CN104390584B - 双目视觉激光标定测量装置及测量方法 - Google Patents

双目视觉激光标定测量装置及测量方法 Download PDF

Info

Publication number
CN104390584B
CN104390584B CN201410216409.7A CN201410216409A CN104390584B CN 104390584 B CN104390584 B CN 104390584B CN 201410216409 A CN201410216409 A CN 201410216409A CN 104390584 B CN104390584 B CN 104390584B
Authority
CN
China
Prior art keywords
mrow
line
msubsup
msub
image
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201410216409.7A
Other languages
English (en)
Other versions
CN104390584A (zh
Inventor
管志勇
叶剑波
郭景晶
姚东星
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BEIJING ROMTEK TECHNOLOGY AND DEVELOPMENT Co Ltd
Original Assignee
BEIJING ROMTEK TECHNOLOGY AND DEVELOPMENT Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BEIJING ROMTEK TECHNOLOGY AND DEVELOPMENT Co Ltd filed Critical BEIJING ROMTEK TECHNOLOGY AND DEVELOPMENT Co Ltd
Priority to CN201410216409.7A priority Critical patent/CN104390584B/zh
Publication of CN104390584A publication Critical patent/CN104390584A/zh
Application granted granted Critical
Publication of CN104390584B publication Critical patent/CN104390584B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Image Processing (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

双目视觉激光标定测量装置及测量方法的测试平台上安装有刻度标尺和直线导轨,测试模块和被测物模块由工装固定在测试平台的直线导轨上方,刻度标尺固定在两直线导轨中间位置,并与直线导轨平行;测试模块由两台相机、一个一字型线激光器和步进电机组成,其中相机固定在与直线导轨连接的测试模块工装上,并与被测物之间呈角度安装,一字型线激光器由夹具固定,末端的轴承与测试模块工装连接,并安装在相机的视场后方,直线电机的轴承上连接有凸轮;其主要步骤如下:第一步:一字型线激光器安装角度与相机视场位置确定;第二步:光线投射图像采集;第三步:光线中心线提取;第四步:拟合光线中心线求内壁中心坐标;第五步:重复测量,计算系统精度。

