纳米粒子的直径约为30nm。
FE-SEM表征
对该纳米粒子粉末产物进行了高分辨率FE-SEM显微镜法以进一步研究该湿式合成产物的尺寸(图2a和2b)。如由XRD谱的分析所表明的那样,发现该试样实际上由约30nm直径特征(平均起来)组成。FE-SEM数据还表明在试样中不存在“大的”微米级锰片,这也由XRD谱中不存在非常尖锐的峰所证实。如果在合成中没有一直消耗锰粉末,则预期微米级锰片将会存在于XRD和FE-SEM数据中。
实施例2–退火对MnBi纳米粒子的影响
已经证实了合成状态的MnBi纳米粒子的矫顽力非常弱(<100Oe)。用VSM炉附属装置原位退火该纳米粒子的试样。首次发现在3T场中在600K下退火该纳米粒子,对磁饱和(Ms)和矫顽力(Hc)均产生了改进。此外,用这种退火方案改进了Mr/Ms。测得高达1T的Hc值,Mr/Ms比例为45%(图3)。
在更低的退火温度(550K)下的研究显示可以达到类似的1T Hc,但是其需要超过40小时的退火,这与在600K下的~11小时(图4)形成反差。在650K下将相同批次的MnBi纳米粒子退火产生了非常差的结果,最大Hc仅为约500Oe。
铁磁性MnBi仅存在于MnBi相图(图5a)的所谓“低温相”区域中。在它的上方存在所谓“高温相”。已知该高温相显示出反铁磁性行为。将MnBi纳米粒子的试样加热至800K以诱发这种从铁磁性低温相至反铁磁性高温相的变化。M(H)曲线(图5b)与高温相形成一致并且进一步支持了通过实施例1的合成来制备合金化的MnBi纳米粒子。

Claims (8)

1.一种制备锰-铋合金纳米粒子的方法,包括:
伴随搅拌在醚溶剂中用氢化物还原剂处理Mn粉末;
向Mn-氢化物还原剂混合物添加长链羧酸的铋盐溶液同时继续搅拌;
在完成铋盐溶液添加时,添加有机胺同时继续搅拌;以及
继续搅拌以形成聚集的MnBi纳米粒子。
2.根据权利要求1所述的方法,其中氢化物处理包括在20-25℃下处理10至48小时,接着在50至70℃下处理10至48小时。
3.根据权利要求1所述的方法,其中氢化物还原剂为硼氢化锂。
4.根据权利要求1所述的方法,其中氢化物与Mn的当量比为1/1至100/1。
5.根据权利要求1所述的方法,其中Mn与Bi的原子比为10/1至1/10。
6.一种具有5至30nm的粒度和1T的矫顽力的MnBi纳米粒子,其中根据权利要求1所述的方法制备该纳米粒子并且在0至3T的场中在550至650K下将其退火。
7.根据权利要求6所述的MnBi纳米粒子,其中在3T场中在600K下退火。
8.一种硬磁体,其包含多个根据权利要求6所述的MnBi纳米粒子。
CN201410392522.0A 2013-09-12 2014-08-12 锰铋纳米粒子的合成和退火 Expired - Fee Related CN104439269B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US14/025,033 US10410773B2 (en) 2013-09-12 2013-09-12 Synthesis and annealing of manganese bismuth nanoparticles
US14/025,033 2013-09-12

Publications (2)

Publication Number Publication Date
CN104439269A CN104439269A (zh) 2015-03-25
CN104439269B true CN104439269B (zh) 2019-04-09

Family

ID=52624341

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410392522.0A Expired - Fee Related CN104439269B (zh) 2013-09-12 2014-08-12 锰铋纳米粒子的合成和退火

Country Status (3)

