CN104409526B - 一种基于隧穿反射层的高效硅基薄膜多结太阳电池 - Google Patents

一种基于隧穿反射层的高效硅基薄膜多结太阳电池 Download PDF

Info

Publication number
CN104409526B
CN104409526B CN201410719769.9A CN201410719769A CN104409526B CN 104409526 B CN104409526 B CN 104409526B CN 201410719769 A CN201410719769 A CN 201410719769A CN 104409526 B CN104409526 B CN 104409526B
Authority
CN
China
Prior art keywords
tunnelling
reflecting layer
battery
silica
base film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201410719769.9A
Other languages
English (en)
Other versions
CN104409526A (zh
Inventor
杨雯
涂晔
段良飞
杨培志
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yunnan Normal University
Original Assignee
Yunnan Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yunnan Normal University filed Critical Yunnan Normal University
Priority to CN201410719769.9A priority Critical patent/CN104409526B/zh
Publication of CN104409526A publication Critical patent/CN104409526A/zh
Application granted granted Critical
Publication of CN104409526B publication Critical patent/CN104409526B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0216Coatings
    • H01L31/02161Coatings for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/02167Coatings for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • H01L31/02168Coatings for devices characterised by at least one potential jump barrier or surface barrier for solar cells the coatings being antireflective or having enhancing optical properties for the solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/028Inorganic materials including, apart from doping material or other impurities, only elements of Group IV of the Periodic System
    • H01L31/0288Inorganic materials including, apart from doping material or other impurities, only elements of Group IV of the Periodic System characterised by the doping material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier
    • H01L31/075Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PIN type
    • H01L31/076Multiple junction or tandem solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/20Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof such devices or parts thereof comprising amorphous semiconductor materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/548Amorphous silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

本发明公开了一种基于隧穿反射层的高效硅基薄膜多结太阳电池,属于高效硅基薄膜太阳电池领域。该电池从上到下包含顶电池、隧穿反射层TRR1、中电池、隧穿反射层TRR2和底电池,其中所述顶、中、底电池的吸收层为硅基薄膜或硅基合金薄膜,且Eg>Eg>Eg;其中所述隧穿反射层为P型掺铝的硅氧薄膜(a‑SiOx:Al),此隧穿反射层不仅具有中间反射层对短波反射、长波透射的光学特点,还能增加子电池隧道结处的缺陷态密度,促进光生载流子在界面处复合,降低寄生势垒。采用本发明提供的基于隧穿反射层的电池结构有利于提高硅基薄膜多结太阳电池的匹配电流,降低子电池交界处的光学和电学损失,能有效地提高电池的转换效率和稳定性。