Description

双目视觉激光标定测量装置及测量方法
技术领域
基于机器视觉和激光测量的测试测控技术,尤其针对基于双目视觉的激光标定测量领域。
背景技术
非接触式测量技术在日常应用和工业生产中,已经成为不可或缺的测量方式。非接触式测量不但能够在空间狭小、辐射、高低温等特殊环境的情况下进行,而且能够排除接触测量对柔性物体尺寸、位置等被测参数的人为和机械磨损带来的误差,有效的提高了测量精度。非接触测量技术主要采用电子计算机、工业相机等设备对被测物进行图像采集、图像处理、模式识别、距离计算等测量,相比于传统接触测量技术,非接触测量采用高性能的成像系统和计算系统对被测物的相关尺寸、位置参数进行自动测量,因而其测量速度更快,平均测量成本更低,适用性更强。然而非接触测量技术的实际应用还并不成熟,应用方式也还停留在起步阶段,实现规模化和产品化还有一段距离。
本发明提供的是一款双目视觉激光标定测量装置及测量方法,它的目的是解决封闭环境下,物件内壁测量困难,接触式测量无法实现,通用非接触式测量方式又存在测量精度低下,测量过程复杂,测量成本过高的问题。
发明内容
为了解决上述中提出的问题,本发明主要测量圆孔内壁的周长、确定圆心的空间位置。其技术方案如下:双目视觉激光标定测量装置及测量方法由测试平台、被测模块、测试模块、被测模块工装、直线导轨、刻度标尺、相机采集模块、一字型线激光器、步进电机和测试模块工装组成,其特征在于:测试平台上安装有刻度标尺和直线导轨,测试模块和被测物模块由被测模块工装固定在测试平台的直线导轨上方,所述刻度标尺固定在两直线导轨中间位置,并与直线导轨平行。
所述的测试模块由至少两台相机、至少一个一字型线激光器和步进电机组成,其中相机固定在与直线导轨连接的测试模块工装上,并与被测物之间呈角度安装,一字型线激光器由夹具固定,直线导轨末端的轴承与测试模块工装连接,并安装在相机的视场后方,所述步进电机的轴承上连接有凸轮;
所述双目视觉激光标定测量装置及测量方法其特征在于,主要步骤如下:
第一步:一字型线激光器安装角度与相机视场位置确定;
第二步:光线投射图像采集;
第三步:光线中心线提取;
第四步:拟合光线中心线求内壁中心坐标;
第五步:重复测量,计算系统精度;
所述第一步中,一字型线激光器安装角度与相机视场位置确定:是指测量前期需要针对被测模块的安装位置将一字型线激光器投影位置和相机的视场范围调整到合适位置。
所述第二步中,光线投射图像采集:是指在相机与一字型线激光器同时工作时,步进电机驱动一字型线激光器在恒定的范围内做往复运动,相机会将一字型线激光器在被测物内径投射的光线进行采集和记录。
所述第三步中,光线中心线提取:是指一字型线激光器出射的线激光投影到被测物内壁会形成一段光亮的圆弧。由于图像中圆弧有一定的宽度,为了保证测量精度,需要利用相关图像处理算法对圆弧的光线中心线进行提取。算法和数学公式如下:
a:原始图像经过阈值分割,面积特征提取得到激光圆弧目标域的二值化图像;
b:二值化图像经过距离变换得到灰度按照一定特性分布的灰度图像G0
距离变换算法如下:圆弧目标域的二值图像可以表示成一个二维数组A[M,N]=a(x,y),其中M、N分别代表图像的行高和列宽值,a(x,y)代表图像坐标(x,y)处的灰度值,其中,a(x,y)=1代表目标域,a(x,y)=0代表背景点。
设F(i,j)为目标像素集合,B(m,n)为背景像素集合,距离变换的数学表达为:
其中目标像素坐标(i,j)∈F(i,j),背景像素坐标(m,n)∈B(m,n)
背景域和目标域交界的图像边缘处背景坐标和目标坐标的欧式距离较短,灰度值较小;而处于目标域中心的像素距离背景域欧氏距离最大,灰度值最大。距离变换后的图像G0灰度值沿着边缘处向中心处逐渐增大,形成了一幅目标中心线位置最亮的灰度图像G0
