CN104428690A - 用于探测x射线辐射的方法、x射线辐射探测器和ct系统 - Google Patents

用于探测x射线辐射的方法、x射线辐射探测器和ct系统 Download PDF

Info

Publication number
CN104428690A
CN104428690A CN201380037341.XA CN201380037341A CN104428690A CN 104428690 A CN104428690 A CN 104428690A CN 201380037341 A CN201380037341 A CN 201380037341A CN 104428690 A CN104428690 A CN 104428690A
Authority
CN
China
Prior art keywords
radiation
semiconductor material
energy
semiconductor
irradiation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201380037341.XA
Other languages
English (en)
Other versions
CN104428690B (zh
Inventor
P.哈肯施密德
E.克拉夫特
C.施勒特
M.斯特拉斯伯格
S.沃思
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens Healthineers AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of CN104428690A publication Critical patent/CN104428690A/zh
Application granted granted Critical
Publication of CN104428690B publication Critical patent/CN104428690B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/12Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof structurally associated with, e.g. formed in or on a common substrate with, one or more electric light sources, e.g. electroluminescent light sources, and electrically or optically coupled thereto
    • H01L31/16Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof structurally associated with, e.g. formed in or on a common substrate with, one or more electric light sources, e.g. electroluminescent light sources, and electrically or optically coupled thereto the semiconductor device sensitive to radiation being controlled by the light source or sources
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/02Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material
    • G01N23/04Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and forming images of the material
    • G01N23/046Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and forming images of the material using tomography, e.g. computed tomography [CT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14625Optical elements or arrangements associated with the device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/1464Back illuminated imager structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/148Charge coupled imagers
    • H01L27/14806Structural or functional details thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/085Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors the device being sensitive to very short wavelength, e.g. X-ray, Gamma-rays
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/09Devices sensitive to infrared, visible or ultraviolet radiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/12Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof structurally associated with, e.g. formed in or on a common substrate with, one or more electric light sources, e.g. electroluminescent light sources, and electrically or optically coupled thereto
    • H01L31/125Composite devices with photosensitive elements and electroluminescent elements within one single body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/12Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof structurally associated with, e.g. formed in or on a common substrate with, one or more electric light sources, e.g. electroluminescent light sources, and electrically or optically coupled thereto
    • H01L31/14Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof structurally associated with, e.g. formed in or on a common substrate with, one or more electric light sources, e.g. electroluminescent light sources, and electrically or optically coupled thereto the light source or sources being controlled by the semiconductor device sensitive to radiation, e.g. image converters, image amplifiers or image storage devices
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/42Arrangements for detecting radiation specially adapted for radiation diagnosis
    • A61B6/4208Arrangements for detecting radiation specially adapted for radiation diagnosis characterised by using a particular type of detector
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/24Measuring radiation intensity with semiconductor detectors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/24Measuring radiation intensity with semiconductor detectors
    • G01T1/244Auxiliary details, e.g. casings, cooling, damping or insulation against damage by, e.g. heat, pressure or the like

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Pulmonology (AREA)
  • Pathology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Theoretical Computer Science (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Composite Materials (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Molecular Biology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Measurement Of Radiation (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

本发明涉及一种用于借助直接转换的X射线辐射探测器(C3,C5)探测入射的X射线辐射的方法,其中,以具有至少1.6eV能量的附加的辐射照射用于探测的半导体材料(HL)来生成附加的电荷载体。本发明还涉及一种用于按照根据本发明的方法探测X射线辐射的直接转换的X射线辐射探测器(C3,C5),至少具有用于探测X射线辐射的半导体材料(HL)和至少一个辐射源(Q),该辐射源以附加的辐射照射半导体材料(HL),其中,所述辐射具有至少1.6eV的能量,以及涉及一种具有X射线辐射探测器(C3,C5)的CT系统(C1)。

