CN104412430A - 制造电极的方法、对应电极和包括此类电极的电池 - Google Patents

制造电极的方法、对应电极和包括此类电极的电池 Download PDF

Info

Publication number
CN104412430A
CN104412430A CN201380033107.XA CN201380033107A CN104412430A CN 104412430 A CN104412430 A CN 104412430A CN 201380033107 A CN201380033107 A CN 201380033107A CN 104412430 A CN104412430 A CN 104412430A
Authority
CN
China
Prior art keywords
electrode
tube
carbon nano
sulphur
deposited
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201380033107.XA
Other languages
English (en)
Other versions
CN104412430B (zh
Inventor
A·戈耶
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Renault SAS
Original Assignee
Renault SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Renault SAS filed Critical Renault SAS
Publication of CN104412430A publication Critical patent/CN104412430A/zh
Application granted granted Critical
Publication of CN104412430B publication Critical patent/CN104412430B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0419Methods of deposition of the material involving spraying
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0421Methods of deposition of the material involving vapour deposition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0421Methods of deposition of the material involving vapour deposition
    • H01M4/0428Chemical vapour deposition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0471Processes of manufacture in general involving thermal treatment, e.g. firing, sintering, backing particulate active material, thermal decomposition, pyrolysis
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0483Processes of manufacture in general by methods including the handling of a melt
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1393Processes of manufacture of electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/661Metal or alloys, e.g. alloy coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/663Selection of materials containing carbon or carbonaceous materials as conductive part, e.g. graphite, carbon fibres
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/665Composites
    • H01M4/667Composites in the form of layers, e.g. coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/70Carriers or collectors characterised by shape or form
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8825Methods for deposition of the catalytic active composition
    • H01M4/8867Vapour deposition
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Composite Materials (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Cell Electrode Carriers And Collectors (AREA)
  • Secondary Cells (AREA)

Abstract

本发明涉及一种制造电极的方法,该方法包括以下步骤:a)通过气溶胶喷施将多个催化生长晶种3沉积到一个导电基材上,b)使得多个定向的碳纳米管4在沉积这些催化生长晶种3的基础上生长,c)将硫5沉积到在步骤b)中形成的这些定向的碳纳米管4上,并且d)使得一层碳(6)沉积在该硫(5)上。本发明还涉及一种电极并且涉及一种包括此类电极的电池,该电极包括一个导电支撑件和多个定向的碳纳米管4,这些定向的碳纳米管是沉积在该导电支撑件的表面上的并且至少部分地被硫5所覆盖,这些定向的碳纳米管4展现出大于20μm、优选大于50μm的长度。