c:令G0(x,y)表示二维图像G0在(x,y)坐标下的灰度值,像素点坐标x,y可以看做三维坐标系下XOY平面的横纵坐标值,灰度值G0(x,y)可以看做三维坐标系的高度z值,因此可以将二维图像G0拉伸成为三维曲面,曲面坡顶脊线即为图像中心线。
二维图像灰度的变化可以用此三维曲面的曲率表示。曲面在(x,y)坐标下的曲率可以用Hessian矩阵来定义。
式中:Ixx(x,y),Ixy(x,y),Iyy(x,y)表示图像的二阶方向导数。
Hessian矩阵的特征值和特征向量表示了图像的本质特征。其中,幅值最大的特征值对应的特征向量代表三维曲面曲率最大的方向,幅值最小的特征值对应的特征向量代表曲率最小的方向。对于二维图像,曲率最小的方向也就是图像的中心线,其Hessian矩阵H(x,y)为2×2的实对称矩阵,因而具有2个实特征值。较小的特征值对应的特征向量P(x,y)即为图像中心线的集合。
所述第四步中,拟合光线中心线求内壁中心坐标:是指将第三步提取到的圆弧的光线中心线拟合成闭合的椭圆,通过计算得到圆的中心位置、直径、周长等值,其中圆弧的圆心便是被测模块的圆心。图像处理算法中,圆弧的光线中心线由一系列的离散点P(Xi,Yi)表示,拟合的计算公式如下:
C=(N∑Xi 2-∑Xi∑Xi)
D=(N∑XiYi-∑Xi∑Yi)
G=(N∑Yi 2-∑Yi∑Yi)
可解得:
Ca+Db+E=0
Da+Gb+H=0
a=HD-EG/CG-D2
b=HG-ED/D2-GC
得A、B、R的估计拟合值:
A=a/-2
B=b/-2
所述第五步中,重复测量,计算系统精度:是指不断改变一字型线激光器的摆动角度重复1-4步测量圆弧的中心点坐标,通过测量结果的统计和分析验证整个测量系统的稳定性和测量精度。
优选的,为了进一步的提高测量精度,配合工装的调整,工装底座下分别安装有刻度标尺。
附图说明
下面结合附图和实施列对本发明进一步说明。
图1是本发明的平台整体示意图;
图2是本发明的测试模块结构示意图;
图3是本发明的激光束投影示意图;
图4是本发明的激光束投影效果示意图;
其中:测试平台1、被测模块2、测试模块3、被测模块工装4、直线导轨5、刻度标尺6、相机采集模块7、一字型线激光器8、步进电机9、测试模块工装10、一字型线激光器投射线11、光线12、光线中心线内径13、光线中心线外径14、光线中心线15。
具体实施方式
为了使本发明所解决的技术问题、技术方案及有益效果更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
如图1为本发明的平台整体示意图;
如图2为本发明的测试模块结构示意图;
如图3为本发明的激光束投影示意图;
如图4为本发明的激光束投影效果示意图;
结合附图,双目视觉激光标定测量装置及测量方法由测试平台1、被测模块2、测试模块3、被测模块工装4、直线导轨5、刻度标尺6、相机采集模块7、一字型线激光器8、步进电机9、测试模块工装10组成,其特征在于:测试平台1上安装有刻度标尺6和直线导轨5,测试模块3和被测模块2由被测模块工装4固定在测试平台1的直线导轨5上方,所述刻度标尺6固定在两直线导轨5中间位置,并与直线导轨5平行。
所述的测试模块3由至少两台相机、至少一个一字型线激光器8和步进电机9组成,其中相机固定在与直线导轨5连接的测试模块工装10上,并与被测物之间呈角度安装,一字型线激光器8由夹具固定,直线导轨5末端的轴承与测试模块工装10连接,并安装在相机的视场后方,所述步进电机的轴承上连接有凸轮;
所述双目视觉激光标定测量装置及测量方法其特征在于,主要步骤如下:
第一步:一字型线激光器8安装角度与相机视场位置确定;
第二步:光线12投射图像采集;
第三步:光线中心线15提取;
第四步:拟合光线中心线15求内壁中心坐标;
第五步:重复测量,计算系统精度;