Description

用于探测X射线辐射的方法、X射线辐射探测器和CT系统
技术领域
本发明涉及一种用于借助直接转换的X射线辐射探测器探测入射的X射线辐射的方法。本发明还涉及一种用于探测X射线辐射的直接转换的X射线辐射探测器,至少具有为探测X射线辐射而使用的半导体材料和至少一个辐射源,该辐射源以附加的辐射照射半导体材料,以及涉及一种具有X射线辐射探测器的CT系统。
背景技术
为了探测特别是在CT、SPECT和PET系统中的伽玛辐射和X射线辐射,尤其使用或者力求使用基于半导体材料如CdTe、CdZnTe、CdZnTeSe、CdTeSe、CdMnTe、InP、TIBr2、HgI2的直接转换的探测器。然而在这些材料中,特别是在对于CT设备所需的高辐射通量密度下出现极化效应。
极化表示在高的光子通量或辐射通量下探测的计数率的下降。该极化的原因是由于电荷载体尤其是空穴的非常细微的移动和由于半导体中固有晶体缺陷的聚集。也就是由于电场因为与晶体缺陷相关的位置固定的电荷而降低导致形成极化,这些电荷对于由辐射产生的电荷载体起捕获中心和复合中心的作用。由此导致电荷载体寿命和运动性的下降,这又导致在高的光子通量下探测的计数率的下降。
然而,辐射探测器必须具有高的电荷载体寿命和运动性,以便能够分离在照射期间产生的电子和空穴。通过极化限制了直接转换器的最大可探测的辐射通量。由于该原因,至今仍不能将尤其应用在计算机断层造影中的高的辐射密度完全且直接转换成电脉冲。
出版物US 20080164418A1描述了一种降低在半导体探测器中的极化的方法,在该方法中作为对电离辐射在半导体中的吸收的响应而产生电脉冲,其中,在半导体中形成空间电荷,并且根据产生的空间电荷以具有一个或多个波长的IR辐射照射半导体,从而至少部分地降低在半导体中的极化,并且由此降低其对于电脉冲的影响。所使用的IR辐射具有最大能量为1.57eV以及最小为790nm的波长。
发明内容
因此,本发明要解决的技术问题是,实现一种改良方法来探测在直接转换的X射线辐射探测器中的X射线辐射,其中几乎完全避免在用于探测的半导体材料中的极化。
该技术问题通过独立权利要求的特征解决。从属权利要求的内容是本发明的优选扩展。
发明人认识到,通过在半导体材料中产生附加的空间电荷或者附加的电荷载体,能够防止在用于探测的半导体材料中的极化。附加产生的电荷载体能够填充并由此弱化(passivieren)半导体晶体的固有晶体缺陷,特别是深层的晶体缺陷。因此形成位置固定的电荷,其阻止形成空间电荷并由此阻止半导体的极化。
电荷载体可以通过能量充足的辐射被外加到半导体材料中。使用的辐射具有至少1.6eV的能量。为此例如可以使用电磁辐射,如可见光或者紫外线辐射或者电子辐射。相比之下,先前引用的出版物US 20080164418A1中使用的IR辐射在波长至少790nm的情况下仅具有最高1.57eV的能量。于是,在X射线辐射期间和/或在X射线辐射之前的定义的时间间隔中和/或以不同的或相同的能量照射半导体材料。
通过照射在半导体材料表面附近产生电荷载体,并且从那里扩散或漂移到半导体材料的内部。对于辐射方向具有不同的可能性,例如阴极侧和/或阳极侧或者通过在半导体表面上的半透明的触点或者通过在探测器的电极罩的缝隙或者从侧面。在CT系统中应用的情况下,可以将辐射源安装在半导体的z侧,从而从z方向照射半导体。
根据各自使用的半导体材料的带隙进行在可见光范围内的辐射的能量或波长的选择。如果光辐射的能量大于带隙的能量差,则在能带间激励电荷载体。因此,可以实现电荷载体的带间跃迁。例如CdTe在室温下具有带隙为1.4eV。这相当于大约850nm的波长,也就是接近IR辐射。为了实现在CdTe中的带间跃迁,使用相应的具有更短波长并由此具有更高能量的辐射,即能量大于1.6eV。然而,随着光辐射的能量增长或者说波长减小,光辐射到半导体材料中的渗透深度降低,从而光辐射的吸收更多地发生在半导体的可能受扰乱的表面层。在此,电荷载体生成会变得低效。因此,在使用可见光辐射下有意义的是,将辐射能量匹配到带隙的能量,并且例如与带隙能量偏差不多于25%。
另一种向半导体外加附加的电荷载体的可能性在于,在CT系统的评估电子器件即ASIC(特定用途集成电路)上产生可见光辐射,并且通过可透光的接触材料耦合输入到半导体。为此,辐射源可以直接生长、沉积和/或机械连接在ASIC上。例如使用发光二极管(简称LED)作为辐射源。该辐射源可以布置在每个像素间隙下或ASIC的边缘。这样实施的辐射源也能够实现阳极侧或阴极侧照射半导体。