Description

制造电极的方法、对应电极和包括此类电极的电池
本发明涉及用于储存能量的装置或电池,并且更确切地涉及电池的电极。
锂离子电池由于它们的高的能量密度而已经在电池领域中变得广泛可用并且尤其允许设想将电动车辆开发成提供超过200km的更大的自主性。
电池的能量密度取决于两个量:一方面是在正电极(阴极)与负电极(阳极)之间的电化学电势差(电动势),而另一方面是容量,即能够储存在这些电极中的每个电极中的电荷的数目(mA·h)。当前,商用锂离子电池的能量密度严重地受限于正电极的容量。正电极的容量典型地小于160mAh/g,这与负电极的容量相比较只是约一半。结果是,锂离子电池中正电极的材料重量是负电极材料重量的至少两倍。
在正电极的材料之中,提供最高比容量的是硫:1673mAh/g。这个值高于当前所使用材料的十倍、允许设想电池能量密度的非常显著的增加:从150-200Wh/kg到400-500Wh/kg,尽管含硫电极具有相对低的电化学电势。然而,采用硫来作为电极材料产生了两个主要问题:
1)硫与锂形成多种可溶物类:在放电过程中,锂与硫反应并且形成LixSy类型的多种中间物类,而它们是可溶于电解质中的。这些物类的溶解导致了电极的容量的不可逆的损失并且因而导致在充电/放电循环过程中能量密度的不可逆的损失;
2)硫是一种电绝缘体:这种性质就电功率而言大大限制了电池使用硫的可能性。
有可能的是通过将硫禁锢在含碳材料的孔隙中来限制硫在电解质中的溶解。这样的结构允许将高的电极容量(700mAh/g)维持150个循环。然而,硫仅仅被部分地捕获在这些孔隙中,因为仍然存在与电解质的直接交界面。
为了克服硫的这种不良的导电能力,有可能的是将硫沉积在由对齐的碳纳米管构成的一个纳米结构的收集件上。这样的沉积一方面允许借助于在这些对齐的碳纳米管的表面上存在的硫具有纳米尺寸的事实而限制电子(它们在充电/放电过程中是运动的)的扩散长度。而且,这些碳纳米管是优良的电导体,这一事实允许在硫与置于这些碳纳米管基部的收集件之间提供高的导电能力。
在文件US 2011/0262807和US 20011/0091773中阐述了用对齐的碳纳米管来作为针对硫的基材的实例。然而,就这两个专利申请而言,所获得的这些碳纳米管是通过等离子体辅助的(增强的)化学气相沉积(PECVD)合成的,这导致了在这些合成纳米管的特性上的多种限制。更具体而言,这些碳纳米管由于它们的相对大的直径(典型地大于20nm)而具有相对低的密度,这一事实增加了每单位表面积上硫的数量、并且因而增加了厚度,从而能够使得电极的容量增加,并且因而导致了这种电极的电导率减小。此外,由PECVD形成的这些碳纳米管总体上展现出不良的结晶质量,这也赋予它们较低的导电能力。最后,PECVD处理并不允许所产生的自定向碳纳米管的长度大于20μm,这意味着就电极的表面容量(每单位表面积储存的电量:mAh/cm2)而言的限制。
本发明的目标是解决前述这些技术问题。具体而言,本发明的一个目的是一种制备出允许获得高导电能力的电极的方法。本发明的另一个目的是获得一种展现出高比表面积的电极。本发明的一个进一步目的是获得一种展现出长持久性的电极,换言之获得一种能够在若干充电-放电循环之后还展现出基本上恒定的容量的电极。
根据一个方面,提供了一种方法来为一种能量储存装置、尤其是为锂离子电池制作一种含硫电极,该方法包括以下步骤:
a)通过气溶胶喷施将多个催化生长晶种(例如铁的)沉积到一个导电基材(例如由铝制成)上,
b)使得多个定向的碳纳米管从催化生长晶种的沉积处开始生长,例如通过CVD(化学气相沉积),
c)将硫例如通过气溶胶喷施来沉积到步骤b)中形成的这些定向的碳纳米管上,并且
d)在步骤c)后,使得一层碳、优选石墨沉积到这种硫上。
这种气溶胶喷施或气溶胶喷撒是通过由载气(或雾化)携带的细小液滴(或微液滴)的抛射来沉积材料的一种方法。这样的方法提供的优点是容易工业化和成本低,并且允许避免使用较复杂的处理,例如PVD(物理气相沉积),这种处理要求产生高的真空度。