所述第一步中,一字型线激光器8安装角度与相机视场位置确定:是指测量前期需要针对被测模块2的安装位置将一字型线激光器8投影位置和相机的视场范围调整到合适位置。
所述第二步中,光线12投射图像采集:是指在相机与一字型线激光器8同时工作时,步进电机9驱动一字型线激光器在恒定的范围内做往复运动,相机会将一字型线激光器8在被测物内径投射的光线12进行采集和记录。
所述第三步中,光线中心线15提取:是指一字型线激光器出射的线激光投影到被测物内壁会形成一段光亮的圆弧。由于图像中圆弧有一定的宽度,为了保证测量精度,需要利用相关图像处理算法对圆弧的光线中心线15进行提取。算法和数学公式如下:
a:原始图像经过阈值分割,面积特征提取得到激光圆弧目标域的二值化图像;
b:二值化图像经过距离变换得到灰度按照一定特性分布的灰度图像G0
距离变换算法如下:圆弧目标域的二值图像可以表示成一个二维数组A[M,N]=a(x,y),其中M、N分别代表图像的行高和列宽值,a(x,y)代表图像坐标(x,y)处的灰度值,其中,a(x,y)=1代表目标域,a(x,y)=0代表背景点。
设F(i,j)为目标像素集合,B(m,n)为背景像素集合,距离变换的数学表达为:
其中目标像素坐标(i,j)∈F(i,j),背景像素坐标(m,n)∈B(m,n)
背景域和目标域交界的图像边缘处背景坐标和目标坐标的欧式距离较短,灰度值较小;而处于目标域中心的像素距离背景域欧氏距离最大,灰度值最大。距离变换后的图像G0灰度值沿着边缘处向中心处逐渐增大,形成了一幅目标中心线位置最亮的灰度图像G0
c:令G0(x,y)表示二维图像G0在(x,y)坐标下的灰度值,像素点坐标x,y可以看做三维坐标系下XOY平面的横纵坐标值,灰度值G0(x,y)可以看做三维坐标系的高度z值,因此可以将二维图像G0拉伸成为三维曲面,曲面坡顶脊线即为图像中心线。
二维图像灰度的变化可以用此三维曲面的曲率表示。曲面在(x,y)坐标下的曲率可以用Hessian矩阵来定义。
式中:Ixx(x,y),Ixy(x,y),Iyy(x,y)表示图像的二阶方向导数。
Hessian矩阵的特征值和特征向量表示了图像的本质特征。其中,幅值最大的特征值对应的特征向量代表三维曲面曲率最大的方向,幅值最小的特征值对应的特征向量代表曲率最小的方向。对于二维图像,曲率最小的方向也就是图像的中心线,其Hessian矩阵H(x,y)为2×2的实对称矩阵,因而具有2个实特征值。较小的特征值对应的特征向量P(x,y)即为图像中心线的集合。
所述第四步中,拟合光线中心线15求内壁中心坐标:是指将第三步提取到的圆弧的光线中心线15拟合成闭合的椭圆,通过计算得到圆的中心位置、直径、周长等值,其中圆弧的圆心便是被测模块的圆心。图像处理算法中,圆弧的光线中心线由一系列的离散点P(Xi,Yi)表示,拟合的计算公式如下:
C=(N∑Xi 2-∑Xi∑Xi)
D=(N∑XiYi-∑Xi∑Yi)
G=(N∑Yi 2-∑Yi∑Yi)
可解得:
Ca+Db+E=0
Da+Gb+H=0
a=HD-EG/CG-D2
b=HG-ED/D2-GC
得A、B、R的估计拟合值:
A=a/-2
B=b/-2
所述第五步中,重复测量,计算系统精度:是指不断改变一字型线激光器的摆动角度重复1-4步测量圆弧的中心点坐标,通过测量结果的统计和分析验证整个测量系统的稳定性和测量精度。
具体实施方式:如上述步骤所述:一字型线激光器投射线11在投射到被测模块2上如图3所示,会得到光线12如图4所示的圆弧段,取得圆弧段的中心线的位置便能够有效的求得被测模块2圆的各值。
以上通过具体的和优选的实施例详细的描述了本发明,但本领域技术人员应该明白,本发明并不局限于以上所述实施例,凡在本发明的精神和原则之内,所作的任何修改、等同替换等,均应包含在本发明的保护范围之内。