Country Link
US (1) US10410773B2 (zh)
JP (1) JP6422272B2 (zh)
CN (1) CN104439269B (zh)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9738536B2 (en) 2013-10-04 2017-08-22 Toyota Motor Engineering & Manufacturing North America, Inc. Allotrope-specific anionic element reagent complexes
US20150096887A1 (en) 2013-10-04 2015-04-09 Toyota Motor Engineering & Manufacturing North America, Inc. Electrodes containing iridium nanoparticles for the electrolytic production of oxygen from water
US9650248B2 (en) 2013-10-04 2017-05-16 Toyota Motor Engineering & Manufacturing North America, Inc. Multi-element anionic reagent complexes
US9643254B2 (en) 2013-10-04 2017-05-09 Toyota Motor Engineering & Manufacturing North America, Inc. Anionic reagent element complexes, their variations, and their uses
US9278392B2 (en) * 2013-10-04 2016-03-08 Toyota Motor Engineering & Manufacturing North America, Inc. Synthesis of metal alloy nanoparticles via a new reagent
US9427805B2 (en) * 2014-05-06 2016-08-30 Toyota Motor Engineering & Manufacturing North America, Inc. Method to prepare hard-soft magnetic FeCo/ SiO2/MnBi nanoparticles with magnetically induced morphology
US9796023B2 (en) 2015-01-09 2017-10-24 Toyota Motor Engineering & Manufacturing North America, Inc. Synthesis of ferromagnetic manganese-bismuth nanoparticles using a manganese-based ligated anionic-element reagent complex (Mn-LAERC) and formation of bulk MnBi magnets therefrom
US9546192B2 (en) 2015-01-09 2017-01-17 Toyota Motor Engineering & Manufacturing North America, Inc. Ligated anionic-element reagent complexes (LAERCs) as novel reagents
US10023595B2 (en) 2015-01-09 2018-07-17 Toyota Motor Engineering & Manufacturing North America, Inc. Ligated anionic-element reagent complexes as novel reagents formed with metal, metalloid, and non-metal elements
US10814397B2 (en) 2016-03-21 2020-10-27 Toyota Motor Engineering & Manufacturing North America, Inc. Textured-crystal nanoparticles from ligated anionic element reagent complex
US10774196B2 (en) 2016-09-22 2020-09-15 Toyota Motor Engineering & Manufacturing North America, Inc. Light weight composite of steel and polymer
US11911995B2 (en) 2016-09-22 2024-02-27 Toyota Motor Engineering & Manufacturing North America, Inc. Light weight composite of steel and aramid with fully penetrated reinforcement
US9847157B1 (en) 2016-09-23 2017-12-19 Toyota Motor Engineering & Manufacturing North America, Inc. Ferromagnetic β-MnBi alloy
CN108346499A (zh) * 2018-02-07 2018-07-31 徐靖才 一种有机轻稀土配合物改性制备高矫顽力锰铋磁粉的方法
JP7245189B2 (ja) 2019-03-21 2023-03-23 トヨタ モーター エンジニアリング アンド マニュファクチャリング ノース アメリカ,インコーポレイティド 完全に侵入している補強部材を有する織物カーボン繊維強化鋼マトリックス複合体
US11788175B2 (en) 2019-03-21 2023-10-17 Toyota Motor Engineering & Manufacturing North America, Inc. Chemically bonded amorphous interface between phases in carbon fiber and steel composite

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5456986A (en) 1993-06-30 1995-10-10 Carnegie Mellon University Magnetic metal or metal carbide nanoparticles and a process for forming same
US5648160A (en) 1994-04-14 1997-07-15 Hitachi Maxell, Ltd. Magnetic powder, method for producing the same and use of the same
JP3490201B2 (ja) 1995-11-14 2004-01-26 日立マクセル株式会社 MnNiBi合金磁性粉末
US6143096A (en) 1996-03-04 2000-11-07 Hitachi Maxell, Ltd. Process for producing alloy, alloy and alloy containing sheets made therefrom
JPH1064709A (ja) * 1996-08-12 1998-03-06 Hitachi Maxell Ltd MnBi磁性粉末の製造方法およびMnBi磁性粉末を用いた磁気シ−ト
JP3693618B2 (ja) 2002-03-27 2005-09-07 和幸 田路 金属磁性粒子、およびその製造方法
CN1735947A (zh) * 2002-05-24 2006-02-15 代顿大学 纳米晶态和纳米复合稀土永磁体材料及其制造方法
JP2006278470A (ja) 2005-03-28 2006-10-12 Toyota Motor Corp ナノコンポジット磁石
US20100218858A1 (en) 2005-10-27 2010-09-02 Ian Baker Nanostructured mn-al permanent magnets and methods of producing same
EP2140957A4 (en) 2007-04-25 2012-09-19 Toyota Motor Co Ltd PROCESS FOR PRODUCING A CORE / SHELL COMPOSITE NANOPARTICLE
JP4669913B2 (ja) 2007-05-25 2011-04-13 Dowaエレクトロニクス株式会社 強磁性粉末
US20120208026A1 (en) * 2011-02-10 2012-08-16 Xerox Corporation Silica-Coated Magnetic Nanoparticles and Process for Making Same
US8702217B2 (en) 2011-03-17 2014-04-22 Xerox Corporation Phase change magnetic ink comprising polymer coated magnetic nanoparticles and process for preparing same
CN102909381B (zh) * 2012-10-17 2014-06-18 北京工业大学 一种钴纳米颗粒掺杂制备高矫顽力锰铋磁粉的方法