通过气溶胶喷施方法来将生长晶种沉积到导电基材上允许在步骤b)的过程中获得长的、定向的且小直径的碳纳米管。定向的纳米管被理解为是指纳米管具有的相对于基材表面的角度是在80°与100°之间的范围内,优选等于或基本上等于90°。每个定向的碳纳米管都可以是由一个或多个同心圆柱构成的。这些定向的碳纳米管具有的长度大于20μm,优选大于50μm,并且更优选大于100μm。它们还具有小于20nm、优选小于15nm、更优选小于10nm、并且甚至更优选小于5nm的直径。这些定向的碳纳米管可以是彼此间隔开10至100nm的。因此有可能的是获得碳纳米管的高密度,这与这些纳米管长的长度一起得到了高的面密度。于是可以减小沉积到这些碳纳米管表面上的硫的厚度,这就减少了由于硫的低导电能力而产生的限制。而且,这种与将催化生长晶种沉积到导电基材上相关联地使得这些纳米管生长(CVD)的处理允许获得良好结晶的、并且因而展现出高导电能力的碳纳米管。更具体而言,使得这些纳米管生长的这个步骤b)可以包括以一种已经例如通过热丝裂解出氢的烃前体进行化学气相沉积(CVD)。
硫表面上的这层石墨碳允许被沉积在这些碳纳米管的表面上的硫被保留住。更具体而言,这层石墨碳可以防止在充电/放电循环过程中形成的可溶物类LixSy不可逆地损失到电解质中。这层石墨碳因而允许长久维持电极的容量。
根据一个实施例,该导电基材是一种铝基材。
根据另一个实施例,在步骤a)之前,将一层铝例如通过物理气相沉积(PVD)来沉积到一个基材上以便形成该导电基材。
优选的是,在步骤c)与步骤d)之间,执行一个来加热该电极的步骤以便熔化在这些碳纳米管的表面上的硫。这样的步骤允许获得在这些碳纳米管的整个表面上厚度相对均匀的一层硫。
本发明还涉及通过实施这种先前定义的制作方法获得的一种含硫电极、还以及包括例如先前限定的一个含硫电极作为阴极的一种储存装置,尤其是一种锂离子电池。
根据另一个方面,本发明又涉及用于能量储存装置的、尤其用于锂离子电池的一种含硫电极,该含硫电极包括一个导电基材,例如由铝制成的,并且包括多个定向的碳纳米管,这些定向的碳纳米管是沉积在该导电基材的表面上的并且至少部分地被硫所覆盖,覆盖这些碳纳米管的硫具有被一层碳、优选石墨所覆盖的一个自由表面积。换言之,该电极包括一个导电基材、沉积在基材表面上的多个定向的碳纳米管、以及覆盖这些碳纳米管的全部部分或一部分的一个含硫涂层。
定向的纳米管被理解为是指纳米管具有的相对于基材表面的角度是在80°与100°之间的范围内,优选等于或基本上等于90°。每个定向的碳纳米管都可以是由一个或多个同心圆柱构成的。
具体而言,这些定向的碳纳米管具有的长度大于20μm,优选大于50μm,并且更优选大于100μm。
优选的是,这些定向的碳纳米管还具有小于20nm、优选小于15nm、更优选小于10nm、并且甚至更优选小于5nm的直径。
这些定向的碳纳米管可以是彼此间隔分开10至100nm的。
该导电基材可以由一种铝基材构成或者可以包括一种由覆有一层铝的不锈钢制成的基材。
本发明最后涉及一种电池、尤其是锂离子电池,该电池包括一个例如先前所述的含硫电极、尤其是阴极。
通过考虑对一个非限制性实施例和这些附图的详细说明,本发明的其他优点和特征将变得清晰,其中,图1至6简要展示了针对根据本发明的电极的一部分的这些主要制作步骤。应该注意的是在图中示出的这些要素被非常大程度地放大以利于理解。
图1示出了基材1的截面视图,在该基材上将制作多个碳/硫纳米管以便形成一个电池的电极的一部分。基材1可以包括或其构成为一种厚度范围在10μm与50μm之间的金属片材。基材1可以是由铝的、铜的、镍的、不锈钢的片材、或者另一等效材料的片材构成的。在本说明书的以下部分中,所考虑的是基材1是由不锈钢制成的。
图2示出了本方法的第一步骤,用于在基材1由不锈钢制成的情况下形成这些碳/硫纳米管。本方法的第一步骤于是包括将一个铝层2沉积在基材1的表面上。这个薄铝层2形成了针对在本方法的以下步骤中将沉积的这些物类的一个屏障层、并且还允许稳固随后沉积的这些催化晶种。应该注意的是,在基材由铝制成时,可以省却在图1中展示的这个步骤。