Claims (4)

1.一种基于双目视觉激光标定测量装置的双目视觉激光标定测量方法,所述双目视觉激光标定测量装置由测试平台、被测模块、测试模块、被测模块工装、直线导轨、刻度标尺、相机采集模块、一字型线激光器、步进电机和测试模块工装组成,测试平台上安装有刻度标尺和直线导轨,测试模块和被测物模块由被测模块工装固定在测试平台的直线导轨上方,所述刻度标尺固定在两直线导轨中间位置,并与直线导轨平行;所述的测试模块由至少两台相机、至少一个一字型线激光器和步进电机组成,其中相机固定在与直线导轨连接的测试模块工装上,并与被测物之间呈角度安装,一字型线激光器由夹具固定,直线导轨末端的轴承与测试模块工装连接,并安装在相机的视场后方,所述步进电机的轴承上连接有凸轮;其特征在于,所述基于双目视觉激光标定测量装置的双目视觉激光标定测量方法主要步骤如下:
第一步:一字型线激光器安装角度与相机视场位置确定;
第二步:光线投射图像采集;
第三步:光线中心线提取;
第四步:拟合光线中心线求内壁中心坐标;
第五步:重复测量,计算系统精度;
所述第三步中,光线中心线提取:是指一字型线激光器出射的线激光投影到被测物内壁会形成一段光亮的圆弧,由于图像中圆弧有一定的宽度,为了保证测量精度,需要利用相关图像处理算法对圆弧的光线中心线进行提取,算法和数学公式如下:
a:原始图像经过阈值分割,面积特征提取得到激光圆弧目标域的二值化图像;
b:二值化图像经过距离变换得到灰度按照一定特性分布的灰度图像G0
距离变换算法如下:圆弧目标域的二值图像表示成一个二维数组A[M,N]=a(x,y),其中M、N分别代表图像的行高和列宽值,a(x,y)代表图像坐标(x,y)处的灰度值,其中,a(x,y)=1代表目标域,a(x,y)=0代表背景点,
设F(i,j)为目标像素集合,B(m,n)为背景像素集合,距离变换的数学表达为:
<mrow> <mi>G</mi> <mo>=</mo> <mo>{</mo> <mrow> <mo>(</mo> <mi>i</mi> <mo>,</mo> <mi>j</mi> <mo>)</mo> </mrow> <mo>|</mo> <mi>g</mi> <mrow> <mo>(</mo> <mi>i</mi> <mo>,</mo> <mi>j</mi> <mo>)</mo> </mrow> <mo>=</mo> <mi>m</mi> <mi>i</mi> <mi>n</mi> <mrow> <mo>(</mo> <msqrt> <mrow> <msup> <mrow> <mo>(</mo> <mi>i</mi> <mo>-</mo> <mi>m</mi> <mo>)</mo> </mrow> <mn>2</mn> </msup> <mo>+</mo> <msup> <mrow> <mo>(</mo> <mi>j</mi> <mo>-</mo> <mi>n</mi> <mo>)</mo> </mrow> <mn>2</mn> </msup> </mrow> </msqrt> <mo>)</mo> </mrow> <mo>}</mo> </mrow>
其中目标像素坐标(i,j)∈F(i,j),背景像素坐标(m,n)∈B(m,n)
背景域和目标域交界的图像边缘处背景坐标和目标坐标的欧式距离较短,灰度值较小;而处于目标域中心的像素距离背景域欧氏距离最大,灰度值最大,距离变换后的图像G灰度值沿着边缘处向中心处逐渐增大,形成了一幅目标中心线位置最亮的灰度图像G0
c:令G0(x,y)表示二维图像G0在(x,y)坐标下的灰度值,像素点坐标x,y看做三维坐标系下XOY平面的横纵坐标值,灰度值G0(x,y)看做三维坐标系的高度z值,因此将二维图像G0拉伸成为三维曲面,曲面坡顶脊线即为图像中心线,
二维图像灰度的变化用此三维曲面的曲率表示,曲面在(x,y)坐标下的曲率用Hessian矩阵来定义,
<mrow> <mi>H</mi> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <mrow> <msub> <mi>I</mi> <mrow> <mi>x</mi> <mi>x</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>)</mo> </mrow> </mrow> </mtd> <mtd> <mrow> <msub> <mi>I</mi> <mrow> <mi>x</mi> <mi>y</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>I</mi> <mrow> <mi>x</mi> <mi>y</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>)</mo> </mrow> </mrow> </mtd> <mtd> <mrow> <msub> <mi>I</mi> <mrow> <mi>y</mi> <mi>y</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> </mtable> </mfenced> </mrow>
式中:Ixx(x,y),Ixy(x,y),Iyy(x,y)表示图像的二阶方向导数;
Hessian矩阵的特征值和特征向量表示了图像的本质特征,其中,幅值最大的特征值对应的特征向量代表三维曲面曲率最大的方向,幅值最小的特征值对应的特征向量代表曲率最小的方向,对于二维图像,曲率最小的方向也就是图像的中心线,其Hessian矩阵H(x,y)为2×2的实对称矩阵,因而具有2个实特征值,较小的特征值对应的特征向量P(x,y)即为图像中心线的集合;