Description

一种基于隧穿反射层的高效硅基薄膜多结太阳电池
技术领域
本发明涉及一种基于隧穿反射层的高效硅基薄膜多结太阳电池,属高效硅基薄膜太阳电池领域。
背景技术
硅基薄膜叠层太阳电池由不同带隙的硅基薄膜或硅基合金薄膜子电池串联而成,这种叠层结构既能拓宽电池的光谱响应范围,提高太阳光谱的利用率,又能降低不稳定的非晶硅顶电池的厚度,降低光致衰减效应,从而在提高太阳电池转换效率的同时改善其整体稳定性。然而,叠层结构并不是子电池的简单串联,其总电池的电流往往取决于较小的非晶硅顶电池电流。因此,叠层结构应重点考虑:(1)各子电池的最大电流需尽量匹配;(2)各子电池之间的隧道结(Tunnel Recombination Junction,TRJ)应具有较小的电学损失与光学损失。
针对电流匹配,人们研究了子电池本征吸收层的厚度比,在最佳厚度比值下子电池的电流可获得良好匹配,例如:在非/微叠层太阳电池中,非晶硅本征层厚度一般为150~200nm,微晶硅本征层厚度一般为2μm。为了增加电池稳定性,降低光致衰减效应,人们还研究了中间反射层(Intermediate Reflector Layer,IRL)的作用,以在降低本征非晶硅厚度的同时,保持最大的匹配电流。针对电学损失和光学损失,人们研究了子电池界面处的隧道结,由于隧道结相对电池内建电场为反偏结,任何寄生势垒都将使电池的电流电压特性变差,若结处的光生电子与空穴能完全复合,就不会产生寄生势垒而削减子电池的电场。
然而目前,人们对叠层结构的上述两方面研究尚独立进行:具有选择性反射作用的中间反射层是基于光学的反射与透射原理;而具有较大缺陷态密度的隧道结是基于电学的隧穿复合理论。因此,其研究成果难以大幅提高叠层太阳电池的性能。基于此,我们综合考虑了叠层结构的子电池界面对整个电池的光学性能和电学性能的影响,结合中间反射层的作用与隧道结的原理,在子电池界面处制备了一层既具有选择性反射作用,又具有高缺陷态密度的薄膜,称此兼具陷光性能和隧穿性能的薄膜为隧穿反射层(Tunnel Recombination Reflector,TRR),以改善硅基薄膜叠层太阳电池的电流匹配度,降低子电池交界处的光学损失与电学损失,提高电池的光电转换效率和稳定性。
近年来,人们对多结叠层硅基薄膜太阳电池有了一定的研究,如:南开大学的专利(申请号:CN200910245205.5)一种全谱域叠层硅基薄膜太阳电池,其特征是电池吸收层采用宽带隙、中间带隙和窄带隙硅基薄膜或硅基合金薄膜,实现带隙覆盖2.0eV~0.66eV的范围,从而实现电池对太阳光谱300nm~1800nm的全谱域响应,提高了电池的光电转换效率。然而此结构没有考虑子电池界面处的光学和电学损失,也没有考虑电池内部的陷光要求。对于硅基叠层太阳电池子电池之间的插入层,人们也进行了研究,如:中国科学院半导体研究所的专利(申请号:200910078560.8)硅基薄膜叠层太阳能电池隧道结的制作方法,其特征是插入层为具有较高复合速率的复合层材料,非晶纳米硅复合层,此插入层仅考虑了隧道结处的隧穿性能,但没有考虑其光学性能。湖南共创光伏科技有限公司的专利(申请号:CN201320698865.0)一种电池用复合中间反射层以及多结叠层硅基薄膜电池,其特征是该复合中间反射层是包括至少一层N型SiOx或SiNx膜层的多层膜结构,与中间反射层相邻的上一层和下一层均为不含氧或氮的N型硅薄膜掺杂层,通过调节氧或氮含量来调节膜层折射率以适应不同的陷光要求,此插入层考虑了各子电池交界处的光学性能,但没有考虑隧道结的隧穿性能。鉴于此,本专利发明了一种基于隧穿反射层的高效硅基薄膜多结太阳电池,所制备的隧穿反射层薄膜带隙宽、折射率低、电导率高、缺陷态密度大,同时兼具中间层的光学优点与隧道结的电学特点,采用此隧穿反射层的多结太阳电池的转换效率和稳定性均得以有效的提高。
发明内容
针对背景技术提出的问题,本发明提供了一种基于隧穿反射层的高效硅基薄膜多结太阳电池,制备的电池从上到下包含顶电池、隧穿反射层、中电池、隧穿反射层和底电池:其中所述顶、中、底电池的吸收层为硅基薄膜或硅基薄膜合金,且Eg>Eg>Eg;其中所述隧穿反射层为P型掺铝非晶硅氧薄膜(a-SiOx:Al),此隧穿反射层不仅具有中间反射层的短波反射、长波透射的光学特点,还能增加子电池隧道结的缺陷态密度,促进光生载流子在界面处复合,降低寄生势垒。采用本发明提供的电池结构有利于提高硅基薄膜多结太阳电池的匹配电流,降低子电池交界处的光学和电学损失,能有效地提高电池的转换效率和稳定性。
本发明的技术方案:
一种基于隧穿反射层的高效硅基薄膜多结太阳电池,由硅基薄膜顶电池、隧穿反射层TRR1、硅基薄膜中电池、隧穿反射层TRR2和硅基薄膜底电池叠加沉积在衬底上制成。
所述硅基薄膜顶电池的吸收层为宽带隙硅基薄膜或硅基合金薄膜,材料为非晶硅、非晶硅碳、非晶硅氧或纳米晶硅,带隙为1.7~2.0eV。
所述隧穿反射层TRR1为P型掺铝非晶硅氧薄膜(a-SiOx:Al),折射率为1.6~1.8, 厚度为83~94nm。
所述硅基薄膜中电池吸收层为中间带隙硅基薄膜或硅基合金薄膜,材料为非晶硅锗或纳米晶硅,带隙为1.1~1.7eV。
所述隧穿反射层TRR2为P型掺铝非晶硅氧薄膜(a-SiOx:Al),折射率为1.8~2.0,厚度为75~83nm。
所述硅基薄膜底电池吸收层为窄带隙硅基薄膜或硅基合金薄膜,材料为非晶硅锗或纳米晶硅,带隙为0.7~1.1eV。
所述硅基薄膜或硅基合金薄膜的制备方法为高压射频等离子体增强化学气相沉积、甚高频等离子体增强化学气相沉积、热丝化学气相沉积或等离子体辅助反应热化学气相沉积法。
所述隧穿反射层TRR1与TRR2的制备方法为射频磁控溅射法和脉冲磁控溅射法。
所述硅基薄膜多结太阳电池沉积在衬底上的顺序为:当衬底为玻璃或透明塑料时,薄膜电池的沉积顺序为P/I/N宽带隙顶电池、隧穿反射层TRR1、P/I/N中间带隙中电池、隧穿反射层TRR2和P/I/N窄带隙底电池;当衬底为不锈钢或不透明塑料时,薄膜电池的沉积顺序为N/I/P窄带隙底电池、隧穿反射层TRR2、N/I/P中间带隙中电池、隧穿反射层TRR1和N/I/P宽带隙顶电池。
本发明的工作原理:以硅基薄膜或硅基薄膜合金为顶、中、底电池的吸收层,且Eg>Eg>Eg,能拓宽电池对可见光谱的响应范围;在顶/中电池、中/底电池两个界面处插入隧穿反射层,材料为P型掺铝非晶硅氧薄膜(a-SiOx:Al),此薄膜具有带隙宽、折射率低、电导率高、缺陷态密度大等特点,使得隧穿反射层不仅具有中间反射层对短波反射、长波透射的光学优点,还能增加子电池隧道结的缺陷态密度,促进光生载流子在界面处复合,降低寄生势垒。
本发明的有益效果:采用本发明提供的具有隧穿反射层的硅基薄膜多结太阳电池,一方面带隙渐变的硅基薄膜叠层有利于拓宽电池对可见光谱的响应范围,提高电池的转换效率;另一方面隧穿反射层的插入有利于在降低不稳定的顶电池吸收层厚度的同时提高多结太阳电池的子电池的匹配电流,增加隧道结的缺陷态密度,减少子电池界面处的光学和电学损失,提高电池的转换效率和稳定性。
附图说明:
图1为本发明提出的一种基于隧穿反射层的高效硅基薄膜多结太阳电池的结构图
图2为本发明提出的隧穿反射层1和隧穿反射层2的工作原理图
具体实施方式:
实施例 1
本实施例按以下步骤:
图1(a) 是衬底为透明玻璃或透明塑料的基于隧穿反射层的高效硅基薄膜多结太阳电池结构示意图,图中按沉积方向包括衬底、TCO、P/I/N顶电池、隧穿反射层1、P/I/N中电池、隧穿反射层2、P/I/N底电池、背电极。其中顶电池是宽带隙硅基薄膜太阳电池,吸收层采用带隙为1.8eV的非晶硅材料,厚度为150nm;隧穿反射层1是折射率为1.6~1.8的掺铝非晶硅氧薄膜,厚度为83~94nm;中电池是中间带隙硅基薄膜太阳电池,吸收层采用带隙为1.5eV的非晶硅锗材料,厚度为500nm;隧穿反射层2是折射率为1.8~2.0的掺铝非晶硅氧薄膜,厚度为75~83nm;底电池是窄带隙硅基薄膜太阳电池,吸收层采用带隙为1.1eV的纳米晶硅材料,厚度为1.5μm。具体实施过程如下:
利用三室等离子体增强气相化学沉积(PECVD)镀膜系统,在玻璃或透明塑料衬底上连续制备非晶硅电池P层、I层和N层,取出样品;
将样品安装在磁控溅射腔室的衬底靶上,关上腔室门后抽真空至2.0~9.0×10-4pa,关小主阀,调节工作压强为0.5~1.0pa,通入30~80sccm纯度为99.999%的Ar气,挪开衬底挡板,以高纯石英靶为靶材,在射频电源功率100~150W下溅射20~40分钟,溅射厚度为30~50nm,然后关闭射频电源和Ar气;
将关小的主阀开到最大,将磁控溅射腔室内的真空度抽至2.0~9.0×10-4pa,以除去溅射硅氧薄膜时残留的氧。关小主阀,通入30~80sccm纯度为99.999%的Ar气,将衬底用挡板挡住,打开脉冲电源并调节功率至60~74W,待功率稳定后,挪开衬底挡板,以纯度为99.99%的金属铝靶为靶材,继续在硅氧薄膜层上溅射一层Al膜,时间为15~25s,溅射厚度为15~25nm,然后立即关闭脉冲电源并用挡板挡住衬底;
打开射频电源,调节功率至100~150W,待功率稳定后挪开衬底挡板,以高纯石英靶为靶材,继续在金属Al膜上溅射20~40min,溅射厚度为30~50nm,关闭射频电源和Ar气,待分子泵冷却后取出样品;
利用三室等离子体增强气相化学沉积(PECVD)镀膜系统,在样品上连续制备非晶硅锗电池P层、I层和N层,取出样品;
将样品安装在磁控溅射腔室的衬底靶上,关上腔室门后抽真空至2.0~9.0×10-4pa,关小主阀,调节工作压强为0.5~1.0pa,通入30~80sccm纯度为99.999%的Ar气,挪开衬底挡板,以高纯石英靶为靶材,在射频电源功率100~150W下溅射20~40分钟,溅射厚度为30~45nm,然后关闭射频电源和Ar气;
将关小的主阀开到最大,将磁控溅射腔室内的真空度抽至2.0~9.0×10-4pa,以除去溅射硅氧薄膜时残留的氧。关小主阀,通入30~80sccm纯度为99.999%的Ar气,将衬底用挡板挡住,打开脉冲电源并调节功率至60~74W,待功率稳定后,挪开衬底挡板,以纯度为99.99%的金属铝靶为靶材,继续在硅氧薄膜层上溅射一层Al膜,时间为20~30s,溅射厚度为20~30nm,然后立即关闭脉冲电源并用挡板挡住衬底;
打开射频电源,调节功率至100~150W,待功率稳定后挪开衬底挡板,以高纯石英靶为靶材,继续在金属Al膜上溅射20~40min,溅射厚度为30~45nm,关闭射频电源和Ar气,待分子泵冷却后取出样品;
利用三室等离子体增强气相化学沉积(PECVD)镀膜系统,在样品上连续制备纳米晶硅电池P层、I层和N层,取出样品;
将制备好的样品放入RTP快速退火炉中,N2气氛下500~600℃快速退火20min,冷却后取出;
检测结果显示:插入隧穿反射层后的硅基薄膜多结太阳电池的转换效率超过12.2%。
实施例 2
本实施例按以下步骤:
图1(b) 是衬底为不锈钢或不透明塑料的基于隧穿反射层的高效硅基薄膜多结太阳电池结构示意图,图中按沉积方向包括衬底、背电极、N/I/P底电池、隧穿反射层2、N/I/P中电池、隧穿反射层2、N/I/P顶电池、TCO。其中底电池是窄带隙硅基薄膜太阳电池,吸收层采用带隙为1.0eV的微晶硅锗材料,厚度为2.0μm;隧穿反射层2是折射率为1.8~2.0的掺铝非晶硅氧薄膜,厚度为75~83nm;中电池是中间带隙硅基薄膜太阳电池,吸收层采用带隙为1.5eV的纳米晶硅材料,厚度为500nm;隧穿反射层1是折射率为1.6~1.8的掺铝非晶硅氧薄膜,厚度为83~94nm;顶电池是宽带隙硅基薄膜太阳电池,吸收层采用带隙为1.8eV的非晶硅材料,厚度为150nm。具体实施过程如下:
利用三室等离子体增强气相化学沉积(PECVD)镀膜系统,在不锈钢或不透明塑料衬底上连续制备非晶硅锗电池N层、I层和P层,取出样品;
将样品安装在磁控溅射腔室的衬底靶上,关上腔室门后抽真空至2.0~9.0×10-4pa,关小主阀,调节工作压强为0.5~1.0pa,通入30~80sccm纯度为99.999%的Ar气,挪开衬底挡板,以高纯石英靶为靶材,在射频电源功率100~150W下溅射20~40分钟,溅射厚度为30~45nm,然后关闭射频电源和Ar气;
将关小的主阀开到最大,将磁控溅射腔室内的真空度抽至2.0~9.0×10-4pa,以除去溅射硅氧薄膜时残留的氧。关小主阀,通入30~80sccm纯度为99.999%的Ar气,将衬底用挡板挡住,打开脉冲电源并调节功率至60~74W,待功率稳定后,挪开衬底挡板,以纯度为99.99%的金属铝靶为靶材,继续在硅氧薄膜层上溅射一层Al膜,时间为20~30s,溅射厚度为20~30nm,然后立即关闭脉冲电源并用挡板挡住衬底;
打开射频电源,调节功率至100~150W,待功率稳定后挪开衬底挡板,以高纯石英靶为靶材,继续在金属Al膜上溅射20~40min,溅射厚度为30~45nm,关闭射频电源和Ar气,待分子泵冷却后取出样品;
利用三室等离子体增强气相化学沉积(PECVD)镀膜系统,在样品上连续制备纳米晶硅电池N层、I层和P层,取出样品;
将样品安装在磁控溅射腔室的衬底靶上,关上腔室门后抽真空至2.0~9.0×10-4pa,关小主阀,调节工作压强为0.5~1.0pa,通入30~80sccm纯度为99.999%的Ar气,挪开衬底挡板,以高纯石英靶为靶材,在射频电源功率100~150W下溅射20~40分钟,溅射厚度为30~50nm,然后关闭射频电源和Ar气;
将关小的主阀开到最大,将磁控溅射腔室内的真空度抽至2.0~9.0×10-4pa,以除去溅射硅氧薄膜时残留的氧。关小主阀,通入30~80sccm纯度为99.999%的Ar气,将衬底用挡板挡住,打开脉冲电源并调节功率至60~74W,待功率稳定后,挪开衬底挡板,以纯度为99.99%的金属铝靶为靶材,继续在硅氧薄膜层上溅射一层Al膜,时间为15~25s,溅射厚度为15~25nm,然后立即关闭脉冲电源并用挡板挡住衬底;
打开射频电源,调节功率至100~150W,待功率稳定后挪开衬底挡板,以高纯石英靶为靶材,继续在金属Al膜上溅射20~40min,溅射厚度为30~50nm,关闭射频电源和Ar气,待分子泵冷却后取出样品;
利用三室等离子体增强气相化学沉积(PECVD)镀膜系统,在样品上连续制备非晶硅电池N层、I层和P层,取出样品;
将制备好的样品放入RTP快速退火炉中,N2气氛下500~600℃快速退火20min,冷却后取出;
检测结果显示:插入隧穿反射层后的硅基薄膜多结太阳电池的转换效率超过12.5%。

Claims (7)

1.一种基于隧穿反射层的高效硅基薄膜多结太阳电池,其特征是:由硅基薄膜顶电池、隧穿反射层TRR1、硅基薄膜中电池、隧穿反射层TRR2、硅基薄膜底电池叠加沉积在衬底上制成;所述隧穿反射层TRR1为P型掺铝非晶硅氧薄膜a-SiOx:Al,折射率为1.6~1.8,厚度为83~94nm;所述隧穿反射层TRR2为P型掺铝非晶硅氧薄膜a-SiOx:Al,折射率为1.8~2.0,厚度为75~83nm。
2.根据权利要求1所述的基于隧穿反射层的高效硅基薄膜多结太阳电池,其特征是:所述硅基薄膜顶电池的吸收层为宽带隙硅基薄膜或硅基合金薄膜,材料为非晶硅、非晶硅碳、非晶硅氧或纳米晶硅,带隙为1.7~2.0eV。
3.根据权利要求1所述的基于隧穿反射层的高效硅基薄膜多结太阳电池,其特征是:所述硅基薄膜中电池吸收层为中间带隙硅基薄膜或硅基合金薄膜,材料为非晶硅锗或微晶硅,带隙为1.1~1.7eV。
4.根据权利要求1所述的基于隧穿反射层的高效硅基薄膜多结太阳电池,其特征是:所述硅基薄膜底电池吸收层为窄带隙硅基薄膜或硅基合金薄膜,材料为纳米晶硅或微晶硅锗,带隙为0.7~1.1eV。
5.根据权利要求2、3或4中任一权利要求所述的基于隧穿反射层的高效硅基薄膜多结太阳电池,其特征是:所述硅基薄膜或硅基合金薄膜的制备方法为高压射频等离子体增强化学气相沉积、甚高频等离子体增强化学气相沉积、热丝化学气相沉积或等离子体辅助反应热化学气相沉积法。
6.根据权利要求1所述的基于隧穿反射层的高效硅基薄膜多结太阳电池,其特征是:所述隧穿反射层TRR1或隧穿反射层TRR2的制备方法为射频磁控溅射法和脉冲磁控溅射法。
7.根据权利要求1所述的基于隧穿反射层的高效硅基薄膜多结太阳电池,其特征是:所述硅基薄膜多结太阳电池沉积在衬底上的顺序为:当衬底为玻璃或透明塑料时,薄膜电池的沉积顺序为P/I/N 宽带隙顶电池、隧穿反射层TRR1、P/I/N中间带隙中电池、隧穿反射层TRR2和P/I/N窄带隙底电池;当衬底为不锈钢或不透明塑料时,薄膜电池的沉积顺序为N/I/P窄带隙底电池、隧穿反射层TRR2、N/I/P中间带隙中电池、隧穿反射层TRR1和N/I/P宽带隙顶电池。
CN201410719769.9A 2014-12-03 2014-12-03 一种基于隧穿反射层的高效硅基薄膜多结太阳电池 Expired - Fee Related CN104409526B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410719769.9A CN104409526B (zh) 2014-12-03 2014-12-03 一种基于隧穿反射层的高效硅基薄膜多结太阳电池

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410719769.9A CN104409526B (zh) 2014-12-03 2014-12-03 一种基于隧穿反射层的高效硅基薄膜多结太阳电池

Publications (2)

Publication Number Publication Date
CN104409526A CN104409526A (zh) 2015-03-11
CN104409526B true CN104409526B (zh) 2017-01-04

Family

ID=52647139

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410719769.9A Expired - Fee Related CN104409526B (zh) 2014-12-03 2014-12-03 一种基于隧穿反射层的高效硅基薄膜多结太阳电池

Country Status (1)

Country Link
CN (1) CN104409526B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106449848B (zh) * 2016-10-28 2017-09-29 上海空间电源研究所 一种含有复合多光子腔的多结太阳电池
CN109885934B (zh) * 2019-02-21 2024-01-09 云南师范大学 多结太阳电池子结分析方法、装置和电子设备

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102217080A (zh) * 2008-11-19 2011-10-12 纽沙泰尔大学 多结光电器件及其生产方法
CN102983204A (zh) * 2012-12-18 2013-03-20 深圳市创益科技发展有限公司 一种三结叠层薄膜太阳能电池及其制造方法
CN104025307A (zh) * 2012-01-04 2014-09-03 Tel太阳能公司 薄膜太阳能电池中的中间反射结构

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110007927A (ko) * 2009-07-17 2011-01-25 삼성전자주식회사 박막형 태양 전지 및 그 제조 방법

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102217080A (zh) * 2008-11-19 2011-10-12 纽沙泰尔大学 多结光电器件及其生产方法
CN104025307A (zh) * 2012-01-04 2014-09-03 Tel太阳能公司 薄膜太阳能电池中的中间反射结构
CN102983204A (zh) * 2012-12-18 2013-03-20 深圳市创益科技发展有限公司 一种三结叠层薄膜太阳能电池及其制造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
硅基薄膜叠层太阳能电池中间层的光学设计与计算;涂晔等;《光学学报》;20140630;第34卷(第6期);1-4 *

Also Published As

Publication number Publication date
CN104409526A (zh) 2015-03-11

Similar Documents

Publication Publication Date Title
CN101814553B (zh) 光辅助方法制备铜铟镓硒薄膜太阳电池光吸收层
CN104094418A (zh) 硅基太阳能电池的钝化薄膜堆叠
CN105185851A (zh) 一种背面钝化太阳能电池及其制备方法
JP2012186415A (ja) 光電変換素子の製造方法、光電変換素子およびタンデム型光電変換素子
CN104409526B (zh) 一种基于隧穿反射层的高效硅基薄膜多结太阳电池
CN104716261A (zh) 一种吸收光谱互补的硅薄膜/有机叠层薄膜太阳能电池
JP2009176927A (ja) 太陽電池の製造方法
CN108550644B (zh) 一种半叠层柔性硅基薄膜太阳能电池及其制备方法
CN103078001A (zh) 硅基薄膜叠层太阳能电池的制造方法
JP2007258537A (ja) 光電変換装置及びその製造方法
Bin Mohd Zulkifly et al. Impact of bilayer structures on the surface passivation quality of high‐rate‐sputtered hydrogenated amorphous silicon for silicon heterojunction solar cells
CN102157596B (zh) 一种势垒型硅基薄膜半叠层太阳电池
CN104465799A (zh) 一种晶体硅太阳能电池及其制备方法
CN104319306A (zh) 一种高效叠层薄膜太阳电池及其制备方法
CN202749383U (zh) 彩色半透明分光非晶硅薄膜太阳能电池
CN102938430B (zh) 包含中间层的柔性衬底硅基多结叠层太阳电池及其制造方法
CN116322072A (zh) 一种半透明钙钛矿太阳电池制备方法
CN104319295B (zh) 一种硅基薄膜叠层太阳电池隧穿反射层的制备方法
CN102157594B (zh) 一种超晶格量子阱太阳电池及其制备方法
Myong Recent patent issues on intermediate reflectors for high efficiency thin-film silicon photovoltaic devices
Chowdhury et al. Performance improvement of amorphous silicon solar cell by SiOx: H based multiple antireflection coatings
Schropp Amorphous and microcrystalline silicon solar cells
CN101707218B (zh) 一种共极型薄膜太阳电池的制备方法
CN104393120B (zh) 非晶硅锗薄膜太阳电池顶电池p型层的制备方法及用途
CN202996852U (zh) 一种采用新型中间层的叠层太阳能电池

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20170104

Termination date: 20171203