原则上通过照射阴极,在半导体的阴极下的几微米处形成电荷载体,即带负电的电子和带正电的空穴。空穴在阴极处直接复合,而电子穿越半导体材料并且由此在半导体内部也填充晶体缺陷。形成带正电的空间电荷。在阳极侧照射的情况下则正好相反。空穴穿越半导体材料并且也填充在半导体内部的晶体缺陷,从而形成带负电的空间电荷。通过阴极侧和/或阳极侧照射半导体,可以影响或者说控制在半导体材料中空间电荷的形成,并且由此影响或者说控制极化状态。如下选择在阳极侧或者阴极侧照射的份量,使得产生的空间电荷相当于在X射线辐射下形成的带电相反的空间电荷。例如通过由于附加生成的电荷载体而产生的带正电的空间电荷来均衡由于X射线辐射而产生的带负电的空间电荷。因此在X射线辐射入射到半导体材料的情况下,空间电荷也保持恒定。因此,探测器响应是稳定的。
特别地,在同时和/或顺序地照射阳极侧和/或阴极侧的情况下,可以选择不同波长范围或者说能量范围和不同强度的组合。例如,根据在CT系统中计划的X射线扫描的kV设定和mAs设定改变射线的能量范围和强度,以便使空间电荷优化匹配在X射线辐射探测器内的能量沉积的轮廓。
原则上也就是至今重要的半导体的晶体缺陷(在该晶体缺陷上形成空间电荷并且导致极化)被弱化或者说均衡,从而使半导体材料适合作为用于高通量运行中例如CT或双能量CT系统的直接转换的X射线辐射探测器。
发明人相应地建议一种用于借助直接转换的X射线辐射探测器探测入射的X射线辐射的方法,特别是在CT系统中使用的方法,其中,以能量至少1.6eV的附加辐射照射用于探测的半导体材料来生成附加的电荷载体。在这样的方法中,通过除了待探测的X射线辐射外,附加地以能量充足的辐射照射半导体,防止了在半导体中的极化。然而,该附加的辐射不被探测,并且不用于成像。它仅用于产生附加的电荷载体。根据本发明,为此使用具有能量至少1.6eV的辐射。这相当于最大波长为770nm。在优选实施方式中,使用具有更高能量的辐射,即优选大于2.1eV,更优选在2.1eV与3.2eV之间。
借助能量充足的辐射在半导体中产生附加的电荷载体,也就是电子和空穴。这样产生的电荷载体填充半导体材料的晶体缺陷,特别是深层晶体缺陷,由此使其中性化并且形成位置固定的电荷。以此防止在晶体缺陷处形成空间电荷,并由此防止极化。以此有利地保持高的电荷载体寿命和运动性,从而在高的光子通量下也不会降低探测的计数率。因此不会由于极化而限制直接转换的X射线辐射探测器的最大可探测的辐射通量。根据本发明,也可以将优选在CT系统中的高辐射密度直接转换成电脉冲。
为了照射半导体,可以使用不同的辐射,特别是不同能量的辐射,其可以从不同方向同时或者时间错开地照射半导体材料。在一种实施方式中,使用电磁辐射,优选可见光和/或紫外线辐射。可见光的能量从波长大约为770nm时的大约1.6eV到波长大约为400nm时的大约3.1eV。紫外线辐射的能量范围处于大约3.3eV至大约12eV之间,其中波长从大约380nm直到1nm。辐射的优选能量范围基于所使用的辐射源和辐射到半导体材料中的打算的渗透深度,例如在使用AlGaN-LED下的辐射能量大约是3.5eV。在使用可见光辐射的情况下,优选的辐射能量分别取决于X射线辐射探测器的半导体材料的带隙能量。有利地,辐射能量最多高于带隙能量差25%,因为否则光辐射到半导体材料中的渗透深度太小而产生太少的电荷载体。
在另一种实施方式中,以电子辐射照射半导体材料。所使用的电子辐射的能量处于大约1eV至10k eV之间。如果使用电子辐射用于产生电荷载体,则渗透深度随着辐射能量而增长,从而在能量充足的X射线辐射情况下,在半导体材料内更多地产生电荷载体。
所使用的辐射类型和其能量或者剂量基于该辐射到半导体材料中打算的渗透深度和基于在半导体材料中缺陷的位置,该缺陷应当通过附加生成的电荷载体而被弱化。如果缺陷接近表面,则可以使用具有更小渗透深度的辐射。
分别根据实施方式而从阳极侧和/或阴极侧照射半导体材料。在一种实施方式中,利用在阳极侧布置的辐射源从阳极侧进行照射。在另一种实施方式中,利用在阴极侧布置的辐射源从阴极侧进行照射。在该实施方式中,还可以在阳极侧照射与阴极侧照射之间例如顺序地来回交换,从而从阳极侧或阴极侧交替地进行照射。另一种实施方式在于同时从阳极侧和阴极侧进行照射。在此,还可以将辐射的不同波长范围或者能量范围互相结合,例如可以在阴极侧使用更高能量的辐射来在触点附近产生电荷载体,从而使空穴尽管其更低的移动性而能够被阴极吸收,并且使电子穿过整个半导体晶体。同时,在半导体晶体内部,通过从阳极侧以及能量不足的、更深地渗透半导体晶体的辐射进行照射,能够实现恒定的缺陷水平并由此实现恒定的内部电场。在此,辐射源或者布置在阳极或阴极与半导体材料之间或者布置在阳极或阴极的外侧上。在此,例如作为栅格结构或者由于选择的阳极或阴极的材料,阳极或阴极优选至少部分透光。