所述第四步中,拟合光线中心线求内壁中心坐标:是指将第三步提取到的圆弧的光线中心线拟合成闭合的椭圆,通过计算得到圆的中心位置、直径、周长,其中圆弧的圆心便是被测模块的圆心,图像处理算法中,圆弧的光线中心线由一系列的离散点P(Xi,Yi)表示,拟合的计算公式如下:
C=(N∑Xi 2-∑Xi∑Xi)
D=(N∑XiYi-∑Xi∑Yi)
<mrow> <mi>E</mi> <mo>=</mo> <msubsup> <mi>N&amp;Sigma;X</mi> <mi>i</mi> <mn>3</mn> </msubsup> <mo>+</mo> <msub> <mi>N&amp;Sigma;X</mi> <mi>i</mi> </msub> <msubsup> <mi>Y</mi> <mi>i</mi> <mn>2</mn> </msubsup> <mo>-</mo> <mi>&amp;Sigma;</mi> <mo>(</mo> <mrow> <msubsup> <mi>X</mi> <mi>i</mi> <mn>2</mn> </msubsup> <mo>+</mo> <msubsup> <mi>Y</mi> <mi>i</mi> <mn>2</mn> </msubsup> </mrow> <mo>)</mo> <msub> <mi>&amp;Sigma;X</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow>
G=(N∑Yi 2-∑Yi∑Yi)
<mrow> <mi>H</mi> <mo>=</mo> <msubsup> <mi>N&amp;Sigma;X</mi> <mi>i</mi> <mn>2</mn> </msubsup> <mo>+</mo> <msubsup> <mi>N&amp;Sigma;Y</mi> <mi>i</mi> <mn>3</mn> </msubsup> <mo>-</mo> <mi>&amp;Sigma;</mi> <mo>(</mo> <mrow> <msubsup> <mi>X</mi> <mi>i</mi> <mn>2</mn> </msubsup> <mo>+</mo> <msubsup> <mi>Y</mi> <mi>i</mi> <mn>2</mn> </msubsup> </mrow> <mo>)</mo> <msub> <mi>&amp;Sigma;Y</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow>
可解得:
Ca+Db+E=0
Da+Gb+H=0
a=HD-EG/CG-D2
b=HG-ED/D2-GC
<mrow> <mi>C</mi> <mo>=</mo> <mo>-</mo> <mi>&amp;Sigma;</mi> <mrow> <mo>(</mo> <msubsup> <mi>X</mi> <mi>i</mi> <mn>2</mn> </msubsup> <mo>+</mo> <msubsup> <mi>Y</mi> <mi>i</mi> <mn>2</mn> </msubsup> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>a&amp;Sigma;X</mi> <mi>i</mi> </msub> <mo>+</mo> <msub> <mi>b&amp;Sigma;Y</mi> <mi>i</mi> </msub> <mo>/</mo> <mi>N</mi> </mrow>
得A、B、R的估计拟合值:
A=a/-2
B=b/-2
<mrow> <mi>R</mi> <mo>=</mo> <mn>1</mn> <mo>/</mo> <mn>2</mn> <msqrt> <mrow> <msup> <mi>a</mi> <mn>2</mn> </msup> <mo>+</mo> <msup> <mi>b</mi> <mn>2</mn> </msup> <mo>-</mo> <mn>4</mn> <mi>C</mi> </mrow> </msqrt> <mo>.</mo> </mrow>
2.根据权利要求1所述的基于双目视觉激光标定测量装置的双目视觉激光标定测量方法,其特征在于:所述第一步中,一字型线激光器安装角度与相机视场位置确定:是指测量前期需要针对被测模块的安装位置将一字型线激光器投影位置和相机的视场范围调整到合适位置。
3.根据权利要求1所述的基于双目视觉激光标定测量装置的双目视觉激光标定测量方法,其特征在于:所述第二步中,光线投射图像采集:是指在相机与一字型线激光器同时工作时,步进电机驱动一字型线激光器在恒定的范围内做往复运动,相机会将一字型线激光器在被测物内径投射的光线进行采集和记录。
4.根据权利要求1所述的基于双目视觉激光标定测量装置的双目视觉激光标定测量方法,其特征在于:所述第五步中,重复测量,计算系统精度:是指不断改变一字型线激光器的摆动角度,重复1-4步测量圆弧的中心点坐标,通过测量结果的统计和分析验证整个测量系统的稳定性和测量精度。
CN201410216409.7A 2014-05-22 2014-05-22 双目视觉激光标定测量装置及测量方法 Active CN104390584B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410216409.7A CN104390584B (zh) 2014-05-22 2014-05-22 双目视觉激光标定测量装置及测量方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410216409.7A CN104390584B (zh) 2014-05-22 2014-05-22 双目视觉激光标定测量装置及测量方法