Also Published As

Publication number Publication date
JP6422272B2 (ja) 2018-11-14
US10410773B2 (en) 2019-09-10
US20150068646A1 (en) 2015-03-12
CN104439269A (zh) 2015-03-25
JP2015055010A (ja) 2015-03-23

Similar Documents

Publication Publication Date Title
CN104439269B (zh) 锰铋纳米粒子的合成和退火
He et al. Ni2+ guided phase/structure evolution and ultra-wide bandwidth microwave absorption of CoxNi1-x alloy hollow microspheres
Gandha et al. High energy product developed from cobalt nanowires
Jing et al. Dependence of phase configurations, microstructures and magnetic properties of iron-nickel (Fe-Ni) alloy nanoribbons on deoxidization temperature in hydrogen
JP2008117855A (ja) ナノコンポジット磁石の製造方法
CN105057657B (zh) 软-硬磁性MnBi/SiO2/FeCo纳米颗粒
JP5924657B2 (ja) 強磁性窒化鉄粒子粉末の製造方法、異方性磁石、ボンド磁石及び圧粉磁石
Shin et al. Preparation of magnetic FeCo nanoparticles by coprecipitation route
Itoh et al. Recycling of rare earth sintered magnets as isotropic bonded magnets by melt-spinning
Li et al. Synthesis, microstructure and magnetic properties of Heusler Co2FeSn nanoparticles
Maaz et al. Single domain limit for NixCo1− xFe2O4 (0≤ x≤ 1) nanoparticles synthesized by coprecipitation route
JP6427061B2 (ja) コア−シェル−シェルFeCo/SiO2/MnBiナノ粒子を調製する方法、およびコア−シェル−シェルFeCo/SiO2/MnBiナノ粒子
Wang et al. Effect of Cu doping on the structure and phase transition of directly synthesized FePt nanoparticles
JP2009215583A (ja) SmCo系合金ナノ粒子及びその製造方法
Zamanpour et al. Magnetic properties and scale-up of nanostructured cobalt carbide permanent magnetic powders
Yonekura et al. Magnetic properties of hard magnetic nanoparticles of Nd2Fe14B synthesized using self-assembled block copolymers
CN102744420B (zh) 一种粒径可调控的磁性纳米颗粒的制备方法
Xu et al. A facile process to optimize performance of regenerated Nd-Fe-B sintered magnets: Chemo-selective dissolution washing
Long et al. Polyol-mediated synthesis, microstructure and magnetic properties of hierarchical sphere, rod, and polyhedral α-Fe 2 O 3 oxide particles
JP4320729B2 (ja) 磁性金属粒子の製造方法
CN103406545B (zh) 一种微米粒径FeCo颗粒及其制备方法
TW200848182A (en) Nickel-iron-zinc alloy nano-grains
Pei et al. Effect of reduction-diffusion time on microstructure and properties of Nd-Fe-B nanoparticles prepared by low-energy chemical method
CN107585747B (zh) 一种硫属化合物异质结磁性纳米材料及其制备方法
Liu et al. Fabrication and characterization of spherical Co/Ni alloy particles

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20191016

Address after: Aichi Prefecture, Japan

Patentee after: Toyota Motor Corp.

Address before: Kentucky, USA

Patentee before: TOYOTA MOTOR ENGINEERING & MANUFACTURING NORTH AMERICA, Inc.

CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20190409

Termination date: 20210812