例如也可以通过X射线辐射探测器的电极罩的缝隙和/或通过评估电子器件进行阳极侧或阴极侧的照射。为此,在一种实施方式中,很薄地沉积电极,使得辐射的渗透深度大于电极的层厚和/或使电极不是完整的连续层或者说是具有厚度变化的层。例如可见光渗透10至50nm厚的金或铂金电极,从而在半导体中产生电荷载体对。
在以可见光进行阳极侧或阴极侧照射下,分别直接在半导体的阳极或阴极处形成电荷载体。如果照射阴极,则所产生的空穴立即复合,不继续渗透到半导体材料,而电子扩散到半导体内部并且在那里填充晶体缺陷。但是,如果照射阳极,则相反地空穴扩散到半导体材料中并且填充晶体缺陷,而电子立即与阳极复合。因此,所形成的空间电荷通过照射方向互相区分。根据空间电荷的类型影响半导体中的极化状态。有利地使在半导体中由于X射线辐射而形成的极化状态与由于附加产生的电荷载体而形成的极化状态相反,从而使两种极化状态互相抵消。根据本发明,通过由附加照射形成的带负电的极化状态来均衡由于X射线辐射形成的带正电的极化状态,反之亦然。
在另一种实施方式中,通过在X射线辐射探测器的电极罩中的缝隙和/或通过评估电子器件进行阳极侧或阴极侧的照射。在一种实施方式中,可见光通过CT系统的评估电子器件耦合输入到半导体。这有利地通过透光的触点材料进行。一个或多个LED优选适合作为辐射源。LED可以直接生长、沉积在评估电子器件上和/或与评估电子器件机械连接。LED有利地被布置在每个像素间隙下和/或评估电子器件的边缘。由此既可以从阴极侧又可以从阳极侧照射半导体。另外,该实施方式有利地节省空间,因为不使用附加的和单独的辐射源。
在一种实施方式中,既从阳极侧又从阴极侧进行照射。在此,有利地通过附加的电荷载体借助电子和空穴辅助信号传输。
代替和/或附加于阳极侧或阴极侧照射,从侧面和/或通过半透明的触点照射半导体。在此,辐射源或者直接布置到半导体材料或者与半导体材料具有间距。在使用电子辐射的情况下,如果借助电子进行信号传输,则阴极侧照射是有利的。因为所产生的电荷载体在所有情况下都必须朝着阳极穿过整个元件,所以即使在强度相关的不均匀的照射或具有较小渗透深度的照射下也达到所希望的效果。相反,如果借助带正电的空穴进行信号传输,则以X射线辐射进行阳极侧照射是有利的。
在另一种实施方式中,特别是在CT系统中使用根据本发明的方法,优选从CT系统的z方向和/或圆周方向照射半导体材料。
此外,除了辐射的类型、其入射方向和/或辐射能量之外,还可以改变照射持续时间和/或照射时间。例如可以脉冲式和/或持续照射半导体材料。照射或者单个脉冲的持续时间依据必须被弱化的缺陷的数量。在数量较大的情况下,较长的照射是有利的。另外,通过脉冲式照射有利地在半导体材料中实现准稳定的状态。持续时间和脉冲间隔还依据缺陷复合物在照射后的寿命。
照射可以在待探测的X射线辐射入射之前和/或期间进行。附加照射相对于X射线辐射的时间间隔同样主要依据缺陷复合物在照射后的寿命。如果该寿命很长,例如几分钟,则可以以更大的间隔例如同样几分钟进行照射。然而,与X射线辐射的时间间隔优选小于以上提到的缺陷的寿命。
此外,可以在照射期间改变辐射能量,例如连续地或逐步地改变。在此,在一种实施方式中减小辐射能量,也就是朝着更小的能量值进行改变。在另一种实施方式中,增加辐射能量,也就是朝着更大的能量值进行改变。通过改变辐射能量能够有利地将半导体中的极化状态的均衡与X射线扫描的能量走向进行匹配。
通过照射半导体,特别是在使用可见光辐射下,激励在半导体材料中的带间跃迁。为此,辐射能量优选大于各自半导体材料的带隙能量,以便充足地激励电荷载体。然而在可见光下,辐射的渗透深度在材料中下降,从而几乎完全仅在半导体材料的表面层发生电荷载体生成。然而,这里可能具有缺陷,由此使电荷载体生成变得低效。为了避免这个问题,有利地将辐射能量降低到半导体材料中的带间跃迁的能量差。辐射能量有利地与带隙的能量差偏差最多25%,优选最多20%,更优选最多15%。
另外,本发明涉及一种用于按照以上描述的方法探测X射线辐射的直接转换的X射线辐射探测器,特别是用于CT系统,至少具有用于探测X射线辐射的半导体材料和至少一个辐射源,该辐射源以附加的辐射照射半导体材料,其中,所述辐射具有至少1.6eV的能量。半导体材料如CdTe、CdZnTe、CdZnTeSe、CdTeSe、CdMnTe、InP、TIBr2、HgI2适合于探测。所使用的辐射有利地是在可见光区域和/或UV区域的电磁辐射或者电子辐射。相应地使用例如至少一个电磁辐射源(特别是发光二极管)和/或至少一个电子辐射源作为辐射源。在一种实施方式中,刚好构造一个照射半导体的辐射源。在另一种实施方式中,设置多个照射半导体的辐射源,例如也从不同方向和/或以不同能量照射,以便保证尽可能均匀的照射并由此保证在半导体材料中均匀地产生电荷载体。根据本发明,辐射源产生具有至少1.6eV、优选多于2.1eV的能量充足的辐射。
此外,本发明涉及一种CT系统,包括具有附加的辐射源的X射线辐射探测器,利用该X射线辐射探测器能够按照以上描述的方法建立检查对象的断层造影拍摄。
本发明总计提供以下优点:
通过根据本发明的方法,能够控制或者说影响探测器的极化状态,从而可以避免在X射线照射下探测器的极化或者漂移。特别地,能够将极化状态与设备中的各自使用情况进行匹配。由此又能避免在例如计算机断层造影、血管造影、单光子发射计算机断层造影、正电子发射断层造影等成像方法中的图像伪影。根据本发明的X射线辐射探测器通过紧凑且小的组件(例如LED)提供了简单且尤其节省空间的结构。所使用的半导体材料能够简单并廉价获得,因为其是工业制造的材料。另外,LED的性能已经被广泛研究,因此可以简单地匹配到希望的能量范围。这样的光源还能够廉价实现。此外,可以改善探测器的每个通道或像素的均匀性。
附图说明
以下根据优选实施例借助附图描述本发明,其中仅示出了为理解本发明所需的特征。使用了以下附图标记:A:阳极;C1:CT系统;C2:第一X射线管;C3:第一探测器;C4:第二X射线管(可选);C5:第二探测器(可选);C6:机架壳体;C7:患者;C8:患者卧榻;C9:系统轴;C10:计算及控制单元;HL:半导体;K:阴极;Prg1至Prgn:计算机程序;Q:辐射源;S:层。
分别示出了:
图1示出了具有计算单元的CT系统的示意图,
图2示出了具有按照第一实施方式的阴极侧辐射源的半导体的示意图,
图3示出了具有按照另一种实施方式的阴极侧辐射源的半导体的示意图,以及
图4示出了具有侧面布置的辐射源的半导体的示意图。
具体实施方式
图1示出了示例性的CT系统C1。CT系统包括机架壳体C6,其中具有这里未详细示出的机架,在该机架上固定了第一X射线管C2和对置的第一探测器C3。可选地,设置了第二X射线管C4和对置的第二探测器C5。患者C7位于能够在系统轴C9方向移动的患者卧榻C8上,利用该患者卧榻在以X射线辐射扫描期间能够将患者连续地或逐步地沿着系统轴C9按照z方向移动穿过在X射线管C2和C4与分别对应的探测器C3和C5之间的测量区。该过程通过计算及控制单元C10借助计算机程序Prg1至Prgn控制。
根据本发明探测器C3和C5被构造成直接转换的X射线辐射探测器,其具有用于探测X射线辐射的半导体材料以及用于在半导体中生成附加的电荷载体的附加的辐射源(参见图2至图4)。CT系统C1相应地按照根据本发明的方法运行。
在图2至图4中分别示出了用于探测X射线辐射的探测器元件的半导体材料HL的示意图。半导体材料HL例如是CdTe。在半导体HL的两个相对的侧面上,在半导体HL上布置了阳极A和阴极K。阳极A和阴极K按照常规方式与CT系统的电子器件连接,然而为了清晰起见没有示出。根据本发明,在图2至图4中分别示出了至少一个辐射源Q。辐射源Q例如被构造成LED,用于产生具有能量范围从1.6eV至3.2eV的可见光辐射。对此,根据本发明对半导体HL进行附加照射,以便产生附加的电荷载体,并且由此均衡在半导体HL中由于入射的X射线辐射而引起的极化。图2至图4的实施方式的区别分别在于辐射源Q的布置和实施方式。
在图2中,示出了阴极侧的辐射源Q。辐射源Q是平面或者层式构造的,并且直接布置在阴极K的背对半导体HL的一侧。此外,阴极K被构造成透光的。由辐射源Q发出的光辐射通过阴极K并且渗透进半导体材料HL,在那里产生附加的电荷载体。为了有针对性地从辐射源Q向半导体材料HL照射光辐射,在阴极K的外侧安装反射层S,其将辐射朝向半导体HL反射。通过辐射源Q的平面构造,实现对半导体HL的均匀照射,并且由此实现均匀的电荷载体生成。在阴极侧布置辐射源Q的情况下,产生的空穴立即在阴极K处复合。产生的电子扩散到半导体HL内部,并且在那里填充晶体缺陷。根据本发明,这样由待探测的X射线辐射形成的带正电的空间电荷可以由附加的电荷载体的带负电的空间电荷进行均衡。最终避免半导体HL的极化。
在图3中示出了阴极布置的辐射源Q的另一种实施方式。这里在阴极K的间隙中,也就是在阴极K与半导体HL之间嵌入了五个单个的辐射源Q。在该实施方式中,辐射直接入射到半导体HL。通过辐射源Q在半导体HL上的均匀分布,这里也实现了均匀的照射并且均匀地产生电荷载体。
在图2和图3中示出的辐射源Q的阴极侧布置和其功能相应地类似于辐射源Q的阳极侧布置。
在图4中示出了在半导体HL侧面布置的辐射源Q。辐射源Q直接布置在半导体HL上并且平面地构造,以便保证尽可能均匀的照射。
虽然在细节上通过优选实施例详细图解和描述了本发明,但是本发明不限于公开的例子,技术人员可以从中推出其它变化,而不脱离本发明的保护范围。

Claims (16)

1.一种用于借助直接转换的X射线辐射探测器(C3,C5)探测入射的X射线辐射的方法,特别是用在CT系统中,其中,
1.1以具有至少1.6eV能量的附加的辐射照射用于探测的半导体材料(HL)来生成附加的电荷载体。
2.按照权利要求1所述的方法,其特征在于,以大于2.1eV的能量照射所述半导体材料(HL)。
3.按照上述权利要求1至2中任一项所述的方法,其特征在于,以电磁辐射、特别是可见光和/或紫外线照射所述半导体材料(HL)。
4.按照上述权利要求1至3中任一项所述的方法,其特征在于,以电子辐射照射所述半导体材料(HL)。
5.按照上述权利要求1至4中任一项所述的方法,其特征在于,在阳极侧和/或阴极侧照射所述半导体材料(HL)。
6.按照上述权利要求1至5中任一项所述的方法,其特征在于,从侧面、通过半透明的触点、通过电极罩的缝隙和/或通过评估电子器件照射所述半导体材料(HL)。
7.按照上述权利要求1至6中任一项所述的方法,其特征在于,从z方向和/或圆周方向照射所述半导体材料(HL)。
8.按照上述权利要求1至7中任一项所述的方法,其特征在于,脉冲式地和/或持续地照射所述半导体材料(HL)。
9.按照上述权利要求1至8中任一项所述的方法,其特征在于,在待探测的X射线辐射入射之前和/或期间照射所述半导体材料(HL)。
10.按照上述权利要求1至9中任一项所述的方法,其特征在于,以不同的能量照射所述半导体材料(HL)。
11.按照权利要求10所述的方法,其特征在于,在照射期间改变辐射的能量。
12.按照上述权利要求1至11中任一项所述的方法,其特征在于,通过所述照射激励在半导体材料(HL)中的带间跃迁。
13.按照权利要求12所述的方法,其特征在于,辐射的能量比带间跃迁的能量差最多高出25%,优选最多20%,更优选最多15%。
14.一种用于按照上述权利要求1至13中任一项所述的方法探测X射线辐射的直接转换的X射线辐射探测器(C3,C5),特别是用在CT系统(C1)中,至少具有:
14.1用于探测X射线辐射的半导体材料(HL),和
14.2至少一个辐射源(Q),所述辐射源以附加的辐射照射所述半导体材料(HL),
其特征在于,
14.3所述辐射具有至少1.6eV的能量。
15.按照权利要求14所述的X射线辐射探测器(C3,C5),其特征在于,所述至少一个辐射源(Q)被构造成电磁辐射源,特别是LED,和/或电子辐射源。
16.一种CT系统(C1),具有按照权利要求14或15所述的X射线辐射探测器(C3,C5)。
CN201380037341.XA 2012-07-31 2013-07-10 用于探测x射线辐射的方法、x射线辐射探测器和ct系统 Active CN104428690B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102012213411.5 2012-07-31
DE102012213411.5A DE102012213411B4 (de) 2012-07-31 2012-07-31 Verfahren zur Detektion von Röntgenstrahlung
PCT/EP2013/064524 WO2014019821A1 (de) 2012-07-31 2013-07-10 Verfahren zur detektion von röntgenstrahlung, röntgenstrahlungsdetektor und ct-system

Publications (2)

Publication Number Publication Date
CN104428690A true CN104428690A (zh) 2015-03-18
CN104428690B CN104428690B (zh) 2017-11-03

Family

ID=48803523

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201380037341.XA Active CN104428690B (zh) 2012-07-31 2013-07-10 用于探测x射线辐射的方法、x射线辐射探测器和ct系统

Country Status (4)

Country Link
US (1) US10014430B2 (zh)
CN (1) CN104428690B (zh)
DE (1) DE102012213411B4 (zh)
WO (1) WO2014019821A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107518910A (zh) * 2016-06-20 2017-12-29 西门子医疗有限公司 具有不透明中间层的x射线检测器
CN107710020A (zh) * 2015-06-26 2018-02-16 棱镜传感器公司 X射线成像的散射估计和/或校正

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160017488A (ko) * 2014-08-06 2016-02-16 삼성전자주식회사 방사선 검출기 및 그 동작방법
EP3422051A1 (en) * 2017-06-28 2019-01-02 Koninklijke Philips N.V. Direct conversion radiation detection

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000068710A2 (en) * 1999-05-10 2000-11-16 Lippens Francois Energy-selective x-ray radiation detection system
CN1484321A (zh) * 2002-08-30 2004-03-24 ��ʽ���絺���������� 辐射探测器
US20090266992A1 (en) * 2005-07-19 2009-10-29 Frederik Johannes Beekman Radiation detection apparatus
JP2010117172A (ja) * 2008-11-11 2010-05-27 Hamamatsu Photonics Kk 放射線検出装置、放射線画像取得システム及び放射線の検出方法
CN102187462A (zh) * 2008-10-15 2011-09-14 西门子公司 Ct系统所用检测器的检测器材料、检测器元件以及检测器

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3886370A (en) * 1973-11-21 1975-05-27 Walter Schubert Device for measuring semiconductor radiation sources
JPH0766981B2 (ja) * 1987-03-26 1995-07-19 日本電気株式会社 赤外線センサ
US5563421A (en) * 1995-06-07 1996-10-08 Sterling Diagnostic Imaging, Inc. Apparatus and method for eliminating residual charges in an image capture panel
WO1998001992A2 (en) * 1996-07-08 1998-01-15 Philips Electronics N.V. X-ray examination apparatus with a semiconductor x-ray detector
US6373064B1 (en) * 1998-10-02 2002-04-16 Sandia Corporation Semiconductor radiation spectrometer
US7944012B2 (en) * 2003-05-08 2011-05-17 The Science And Technology Facilities Council Accelerated particle and high energy radiation sensor
US7652258B2 (en) 2007-01-08 2010-01-26 Orbotech Medical Solutions Ltd. Method, apparatus, and system of reducing polarization in radiation detectors
DE102010015422B4 (de) 2010-04-19 2013-04-18 Siemens Aktiengesellschaft Röntgendetektor mit einer direkt konvertierenden Halbleiterschicht und Kalibrierverfahren für einen solchen Röntgendetektor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000068710A2 (en) * 1999-05-10 2000-11-16 Lippens Francois Energy-selective x-ray radiation detection system
CN1484321A (zh) * 2002-08-30 2004-03-24 ��ʽ���絺���������� 辐射探测器
US20090266992A1 (en) * 2005-07-19 2009-10-29 Frederik Johannes Beekman Radiation detection apparatus
CN102187462A (zh) * 2008-10-15 2011-09-14 西门子公司 Ct系统所用检测器的检测器材料、检测器元件以及检测器
JP2010117172A (ja) * 2008-11-11 2010-05-27 Hamamatsu Photonics Kk 放射線検出装置、放射線画像取得システム及び放射線の検出方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107710020A (zh) * 2015-06-26 2018-02-16 棱镜传感器公司 X射线成像的散射估计和/或校正
CN107710020B (zh) * 2015-06-26 2020-03-27 棱镜传感器公司 X射线成像的散射估计和/或校正
CN107518910A (zh) * 2016-06-20 2017-12-29 西门子医疗有限公司 具有不透明中间层的x射线检测器

Also Published As

Publication number Publication date
CN104428690B (zh) 2017-11-03
US10014430B2 (en) 2018-07-03
WO2014019821A1 (de) 2014-02-06
US20150168569A1 (en) 2015-06-18
DE102012213411A1 (de) 2014-02-20
DE102012213411B4 (de) 2018-11-29

Similar Documents

Publication Publication Date Title
JP6960907B2 (ja) 放射線検出器及び放射線検出器の製造方法
US7800071B2 (en) Method, apparatus, and system of reducing polarization in radiation detectors
US8637831B2 (en) Hybrid organic photodiode
US9517045B2 (en) Radiographic imaging apparatus and a method of correcting threshold energies in a photon-counting radiographic detector
CN104641256B (zh) X射线辐射的检测和x射线检测器系统
EP2147334B1 (en) Energy sensitive direct conversion radiation detector
US7612342B1 (en) Very bright scintillators
CN103562746B (zh) 电离辐射探测
KR101873650B1 (ko) 광 바이어스를 갖는 x선 검출기 및/또는 감마 검출기
CN108183119B (zh) 一种具有能量分辨的x射线探测器及其探测方法
CN1610977A (zh) 光子计数应用的崩溃光二极管及其方法
CN102217082A (zh) 具有浅n+层的薄有源层鱼骨形光敏二极管及其制造方法
CN104428690A (zh) 用于探测x射线辐射的方法、x射线辐射探测器和ct系统
CN104641255B (zh) X射线辐射探测器、计算机断层成像系统和为此的方法
G Rocha et al. Review on X-ray detectors based on scintillators and CMOS technology
US20090084960A1 (en) High Detective Quantum Efficiency X-ray Detectors
Reinhardt et al. A pixel detector system for laser-accelerated ion detection
CN103323872A (zh) 用于对量子计数的x射线探测器进行能量校准的方法
Claps et al. Diamondpix: A CVD diamond detector with timepix3 chip interface
KR101711715B1 (ko) X선 검출기 및 x선 측정 방법
Sung et al. Detailed simulation for the ClearMind prototype detection module and event reconstruction using artificial intelligence
Schlosser et al. Direct and indirect signal detection of 122 keV photons with a novel detector combining a pnCCD and a CsI (Tl) scintillator
DE102011080892B3 (de) Röntgenstrahlungsdetektor zur Verwendung in einem CT-System
Craven et al. Recent Advances in Large Area Micro-channel Plates and LAPPD™
Galindo-Tellez et al. First ClearMind gamma detector prototype for TOF-PET imaging

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20220130

Address after: Erlangen

Patentee after: Siemens Healthineers AG

Address before: Munich, Germany

Patentee before: SIEMENS AG

TR01 Transfer of patent right