Publications (2)

Publication Number Publication Date
CN104390584A CN104390584A (zh) 2015-03-04
CN104390584B true CN104390584B (zh) 2018-04-06

Family

ID=52608519

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410216409.7A Active CN104390584B (zh) 2014-05-22 2014-05-22 双目视觉激光标定测量装置及测量方法

Country Status (1)

Country Link
CN (1) CN104390584B (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105225224B (zh) * 2015-08-30 2017-12-26 大连理工大学 提高景深测量精度的相机布局与标定方法
CN107505324B (zh) * 2017-08-10 2020-06-16 李�杰 基于双目协同激光的3d扫描装置及扫描方法
CN108180838A (zh) * 2017-12-14 2018-06-19 南京弹簧有限公司 一种钢管拉槽边缘距离的测量方法
CN109544679B (zh) * 2018-11-09 2023-04-18 深圳先进技术研究院 管道内壁的三维重建方法
CN112197746B (zh) * 2020-09-16 2022-06-21 上海建工四建集团有限公司 一种清水砖墙表面风化程度智能检测设备及检测方法
CN115797332B (zh) * 2023-01-29 2023-05-30 高视科技(苏州)股份有限公司 基于实例分割的目标物抓取方法和设备
CN117589063B (zh) * 2024-01-18 2024-05-14 宁德时代新能源科技股份有限公司 尺寸检测方法及尺寸检测系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1595054A (zh) * 2004-07-14 2005-03-16 天津大学 双目线结构光传感器一致性精确标定方法及其实施装置
CN1971206A (zh) * 2006-12-20 2007-05-30 北京航空航天大学 基于一维靶标的双目视觉传感器校准方法
CN101135550A (zh) * 2007-10-08 2008-03-05 天津大学 基于线结构光视觉传感器实现空间圆孔几何参数测量方法
EP2402710A2 (de) * 2007-08-10 2012-01-04 Leica Geosystems AG Verfahren und Vermessungssystem zur berührungslosen Koordinatenmessung an einer Objektoberfläche
CN103438798A (zh) * 2013-08-27 2013-12-11 北京航空航天大学 主动双目视觉系统全局标定方法
CN103615980A (zh) * 2013-12-13 2014-03-05 北京理工大学 一种板件上圆孔参数的测量方法及系统

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6361903A (ja) * 1986-09-03 1988-03-18 Nissan Motor Co Ltd 三次元座標変換装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1595054A (zh) * 2004-07-14 2005-03-16 天津大学 双目线结构光传感器一致性精确标定方法及其实施装置
CN1971206A (zh) * 2006-12-20 2007-05-30 北京航空航天大学 基于一维靶标的双目视觉传感器校准方法
EP2402710A2 (de) * 2007-08-10 2012-01-04 Leica Geosystems AG Verfahren und Vermessungssystem zur berührungslosen Koordinatenmessung an einer Objektoberfläche
CN101135550A (zh) * 2007-10-08 2008-03-05 天津大学 基于线结构光视觉传感器实现空间圆孔几何参数测量方法
CN103438798A (zh) * 2013-08-27 2013-12-11 北京航空航天大学 主动双目视觉系统全局标定方法
CN103615980A (zh) * 2013-12-13 2014-03-05 北京理工大学 一种板件上圆孔参数的测量方法及系统

Also Published As

Publication number Publication date
CN104390584A (zh) 2015-03-04

Similar Documents

Publication Publication Date Title
CN104390584B (zh) 双目视觉激光标定测量装置及测量方法
CN103499297B (zh) 一种基于ccd的高精度测量方法
CN107167093B (zh) 一种激光线扫描与阴影莫尔的复合式测量系统及测量方法
CN105783773A (zh) 一种线结构光视觉传感器的数值标定方法
CN103575227A (zh) 一种基于数字散斑的视觉引伸计实现方法
CN107167073A (zh) 一种线阵结构光三维快速测量装置及其测量方法
CN104331896A (zh) 一种基于深度信息的系统标定方法
CN102175182A (zh) 结构光三维测量装置及其完整点云数据的获取方法
CN104408762A (zh) 利用单目和二维平台获取物体图像信息及三维模型的方法
CN1971206A (zh) 基于一维靶标的双目视觉传感器校准方法
CN107588723B (zh) 一种基于两步法的高速动目标上圆形标记漏点检测方法
CN104236498A (zh) 一种道岔钢轨件端面尺寸的测量方法
CN105222727A (zh) 线阵ccd相机成像平面与工作台平行度的测量方法和系统
CN107516324A (zh) 一种基于光条几何特征突变的目标边界提取方法
CN106500626A (zh) 一种手机立体成像方法及三维成像手机
CN106500625A (zh) 一种远心立体视觉测量装置及其应用于物体三维形貌微米级精度测量的方法
CN108592816A (zh) 一种用于大尺寸表面的三维测量装置和方法
CN111637834A (zh) 一种三维数据测量装置及方法
CN113119129A (zh) 一种基于标准球的单目测距定位方法
Tian et al. An experimental evaluation method for the performance of a laser line scanning system with multiple sensors
CN112525106B (zh) 基于三相机协同激光的3d探测方法及装置
CN209342062U (zh) 3d视觉引导拆垛测量系统
CN107036555A (zh) 一种交叉光轴光栅投影测量仿真系统及其实现方法
CN106556343A (zh) 一种风力发电装备轮毂特征参数快速测量系统及方法
CN112414316B (zh) 一种应变片敏感栅尺寸参数测量方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant