CN104398263B - 一种基于近似熵和互近似熵的帕金森患者震颤症状量化评测方法 - Google Patents
一种基于近似熵和互近似熵的帕金森患者震颤症状量化评测方法 Download PDFInfo
- Publication number
- CN104398263B CN104398263B CN201410833652.3A CN201410833652A CN104398263B CN 104398263 B CN104398263 B CN 104398263B CN 201410833652 A CN201410833652 A CN 201410833652A CN 104398263 B CN104398263 B CN 104398263B
- Authority
- CN
- China
- Prior art keywords
- mrow
- data
- tremor
- msub
- thumb
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 206010044565 Tremor Diseases 0.000 title claims abstract description 439
- 238000000034 method Methods 0.000 title claims abstract description 51
- 208000018737 Parkinson disease Diseases 0.000 title claims abstract description 22
- 208000024891 symptom Diseases 0.000 title claims abstract description 21
- 238000012549 training Methods 0.000 claims abstract description 16
- 238000012360 testing method Methods 0.000 claims abstract description 15
- 238000004364 calculation method Methods 0.000 claims abstract description 14
- 238000011156 evaluation Methods 0.000 claims abstract description 6
- 238000010276 construction Methods 0.000 claims abstract 3
- 210000003813 thumb Anatomy 0.000 claims description 132
- 210000003811 finger Anatomy 0.000 claims description 102
- 230000009471 action Effects 0.000 claims description 39
- 210000005224 forefinger Anatomy 0.000 claims description 34
- 206010073211 Postural tremor Diseases 0.000 claims description 24
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 claims description 12
- 229910052744 lithium Inorganic materials 0.000 claims description 12
- 230000008569 process Effects 0.000 claims description 11
- 206010072413 Action tremor Diseases 0.000 claims description 9
- 238000001914 filtration Methods 0.000 claims description 4
- 210000004247 hand Anatomy 0.000 claims description 4
- 230000001133 acceleration Effects 0.000 claims description 3
- 210000000689 upper leg Anatomy 0.000 claims description 3
- 230000004069 differentiation Effects 0.000 claims 2
- 239000012141 concentrate Substances 0.000 claims 1
- 238000003780 insertion Methods 0.000 claims 1
- 230000037431 insertion Effects 0.000 claims 1
- 238000012795 verification Methods 0.000 abstract description 10
- 238000011158 quantitative evaluation Methods 0.000 abstract description 7
- 238000007781 pre-processing Methods 0.000 abstract 1
- 238000013145 classification model Methods 0.000 description 12
- 238000012706 support-vector machine Methods 0.000 description 12
- 206010071390 Resting tremor Diseases 0.000 description 7
- 230000035945 sensitivity Effects 0.000 description 7
- 238000002567 electromyography Methods 0.000 description 5
- 238000005516 engineering process Methods 0.000 description 5
- 238000003909 pattern recognition Methods 0.000 description 4
- 230000006378 damage Effects 0.000 description 3
- 238000002790 cross-validation Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 210000003414 extremity Anatomy 0.000 description 2
- 230000007659 motor function Effects 0.000 description 2
- 230000002085 persistent effect Effects 0.000 description 2
- 238000005070 sampling Methods 0.000 description 2
- 230000003068 static effect Effects 0.000 description 2
- 208000024827 Alzheimer disease Diseases 0.000 description 1
- 206010006100 Bradykinesia Diseases 0.000 description 1
- 208000024172 Cardiovascular disease Diseases 0.000 description 1
- 206010017577 Gait disturbance Diseases 0.000 description 1
- 208000006083 Hypokinesia Diseases 0.000 description 1
- 208000002740 Muscle Rigidity Diseases 0.000 description 1
- 208000002193 Pain Diseases 0.000 description 1
- 206010033799 Paralysis Diseases 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 210000000617 arm Anatomy 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 208000026106 cerebrovascular disease Diseases 0.000 description 1
- 230000002526 effect on cardiovascular system Effects 0.000 description 1
- 230000002996 emotional effect Effects 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 210000002414 leg Anatomy 0.000 description 1
- 230000003902 lesion Effects 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 230000004630 mental health Effects 0.000 description 1
- 238000002324 minimally invasive surgery Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 210000003205 muscle Anatomy 0.000 description 1
- 230000004770 neurodegeneration Effects 0.000 description 1
- 208000015122 neurodegenerative disease Diseases 0.000 description 1
- 230000036407 pain Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000004393 prognosis Methods 0.000 description 1
- 238000011002 quantification Methods 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 230000000638 stimulation Effects 0.000 description 1
- 238000010200 validation analysis Methods 0.000 description 1
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/103—Measuring devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
- A61B5/11—Measuring movement of the entire body or parts thereof, e.g. head or hand tremor or mobility of a limb
- A61B5/1101—Detecting tremor
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/103—Measuring devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
- A61B5/11—Measuring movement of the entire body or parts thereof, e.g. head or hand tremor or mobility of a limb
- A61B5/1126—Measuring movement of the entire body or parts thereof, e.g. head or hand tremor or mobility of a limb using a particular sensing technique
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Heart & Thoracic Surgery (AREA)
- Medical Informatics (AREA)
- Physics & Mathematics (AREA)
- Dentistry (AREA)
- Biophysics (AREA)
- Pathology (AREA)
- Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Physiology (AREA)
- Oral & Maxillofacial Surgery (AREA)
- Molecular Biology (AREA)
- Surgery (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
Abstract
Description
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410833652.3A CN104398263B (zh) | 2014-12-25 | 2014-12-25 | 一种基于近似熵和互近似熵的帕金森患者震颤症状量化评测方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410833652.3A CN104398263B (zh) | 2014-12-25 | 2014-12-25 | 一种基于近似熵和互近似熵的帕金森患者震颤症状量化评测方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN104398263A CN104398263A (zh) | 2015-03-11 |
CN104398263B true CN104398263B (zh) | 2018-02-16 |
Family
ID=52635979
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201410833652.3A Active CN104398263B (zh) | 2014-12-25 | 2014-12-25 | 一种基于近似熵和互近似熵的帕金森患者震颤症状量化评测方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN104398263B (zh) |
Families Citing this family (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20170049376A1 (en) * | 2015-08-18 | 2017-02-23 | Qualcomm Incorporated | Methods and apparatuses for detecting motion disorder symptoms based on sensor data |
CN105310695B (zh) * | 2015-11-03 | 2019-09-06 | 苏州景昱医疗器械有限公司 | 异动症评估设备 |
CA3018995A1 (en) * | 2016-03-31 | 2017-10-05 | Koninklijke Philips N.V. | Device and system for detecting muscle seizure of a subject |
US10583061B2 (en) * | 2016-09-06 | 2020-03-10 | Verily Life Sciences Llc | Tilt compensation for tremor cancellation device |
CN107157450B (zh) * | 2017-06-19 | 2020-03-31 | 中国科学院计算技术研究所 | 用于对帕金森病人的手部运动能力进行量化评估方法和系统 |
CN108968918A (zh) * | 2018-06-28 | 2018-12-11 | 北京航空航天大学 | 早期帕金森的可穿戴辅助筛查设备 |
CN109480858B (zh) * | 2018-12-29 | 2022-02-22 | 中国科学院合肥物质科学研究院 | 一种用于量化检测帕金森患者运动迟缓症状的可穿戴智能系统及方法 |
CN109965882A (zh) * | 2019-03-12 | 2019-07-05 | 南京大学 | 一种基于瞬时频率稳定性参数的帕金森病实时监测方法 |
CN110638458A (zh) * | 2019-08-26 | 2020-01-03 | 广东省人民医院(广东省医学科学院) | 一种基于步态数据的康复训练效果评估方法、装置 |
CN110522455A (zh) * | 2019-09-26 | 2019-12-03 | 安徽中医药大学 | 一种基于深度学习的wd震颤等级评估方法 |
CN110522456A (zh) * | 2019-09-26 | 2019-12-03 | 安徽中医药大学 | 一种基于深度学习的wd震颤患者病情自评估系统 |
CN111012312B (zh) * | 2019-12-25 | 2024-01-30 | 中国科学院合肥物质科学研究院 | 一种便携式帕金森病运动迟缓监测干预装置及方法 |
CN110946556B (zh) * | 2019-12-27 | 2022-07-15 | 南京信息工程大学 | 基于可穿戴式体感网的帕金森静息态震颤评估方法 |
CN111544005B (zh) * | 2020-05-15 | 2022-03-08 | 中国科学院自动化研究所 | 基于支持向量机的帕金森病人运动障碍量化及识别方法 |
CN111544006B (zh) * | 2020-05-15 | 2021-10-26 | 中国科学院自动化研究所 | 帕金森病人运动障碍量化及识别的可穿戴设备 |
CN111528842B (zh) * | 2020-05-26 | 2023-01-03 | 复嶂环洲生物科技(上海)有限公司 | 基于生理和行为指标的帕金森病症状定量化评估方法 |
CN112674762A (zh) * | 2020-12-28 | 2021-04-20 | 江苏省省级机关医院 | 一种基于可穿戴惯性传感器的帕金森震颤评估装置 |
CN112826504B (zh) * | 2021-01-07 | 2024-03-26 | 中新国际联合研究院 | 一种游戏化的帕金森症状等级评估方法及装置 |
CN113100756A (zh) * | 2021-04-15 | 2021-07-13 | 重庆邮电大学 | 一种基于Stacking的帕金森震颤检测方法 |
CN114869272A (zh) * | 2021-09-03 | 2022-08-09 | 中国人民解放军总医院 | 姿势震颤检测模型、姿势震颤检测算法、以及姿势震颤检测设备 |
CN118965082A (zh) * | 2024-09-11 | 2024-11-15 | 广东工业大学 | 一种帕金森病分类评估模型建模方法、装置、终端及介质 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101743549A (zh) * | 2007-06-07 | 2010-06-16 | 曼提斯库拉Ehf.公司 | 用于产生反映医学状态的严重程度的定量测量的系统和方法 |
CN104127187A (zh) * | 2014-08-05 | 2014-11-05 | 戴厚德 | 用于帕金森病人主要症状定量检测的可穿戴系统及方法 |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4292247B2 (ja) * | 2003-11-20 | 2009-07-08 | 堅造 赤澤 | 動作解析装置およびその利用 |
GB2487713A (en) * | 2011-01-18 | 2012-08-08 | Univ York | Signal processing method and apparatus for detecting Parkinson's disease |
CN103315744B (zh) * | 2013-07-01 | 2014-10-08 | 中国科学院合肥物质科学研究院 | 一种手部震颤检测方法 |
-
2014
- 2014-12-25 CN CN201410833652.3A patent/CN104398263B/zh active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101743549A (zh) * | 2007-06-07 | 2010-06-16 | 曼提斯库拉Ehf.公司 | 用于产生反映医学状态的严重程度的定量测量的系统和方法 |
CN104127187A (zh) * | 2014-08-05 | 2014-11-05 | 戴厚德 | 用于帕金森病人主要症状定量检测的可穿戴系统及方法 |
Also Published As
Publication number | Publication date |
---|---|
CN104398263A (zh) | 2015-03-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104398263B (zh) | 一种基于近似熵和互近似熵的帕金森患者震颤症状量化评测方法 | |
Patel et al. | A novel approach to monitor rehabilitation outcomes in stroke survivors using wearable technology | |
Rigas et al. | Assessment of tremor activity in the Parkinson’s disease using a set of wearable sensors | |
TW201918222A (zh) | 事件檢測方法及設備、房顫檢測方法和非暫時性儲存介質 | |
CN204931634U (zh) | 基于生理信息的抑郁症评估系统 | |
CN103315744A (zh) | 一种手部震颤检测方法 | |
CN114224296B (zh) | 基于可穿戴式传感装置的帕金森运动症状量化评估系统 | |
Al-Mulla et al. | Evolved pseudo-wavelet function to optimally decompose sEMG for automated classification of localized muscle fatigue | |
KR102314942B1 (ko) | 뇌 심부 자극술에서의 사용을 위한 손목 경직 평가 장치 | |
CN104771164A (zh) | 运用事件相关电位仪辅助筛查轻度认知障碍的方法 | |
CN110313900A (zh) | 一种基于深度学习对膝关节摆动信号的分类方法 | |
Terracina et al. | Real-time forecasting and classification of trunk muscle fatigue using surface electromyography | |
CN111297366B (zh) | 基于日常生活用品的辅助疾病诊断的数据处理方法和诊断装置 | |
Patel et al. | Using wearable sensors to predict the severity of symptoms and motor complications in late stage Parkinson's Disease | |
CN108962379A (zh) | 一种脑神经系统疾病的手机辅助检测系统 | |
Zhou et al. | Upper-limb functional assessment after stroke using mirror contraction: A pilot study | |
Wu et al. | Assessment of upper limb tremors in patients with Parkinson’s disease based on displacement and acceleration information | |
Miller et al. | Comparison of machine learning approaches for classifying upper extremity tasks in individuals post-stroke | |
Fegni Ndam et al. | What are the best indicators of myoelectric manifestation of fatigue? | |
Tao et al. | Activity selection to distinguish healthy people from parkinson’s disease patients using i-da | |
Lee et al. | AI-based automatic system for assessing upper-limb spasticity of patients with stroke through voluntary movement | |
Belle et al. | Frustration detection with electrocardiograph signal using wavelet transform | |
Nelson et al. | Relative efficacy of sensor modalities for estimating post-stroke motor impairment | |
Gao et al. | Temporal dynamics and physical priori multimodal network for rehabilitation physical training evaluation | |
Qin et al. | Automatic upper-extremity Brunnstrom classification for stroke survivors with a minimum number of tasks |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
CB03 | Change of inventor or designer information |
Inventor after: Cheng Nan Inventor after: Yao Zhiming Inventor after: Wang Guangjun Inventor after: Zhang Xiaodi Inventor after: Li Hongjun Inventor after: Wang Tao Inventor after: Ma Zuchang Inventor after: Zhou Xu Inventor after: Sun Yining Inventor after: Xu Shengqiang Inventor after: Zeng Qiang Inventor after: Wang Xun Inventor after: Yang Xianjun Inventor after: Han Yongzhu Inventor after: Liu Yao Inventor after: Wang Feiyue Inventor after: Tang Zheng Inventor before: Cheng Nan Inventor before: Sun Yining Inventor before: Xu Shengqiang Inventor before: Wang Xun Inventor before: Yang Xianjun Inventor before: Han Yongzhu Inventor before: Liu Yao Inventor before: Ma Zuchang Inventor before: Wang Feiyue Inventor before: Zhou Xu |
|
COR | Change of bibliographic data | ||
GR01 | Patent grant | ||
GR01 | Patent grant |