在图3示出的第三步骤中,将催化生长晶种3沉积到层2的表面上。这些催化生长晶种3可以包括氯化铁并且允许对这些定向的碳纳米管的生长加以催化:更具体而言,这些碳纳米管将从这些催化晶种开始生长。这些催化生长晶种可以是通过气溶胶喷施而沉积的。为此目的,可以按微米大小的液滴的形式来使用氯化铁在乙醇中一种雾化的溶液,然后由朝向层2的表面的氮气流来携带。这些微液滴然后与层2的表面发生接触、之后随即蒸发并且致使这些催化生长晶种3沉积在层2的表面上。借助于这个铝层2,在这些碳纳米管生长之前获得对这些铁的催化晶种3的一种增进的稳固化。
在图4示出的第四步骤中,在层2上发生定向的碳纳米管4的生长。合成这些纳米管是通过从这些催化晶种3开始生长来实现的。这些碳纳米管因而是通过化学气相沉积(CVD)借助一种烃前体来形成的。为了实现以低于660℃(这是铝的熔融温度)的温度合成这些碳纳米管4,使得氢在基材的上游从这种烃前体中裂解出。这个铝层作为基材的存在允许以纳米颗粒的形式来组织该铁以用于合成定向的碳纳米管4。合成后获得的这些对齐的碳纳米管4于是具有约5nm的直径和大于20μm的长度,例如在20μm与200μm之间的长度,这得到了大的比表面积和优良的导电能力。
然后,如在图5中所展示的,硫5在这些碳纳米管4上发生沉积。在图5中,这些碳纳米管4是以截面示出的以便更好地展示硫5在它们的表面上的沉积。有利地,硫5的这种沉积是通过一种硫溶液的气溶胶喷施以与氯化铁层3在层2上的沉积相似的方式发生的。一旦已经发生硫5的沉积,这整个组件就可以被加热,例如到150℃的温度,以便熔化沉积的硫并且因而对这些碳纳米管4的壁加以涂覆。
最后,如在也以截面示出这些碳纳米管4的图6中所展示的,一个石墨碳层6被沉积到硫5上。这种沉积是以低于450℃的温度发生的,这个温度对应于硫的沸点,以便保持这个硫层5的完整性。石墨碳是例如通过等离子体增强的气相沉积(PECVD)在2mbar的减压的烃气体例如甲烷、乙炔或更有利地是乙醇与异丙醇的混合物的环境下沉积的。
因而,所获得的一部分电极包括多个覆盖有硫和石墨的、并且沉积在铝基材上的定向的碳纳米管。借助于这些碳纳米管的长度和密度,沉积在后者上的这个硫层可以是薄的,而同时在电极内总体上保存了大量的硫:于是,获得了大的比表面积。这样的电极因而允许获得在锂离子电池应用中所希望的电性质,尤其就导电能力和密度而言。这种锂离子电池因而可以包括一个阴极,例如先前所限定的;以及一个阳极,这些电极通过一种电解质相连接。
实例:
已经采用以下参数实施了本方法的一个示例性实施例。在这个实例中,导电基材包括一种由不锈钢1制成的基材和一个铝层2。这个薄铝层2具有30nm的厚度并且是通过借助蒸发器的物理气相沉积来沉积到基材1上的。
这些催化生长晶种3被沉积到这个铝层2上。为此目的,制备了一种氯化铁溶液,这是通过将FeCl3·6H2O溶解在乙醇中达到范围在5.10-2mol.L-1与5.10-4mol.L-1之间的浓度实现的。这种氯化铁溶液然后被一个雾化阀以等于2mL.min-1的流速雾化成微米大小液滴的形式、之后由氮气携带向放置于约11cm距离处的并且加热到120℃的温度的这个铝层2的表面。雾化的氯化铁溶液的用量是对于80x 80mm2的样本表面积是30mL。
随后借助于一种前体混合物CH4/H2(50:50)通过600℃下的化学气相沉积(CVD)来进行这些碳纳米管4的合成。CVD反应器中的压力被固定于50mbar并且总气体流量被固定在100sccm(每分钟标准立方分米)。一个功率205W的热钨丝被用来在上游使得氢和甲烷裂解。
然后在这些碳纳米管4上沉积这个硫涂层5。用于这种沉积的硫溶液是一种将1%重量比的硫溶解于甲苯中的溶液、并且是通过气溶胶喷雾来雾化到这些碳纳米管4上的。
最后,通过等离子体增强的气相沉积(PECVD)来沉积石墨碳,其中,等离子体为一种功率为100W的DC放电。这种沉积是以400℃的温度在一种2mbar的减压下的乙醇与异丙醇混合物的环境下发生的。
于是获得了一种展现出所希望的电性质并且被设计成用于在锂离子电池中的电极。

Claims (8)

1.一种用于制作电极、尤其是用于锂离子电池的电极的方法,包括以下步骤:
a)通过气溶胶喷施将多个催化生长晶种(3)沉积到一个导电基材上,
b)使得多个定向的碳纳米管(4)从催化生长晶种(3)的沉积处开始生长,
c)将硫(5)沉积到在步骤b)中形成的这些定向的碳纳米管(4)上,并且
d)在步骤c)之后,使得一层碳(6)沉积到该硫(5)上。
2.根据权利要求1所述的方法,其中,该导电基材是一种铝基材。
3.根据权利要求1所述的方法,其中,在步骤a)之前,将一层铝(2)沉积到一个基材(1)上以便形成该导电基材。
4.根据权利要求1至3之一所述的方法,其中,在步骤c)与步骤d)之间,执行一个加热该电极的步骤以便熔化在这些碳纳米管(4)的表面上的硫。
5.一种电极,尤其是用于锂离子电池的电极,该电极包括一个导电基材和多个定向的碳纳米管(4),这些定向的碳纳米管是沉积在该导电基材的表面上的并且至少部分地被硫(5)所覆盖,其特征在于,这些定向的碳纳米管(4)具有的长度大于20μm、优选大于50μm,并且覆盖这些碳纳米管(4)的硫(5)具有被一层碳(6)所覆盖的一个自由表面积。
6.根据权利要求5所述的电极,其中,这些定向的碳纳米管(4)具有的直径小于20nm、优选小于15nm。
7.根据权利要求5或6中的任一项所述的电极,其中,该导电基材由一种铝基材构成或者包括一种由覆有一层铝(2)的不锈钢(1)制成的基材。
8.一种电池、尤其是锂离子,包括一个如权利要求5至7之一所述的电极。
CN201380033107.XA 2012-05-25 2013-05-24 制造电极的方法、对应电极和包括此类电极的电池 Expired - Fee Related CN104412430B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR1254867 2012-05-25
FR1254867A FR2991102B1 (fr) 2012-05-25 2012-05-25 Procede de fabrication d'une electrode, electrode correspondante et batterie comprenant une telle electrode
PCT/FR2013/051149 WO2013175143A1 (fr) 2012-05-25 2013-05-24 Procédé de fabrication d'une électrode, électrode correspondante et batterie comprenant une telle électrode

Publications (2)

Publication Number Publication Date
CN104412430A true CN104412430A (zh) 2015-03-11
CN104412430B CN104412430B (zh) 2017-10-03

Family

ID=48614056

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201380033107.XA Expired - Fee Related CN104412430B (zh) 2012-05-25 2013-05-24 制造电极的方法、对应电极和包括此类电极的电池

Country Status (5)

Country Link
US (1) US9620774B2 (zh)
EP (1) EP2856543B1 (zh)
CN (1) CN104412430B (zh)
FR (1) FR2991102B1 (zh)
WO (1) WO2013175143A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109997251A (zh) * 2016-09-29 2019-07-09 艾克斯特朗欧洲公司 锂离子蓄电池用电极及其制造方法或设备
CN111092207A (zh) * 2019-12-20 2020-05-01 深圳天元羲王材料科技有限公司 一种正极材料及其制备方法、锂硫电池

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI501455B (zh) * 2013-10-28 2015-09-21 Inst Nuclear Energy Res Atomic Energy Council 高功率密度液流電池用之電極製造方法
CN105990569B (zh) * 2015-02-13 2018-10-30 中科派思储能技术有限公司 一种硫碳复合粉体材料的制备方法及粉体材料和应用
WO2020039609A1 (ja) * 2018-08-24 2020-02-27 ゼプター コーポレーション リチウム電池用負極およびその製造方法、ならびにリチウム電池

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1950296A (zh) * 2004-03-09 2007-04-18 卡纳图有限公司 单壁面、多壁面、官能化和施加添加剂的碳纳米管及其复合材料
CN102110849A (zh) * 2009-12-23 2011-06-29 罗伯特.博世有限公司 锂硫电池以及制造方法
CN102208645A (zh) * 2011-05-05 2011-10-05 中国东方电气集团有限公司 锂硫电池正极复合材料与正极及锂硫电池
US20110262807A1 (en) * 2010-04-22 2011-10-27 Arthur Douglas Boren Carbon Nanotube Augmented Sulfur Cathode for an Elemental Sulfur Battery
CN102263257A (zh) * 2011-06-28 2011-11-30 中国科学院金属研究所 高能量柔性电极材料及其制备方法和在二次电池中的应用
WO2011149958A2 (en) * 2010-05-24 2011-12-01 Amprius, Inc. Multidimensional electrochemically active structures for battery electrodes
WO2012001152A1 (de) * 2010-07-02 2012-01-05 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Kathodeneinheit für Alkalimetall-Schwefel-Batterie

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9005806B2 (en) 2009-10-15 2015-04-14 Nokia Corporation Nano-structured lithium-sulfur battery and method of making same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1950296A (zh) * 2004-03-09 2007-04-18 卡纳图有限公司 单壁面、多壁面、官能化和施加添加剂的碳纳米管及其复合材料
CN102110849A (zh) * 2009-12-23 2011-06-29 罗伯特.博世有限公司 锂硫电池以及制造方法
US20110262807A1 (en) * 2010-04-22 2011-10-27 Arthur Douglas Boren Carbon Nanotube Augmented Sulfur Cathode for an Elemental Sulfur Battery
WO2011149958A2 (en) * 2010-05-24 2011-12-01 Amprius, Inc. Multidimensional electrochemically active structures for battery electrodes
WO2012001152A1 (de) * 2010-07-02 2012-01-05 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Kathodeneinheit für Alkalimetall-Schwefel-Batterie
CN102208645A (zh) * 2011-05-05 2011-10-05 中国东方电气集团有限公司 锂硫电池正极复合材料与正极及锂硫电池
CN102263257A (zh) * 2011-06-28 2011-11-30 中国科学院金属研究所 高能量柔性电极材料及其制备方法和在二次电池中的应用

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109997251A (zh) * 2016-09-29 2019-07-09 艾克斯特朗欧洲公司 锂离子蓄电池用电极及其制造方法或设备
CN111092207A (zh) * 2019-12-20 2020-05-01 深圳天元羲王材料科技有限公司 一种正极材料及其制备方法、锂硫电池

Also Published As

Publication number Publication date
EP2856543A1 (fr) 2015-04-08
US9620774B2 (en) 2017-04-11
CN104412430B (zh) 2017-10-03
EP2856543B1 (fr) 2016-07-27
FR2991102A1 (fr) 2013-11-29
WO2013175143A1 (fr) 2013-11-28
US20150140436A1 (en) 2015-05-21
FR2991102B1 (fr) 2014-05-09

Similar Documents

Publication Publication Date Title
Zhou et al. SnS2 nanowall arrays toward high-performance sodium storage
Sun et al. Two-dimensional tin disulfide nanosheets for enhanced sodium storage
Li et al. Carbon nanotube-enhanced growth of silicon nanowires as an anode for high-performance lithium-ion batteries
CN103210530B (zh) 用于电池电极的分支纳米结构
Su et al. Silicon‐based nanomaterials for lithium‐ion batteries: a review
Azam et al. Aligned carbon nanotube from catalytic chemical vapor deposition technique for energy storage device: a review
CN108630945B (zh) 一种电池电极及其制备方法和电池
Rong et al. Tandem structure of porous silicon film on single-walled carbon nanotube macrofilms for lithium-ion battery applications
US8699207B2 (en) Electrodes synthesized from carbon nanostructures coated with a smooth and conformal metal adlayer
US8481214B2 (en) Electrodes including support filament with collar stop
Susantyoko et al. Germanium coated vertically-aligned multiwall carbon nanotubes as lithium-ion battery anodes
US20130202961A1 (en) Cathode unit for an alkali metal/sulfur battery
CN102044659B (zh) 包括环形挡件的电极
KR20110100275A (ko) 하이브리드 나노―탄소 층을 갖는 삼차원 배터리
CN104412430A (zh) 制造电极的方法、对应电极和包括此类电极的电池
CN103253647A (zh) 一种在碳纤维纸基底上直接生长碳纳米管阵列的方法
Chang et al. Solution-grown phosphorus-hyperdoped silicon nanowires/carbon nanotube bilayer fabric as a high-performance lithium-ion battery anode
Jiang et al. Lithiophilic onion-like carbon spheres as lithium metal uniform deposition host
Zhu et al. A highly-lithiophilic Mn3O4/ZnO-modified carbon nanotube film for dendrite-free lithium metal anodes
Jun et al. Intertwined CNT assemblies as an all-around current collector for volume-efficient lithium-ion hybrid capacitors
Karimi et al. The comparison of different deposition methods to prepare thin film of silicon-based anodes and their performances in Li-ion batteries
Giannakopoulou et al. CO2-Derived Nanocarbons with Controlled Morphology and High Specific Capacitance
US10636584B2 (en) Method for manufacturing a material having nanoelements
Li et al. In Situ Synthesis of Germanium Particles Decorated in Conjugated N-doped Carbon Matrix: Boosting the Performance of the Lithium-Ion Battery
CN103779534A (zh) 独立的一维共轴纳米结构

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20171003