CN104374697B - 一种磁镊和光镊测控系统 - Google Patents

一种磁镊和光镊测控系统 Download PDF

Info

Publication number
CN104374697B
CN104374697B CN201410627408.1A CN201410627408A CN104374697B CN 104374697 B CN104374697 B CN 104374697B CN 201410627408 A CN201410627408 A CN 201410627408A CN 104374697 B CN104374697 B CN 104374697B
Authority
CN
China
Prior art keywords
laser
processing unit
central processing
sample cell
magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201410627408.1A
Other languages
English (en)
Other versions
CN104374697A (zh
Inventor
肖波涛
符青山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Huazhong University of Science and Technology
Original Assignee
Huazhong University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huazhong University of Science and Technology filed Critical Huazhong University of Science and Technology
Priority to CN201410627408.1A priority Critical patent/CN104374697B/zh
Publication of CN104374697A publication Critical patent/CN104374697A/zh
Application granted granted Critical
Publication of CN104374697B publication Critical patent/CN104374697B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Microscoopes, Condenser (AREA)

Abstract

本发明公开了一种磁镊和光镊测控系统,属于显微技术领域。所述磁镊和光镊测控系统包括样品动作装置,样品动作装置与样品池连接,激光发射装置发射激光,激光发射装置发射的激光照射到样品池内,激光通过激光显微装置照射在微颗粒物或微球上,激光监测装置接收激光发射装置发射的激光,可见光成像装置拍摄样品池内的图像,中央控制器与激光监测装置连接,中央处理器与可见光成像装置连接,中央处理器与样品动作装置连接,中央处理器与磁镊装置连接,中央处理器与激光发射装置连接。本发明磁镊和光镊测控系统可以同时用光阱和磁镊操控两个不同的分子,自由度大,力程大,精确度高。

Description

一种磁镊和光镊测控系统
技术领域
本发明涉及显微技术领域,特别涉及一种磁镊和光镊测控系统。
背景技术
近二三十年以来,人们在单分子显微领域取得了辉煌的成就,单分子显微仪器不断完善,例如2014年诺贝尔化学奖发给了单分子显微技术。目前常用的单分子显微测控仪器有光镊和磁镊,两者测量和控制非常精确,对样品无直接接触、无损伤。其中,光镊是利用激光束通过透明颗粒物而形成的光学势阱,通过移动激光光束可以使实验目标迁移。磁镊是把分子的一端固定,另一端连上一个磁性微球,外加一磁场对磁性微球产生作用力。改变外磁场就可以拉伸或者转动磁球,从而拉伸或扭转分子。两种技术各有优缺点,例如光镊作用力大、不能旋转、容易灼热样品,磁镊则相反,两种技术具有互补性。
单分子操控设备很好的实现了对单个分子的控制与研究,不过要想同时精确控制测量两个或多个不同分子,以及它们之间的反应或相互作用,目前的实验仪器就无法实现了。
发明内容
本发明所要解决的技术问题是提供一种可以同时用光阱和磁镊操控两个不同的分子,自由度大,力程大,精确度高的磁镊和光镊测控系统。
为解决上述技术问题,本发明提供了一种磁镊和光镊测控系统,用于控制实验溶液内的与磁球表面连接的第一实验分子及与微珠表面结合的第二实验分子,所述实验溶液包括微珠的溶液、含有所述第二实验分子的溶液及实验缓冲液;所述测控系统包括样品池,与所述磁球表面连接的第一实验分子及与所述微珠表面结合的第二实验分子设置在所述样品池内;样品动作装置,所述样品动作装置与所述样品池连接,所述样品动作装置带动所述样品池动作,用于精确控制所述样品池在三维方向的移动;激光发射装置,所述激光发射装置发射并调控激光;所述激光发射装置发射的激光照射到所述样品池内,用于捕捉所述样品池内的微珠,所述激光在所述微珠的折射下形成光阱,所述激光控制所述微珠;激光显微装置,所述激光通过所述激光显微装置照射在所述微珠上;激光监测装置,所述激光监测装置接收所述激光发射装置发射的激光,用于测量激光的精确位置及强度;可见光成像装置,所述激光显微装置配合所述可见光成像装置观察样品池;所述可见光成像装置显微放大所述样品池内的可见光图像,用于实时观察样品池中的情况;磁镊装置,所述磁镊装置设置在所述样品池处,用于控制所述样品池内的所述磁球;中央处理器,所述中央处理器与所述激光监测装置连接,用于实时监测激光的位置及强度;所述中央处理器与所述可见光成像装置连接,用于接收所述可见光成像装置拍摄的图像;所述中央处理器与所述样品动作装置连接,用于控制所述样品动作装置动作;所述中央处理器与所述磁镊装置连接,控制所述磁镊装置动作;所述中央处理器与所述激光发射装置连接,控制所述激光发射装置动作。
进一步地,所述样品池包括金属框架,所述金属框架与所述样品动作装置连接,所述样品动作装置带动所述金属框架动作;溶液腔机构,所述溶液腔机构设置在所述金属框架上;与所述磁球表面连接的第一实验分子及与所述微珠表面结合的第二实验分子进入所述溶液腔机构;进液管,所述进液管与所述溶液腔机构一端连接,用于输送所述实验溶液;出液管,所述出液管与所述溶液腔机构另一端连接,用于排出所述实验溶液。
进一步地,所述溶液腔机构包括第一层流通道,所述第一层流通道的第一进液口与进液管连接,含有所述微珠的溶液通过所述第一进液口进入所述第一层流通道;所述第一层流通道的第一出液口与所述出液管连接,含有所述微珠的溶液通过所述第一出液口排出所述第一层流通道;第二层流通道,所述第二层流通道的第二进液口与进液管连接,含有所述第二实验分子的溶液通过所述第二进液口进入所述第二层流通道;所述第二层流通道的第二出液口与所述出液管连接,含有所述第二实验分子的溶液通过所述第二出液口排出所述第二层流通道;第三层流通道,所述第三层流通道的第三进液口与进液管连接,所述实验缓冲液通过所述第三进液口进入所述第三层流通道;所述第三层流通道的第三出液口与所述出液管连接,实验缓冲液通过所述第三出液口排出所述第三层流通道;第四层流通道,所述第四层流通的第四进液口与进液管连接,所述表面与第一实验分子连接的磁球通过所述第四进液口进入所述第四层流通道;所述第四层流通道的第四出液口与所述出液管连接,所述表面与第一实验分子连接的磁球通过所述第四出液口排出所述第四层流通道。
进一步地,所述样品动作装置包括位移电机;所述位移电机与所述样品池连接,用于带动所述样品池动作;所述中央处理器与所述位移电机连接,用于控制所述位移电机动作。
进一步地,所述激光发射装置包括激光器,所述激光器发射激光;光纤,所述光纤传导所述激光器发射的激光;扭摆器,所述扭摆器与所述中央处理器连接,所述中央处理器控制所述扭摆器动作;所述光纤设置在所述扭摆器内,所述扭摆器调节所述光纤位置;脉冲式声光调制器,所述脉冲式声光调制器接收所述扭摆器内光纤传递的激光;分光片,所述分光片将所述脉冲式声光调制器传递的激光进行分光;第一平凸透镜,所述第一平凸透镜接收所述分光片分散的激光;第二平凸透镜,所述第二平凸透镜接收所述第一平凸透镜传递的激光;激光光束经过第一平凸透镜和第二平凸透镜后,光束会变粗。
进一步地,所述激光显微装置包括第一偏振分束器,所述第一偏振分束器接收所述激光发射装置发射的激光;四分之一波片,所述四分之一波片接收所述第一偏振分束器传递的激光;物镜,所述物镜接收所述四分之一波片传递的激光。
进一步地,所述激光监测装置包括第一凸透镜,所述第一凸透镜接收所述激光发射装置发射的激光;第一位置探测器,所述第一位置探测器接收所述第一凸透镜传递的激光,用于实时测量激光的精确位置;所述第一位置探测器与所述中央处理器连接,用于将实时测量的激光的位置信号发送到所述中央处理器;第二偏振分束器,所述第二偏振分束器接收所述样品池反射的激光;第二凸透镜,所述第二凸透镜接收所述第二偏振分束器传递的激光;第三偏振分束器,所述第三偏振分束器接收所述第二凸透镜传递的激光;第二位置探测器,所述第二位置探测器接收所述第三偏振分束器传递的激光,实时测量激光位置,用于标度微颗粒物的位置;所述第二位置探测器与所述中央处理器连接,用于将微颗粒物的位置信号发送到所述中央处理器;光瞳光度计,所述光瞳光度计接收所述第三偏振分束器传递的激光,实时测量激光强度,用于标度光阱力的大小;所述光瞳光度计与所述中央处理器连接,用于将所述光阱力大小的信号传递给所述中央处理器。
进一步地,所述可见光成像装置包括光源,所述光源发射可见光;第三凸透镜,所述第三凸透镜接收所述光源发射的可见光;第四凸透镜,所述第四凸透镜接收依次穿过所述第三凸透镜、样品池及激光显微装置的可见光;摄像机,所述摄像机接收所述第四凸透镜投射过来的样品池内的图像;所述中央处理器与所述摄像机连接,用于接收所述摄像机拍摄的图像。
进一步地,所述磁镊装置包括磁铁,所述磁铁设置在所述样品池下方;所述磁铁控制所述样品池内表面与第一实验分子连接的磁球动作;动力部件,所述动力部件与所述磁铁连接,用于控制所述磁铁动作;所述动力部件与所述中央处理器连接,所述中央处理器控制所述动力部件动作。
进一步地,所述动力部件包括连接环,所述连接环与所述磁铁连接,用于支撑所述磁铁;皮带,所述皮带与所述连接环连接,用于带动所述连接环动作;转轴,所述转轴与所述皮带连接,用于带动所述皮带动作;旋转马达,所述旋转马达与所述转轴连接,用于带动所述转轴转动;所述旋转马达与所述中央处理器连接,所述中央处理器控制所述旋转马达动作;圆桶,所述圆桶与所述连接环活动连接,用于支撑所述连接环;连接杆,所述连接杆一端与所述圆桶连接,另一端与所述旋转马达连接,用于支撑所述旋转马达;固定杆,所述固定杆一端与所述圆桶连接;直线马达,所述直线马达与所述固定杆另一端连接,用于带动所述固定杆在竖直方向上动作;所述直线马达与所述中央处理器连接,所述中央处理器控制所述直线马达动作。
本发明提供的磁镊和光镊测控系统的磁球表面连接的第一实验分子及与微珠表面结合的第二实验分子设置在样品池内,样品动作装置与样品池连接,样品动作装置带动样品池动作,用于精确控制样品池在三维方向的移动,激光发射装置发射激光,激光发射装置发射的激光照射到样品池内,用于捕捉样品池内的微珠,激光通过激光显微装置照射在微珠上,在微珠的折射下形成光阱,用于控制所述微珠,激光监测装置接收激光发射装置发射的激光,用于测量激光的精确位置及强度,可见光成像装置拍摄样品池内的图像,用于实时观察样品池中的情况,磁镊装置设置在样品池下方,用于控制样品池内的磁球,中央处理器与激光监测装置连接,用于实时监测激光的位置及强度,中央处理器与可见光成像装置连接,用于接收可见光成像装置拍摄的图像,中央处理器与样品动作装置连接,用于精确控制样品动作装置动作,中央处理器与磁镊装置连接,控制磁镊装置动作,中央处理器与激光发射装置连接,控制激光发射装置动作,可以同时用光阱和磁镊操控两个不同的分子,自由度大,力程大,精确度高。
附图说明
图1为本发明实施例提供的磁镊和光镊测控系统的结构示意图;
图2为本发明实施例提供的样品池的结构示意图;
图3为本发明实施例提供的磁镊和光镊测控系统的原理示意图。
具体实施方式
本发明提供的磁镊和光镊测控系统的与磁球表面连接的第一实验分子及与微珠表面结合的第二实验分子设置在样品池内,样品动作装置与样品池连接,样品动作装置带动样品池动作,用于精确控制样品池在三维方向的移动,激光发射装置发射激光,激光发射装置发射的激光照射到样品池内,用于捕捉样品池内的微珠,激光通过激光显微装置照射在微珠上,在微珠的折射下形成光阱,用于控制所述微珠,激光监测装置接收激光发射装置发射的激光,用于测量激光的精确位置及强度,可见光成像装置拍摄样品池内的图像,用于实时观察样品池中的情况,磁镊装置设置在样品池下方,用于控制样品池内的磁球,中央处理器与激光监测装置连接,用于实时监测激光的位置及强度,中央处理器与可见光成像装置连接,用于接收可见光成像装置拍摄的图像,中央处理器与样品动作装置连接,用于控制样品动作装置动作,中央处理器与磁镊装置连接,控制磁镊装置动作,中央处理器与激光发射装置连接,控制激光发射装置动作,可以同时用光阱和磁镊操控两个不同的分子,自由度大,力程大,精确度高。
实施例一
参见图1,本发明实施例提供的一种磁镊和光镊测控系统,用于控制实验溶液内的与所述磁球49表面连接的第一实验分子47及与所述微珠50表面结合的第二实验分子48,所述实验溶液包括微珠50的溶液、含有所述第二实验分子48的溶液及实验缓冲液;其特征在于,所述测控系统包括:
样品池11,与所述磁球49表面连接的第一实验分子47及与所述微珠50表面结合的第二实验分子48设置在所述样品池11内;
样品动作装置,所述样品动作装置与所述样品池11连接,所述样品动作装置带动所述样品池11动作,用于精确控制所述样品池11在三维方向的移动;
激光发射装置,所述激光发射装置发射并调控激光;所述激光发射装置发射的激光照射到所述样品池11内,用于捕捉所述样品池11内的微珠50,在所述微珠50的折射下形成光阱,控制所述微珠50;
激光显微装置,所述激光通过所述激光显微装置照射在所述微珠50,;
激光监测装置,所述激光监测装置接收所述激光发射装置发射的激光,用于测量激光的精确位置及强度;
可见光成像装置,所述激光显微装置配合可见光成像装置观察样品池11;所述可见光成像装置显微放大所述样品池11内的可见光图像,用于实时观察样品池11中的情况;
磁镊装置,所述磁镊装置设置在所述样品池11处,用于控制所述样品池内的磁球49;
中央处理器,所述中央处理器与所述激光监测装置连接,用于实时监测激光的位置及强度;所述中央处理器与所述可见光成像装置连接,用于接收所述可见光成像装置拍摄的图像;所述中央处理器与所述样品动作装置连接,用于控制所述样品动作装置动作;所述中央处理器与所述磁镊装置连接,控制所述磁镊装置动作;所述中央处理器与所述激光发射装置连接,控制所述激光发射装置动作。
为了更清楚的介绍本发明实施例,下面从各个部件予以说明。
首先,介绍样品池11;
样品池11,与所述磁球表面连接的第一实验分子及与所述微珠表面结合的第二实验分子设置在所述样品池11内。所述样品池11包括金属框架46,所述金属框架46与所述样品动作装置连接,所述样品动作装置带动所述金属框架46动作;溶液腔机构,所述溶液腔机构设置在所述金属框架46上;所述表面与第一实验分子47连接的磁球49及与第二实验分子48结合的微珠50进入所述溶液腔机构;溶液腔机构包括第一层流通道32,所述第一层流通道32的第一进液口37与进液管36连接,所述含有所述微珠50的溶液通过所述第一进液口37进入所述第一层流通道32;所述第一层流通道32的第一出液口42与所述出液管41连接,含有所述微珠50的溶液通过所述第一出液口42排出所述第一层流通道32;第二层流通道33,所述第二层流通道33的第二进液口38与进液管36连接,所述含有所述第二实验分子48的溶液通过所述第二进液口38进入所述第二层流通道33;所述第二层流通道的第二出液口43与所述出液管41连接,含有所述第二实验分子48的溶液通过所述第二出液口43排出所述第二层流通道33;第三层流通道34,所述第三层流通道34的第三进液口39与进液管36连接,所述实验缓冲液通过所述第三进液口39进入所述第三层流通道34;所述第三层流通道34的第三出液口44与所述出液管41连接,实验缓冲液通过所述第三出液口44排出所述第三层流通道34;第四层流通道35,所述第四层流通35的第四进液口40与进液管36连接,与所述磁球49表面连接的第一实验分子47通过所述第四进液口40进入所述第四层流通道35;所述第四层流通道35的第四出液口45与所述出液管41连接,所述表面与第一实验分子47连接的磁球49通过所述第四出液口45排出所述第四层流通道35。进液管36,所述进液管36与溶液腔机构一端连接,用于输送所述实验溶液;出液管41,所述出液管41与溶液腔机构另一端连接,用于排出所述实验溶液。溶液腔包括第一层流通道32、第二层流通道33、第三层流通道34及第四层流通道35,可以通过层流把包含不同实验分子的溶液分隔开,同时还可以通过单分子操控手段来把某个层流管道中的实验分子移动到其它管道中,让两种实验分子产生反应或相互作用。该样品池11既可以用于磁镊,又可以用于光镊,同时还可以用于磁镊和光镊。样品池11的第一层流通道32、第二层流通道33、第三层流通道34及第四层流通道35两端有多个进液口和出液口,可以清洗,多次使用。
然后,介绍样品动作装置;
样品动作装置,所述样品动作装置与所述样品池11连接,所述样品动作装置带动所述样品池11动作,用于精确控制所述样品池11在三维方向的移动。所述样品动作装置包括位移电机12,所述位移电机12与所述样品池11连接,用于带动所述样品池11动作;所述中央处理器与所述位移电机12连接,用于控制所述位移电机12动作。
接着,介绍激光发射装置;
激光发射装置,所述激光发射装置发射激光;所述激光发射装置发射的激光照射到所述样品池11内,用于捕捉所述样品池11内的微珠50。所述激光发射装置包括激光器1,所述激光器1发射激光;光纤2,所述光纤2传导所述激光器1发射的激光;扭摆器3,所述扭摆器3与所述中央处理器连接,所述中央处理器控制所述扭摆器3动作;所述光纤2设置在所述扭摆器3内,所述扭摆器3调节所述光纤2位置;脉冲式声光调制器4,所述脉冲式声光调制器4接收所述扭摆器3内光纤2传递的激光;激光在通过脉冲式声光调制器4(AOM)时,受折射率周期性变化的影响,会在两个不同的传播方向上来回变换,聚焦于样品池11中两个邻近的位置,捕捉两个微珠50形成两个光阱,并可操控这两个微珠50;分光片5,所述分光片5将脉冲式声光调制器4传递的激光进行分光;第一平凸透镜6,所述第一平凸透镜6接收所述分光片5分散的激光;第二平凸透镜7,所述第二平凸透镜7接收所述第一平凸透镜6传递的激光;激光光束经过第一平凸透镜6和第二平凸透镜7后,光束会变粗。
继而,介绍激光显微装置;
激光显微装置,所述激光通过所述激光显微装置照射在所述微珠50上,在所述微珠50的折射下形成光阱,所述激光控制所述微珠50,激光显微装置的作用是配合可见光成像装置直接观察到样品池中的实验分子、磁球49及微珠50。所述激光显微装置包括第一偏振分束器8,所述第一偏振分束器8接收所述激光发射装置发射的激光;四分之一波片9,所述四分之一波片9接收所述第一偏振分束器8传递的激光;物镜10,所述物镜10接收所述四分之一波片9传递的激光。
其次,介绍激光监测装置;
激光监测装置,所述激光监测装置接收所述激光发射装置发射的激光,用于测量激光的精确位置及强度;激光监测装置实时监测激光的属性,并使用激光监测装置和可见光成像装置实时观察实验分子在样品池11中的图像,方便调节,可操作性强。所述激光监测装置包括第一凸透镜21,所述第一凸透镜21接收所述激光发射装置发射的激光;第一位置探测器22,所述第一位置探测器22接收所述第一凸透镜21传递的激光,用于实时测量激光的精确位置;所述第一位置探测器22与所述中央处理器连接,用于将实时测量的激光的位置信号发送到所述中央处理器;第二偏振分束器23,所述第二偏振分束器23接收所述样品池11反射的激光;第二凸透镜24,所述第二凸透镜24接收所述第二偏振分束器23传递的激光;第三偏振分束器25,所述第三偏振分束器25接收所述第二凸透镜24传递的激光;第二位置探测器27,所述第二位置探测器27接收所述第三偏振分束器25传递的激光,实时测量激光位置,用于标度微颗粒物的位置;所述第二位置探测器27与所述中央处理器连接,用于将微颗粒物的位置信号发送到所述中央处理器;光瞳光度计26,所述光瞳光度计26接收所述第三偏振分束器25传递的激光,实时测量激光强度,用于标度光阱力的大小;所述光瞳光度计26与所述中央处理器连接,用于将所述光阱力大小的信号传递给所述中央处理器。
之后,介绍可见光成像装置;
可见光成像装置,所述可见光成像装置拍摄所述样品池11内的图像,用于观察光阱及微颗粒物。所述可见光成像装置包括光源28,所述光源28发射可见光;第三凸透镜29,所述第三凸透镜29接收所述光源28发射的可见光;第四凸透镜30,所述第四凸透镜30接收依次穿过所述第三凸透镜29、样品池11及激光显微装置的可见光;摄像机31,所述摄像机31接收所述第四凸透镜30投射过来的样品池11内的图像;所述中央处理器与所述摄像机31连接,用于接收所述摄像机31拍摄的图像。
最后,介绍磁镊装置;
磁镊装置,所述磁镊装置设置在所述样品池11下方,用于控制所述样品池内的磁球49。所述磁镊装置包括磁铁13,所述磁铁13设置在所述样品池11处;所述磁铁13控制所述样品池11内表面与第一实验分子47连接的磁球49动作;动力部件,所述动力部件与所述磁铁13连接,用于控制所述磁铁13动作;所述动力部件与所述中央处理器连接,所述中央处理器控制所述动力部件动作。所述动力部件包括连接环14,所述连接环14与所述磁铁13连接,用于支撑所述磁铁13;皮带15,所述皮带15与所述连接环14连接,用于带动所述连接环14动作;转轴16,所述转轴16与所述皮带15连接,用于带动所述皮带15动作;旋转马达19,所述旋转马达19与所述转轴16连接,用于带动所述转轴16转动;所述旋转马达19与所述中央处理器连接,所述中央处理器控制所述旋转马达19动作;圆桶17,所述圆桶17与所述连接环14活动连接,用于支撑所述连接环14;连接杆51,所述连接杆51一端与所述圆桶17连接,另一端与所述旋转马达19连接,用于支撑所述旋转马达19;固定杆18,所述固定杆18一端与所述圆桶17连接;直线马达20,所述直线马达20与所述固定杆18另一端连接,用于带动所述固定杆18在竖直方向上动作;所述直线马达20与所述中央处理器连接,所述中央处理器控制所述直线马达20动作。
实施例二
为了更清楚的介绍本发明实施例,下面从本发明实施例的使用方法上予以介绍。
先处理第四层流通道35顶部,如使之包被有地高辛的抗体分子。接着将样品池11组装到系统中。打开第一进液口37、第二进液口38、第三进液口39及第四进液口40和第一出液口42、第二出液口43、第三出液口44即第四出液口45的阀门,施加液压,以较慢速度分别注入含微珠50的溶液、含第二实验分子48的溶液、缓冲液及含磁球的溶液。其中,微珠表面与第二实验分子48的两端都已经过处理,它们可以结合在一起。磁球表面连接有第一实验分子47,第一实验分子47的自由端经过化学修饰,例如接有地高辛,第一实验分子47会与第四层流通道35顶部结合。四种不同溶液在样品池中形成四个层流,各层流之间互不混合。激光从激光器1射出,进入光纤2,经过扭摆器3,扭摆器3可以改变光纤2的位置进而调节激光的位置。接着,激光会通过脉冲式声光调制器4。然后激光通过分光片5,分成两束,一束经过第一凸透镜21到达位置第一探测器22,第一位置探测器22实时测量激光的精确位置,将激光的位置信号发送给中央处理器,中央处理器将控制信号发送给扭摆器3,便于通过扭摆器3把激光调节到最佳方向。另一束激光经过第一平凸透镜6和第二平凸透镜7射入第一偏振分束器8中,经过四分之一波片9及物镜10,聚焦到样品池11。捕捉微珠50后,激光在微珠50的折射下形成光阱,用于操控微珠50。激光在通过脉冲式声光调制器4时,受折射率周期性变化的影响,会在两个不同的传播方向上来回变换,聚焦于样品池11中两个邻近的位置,捕捉两个微珠50形成两个光阱,并可操控这两个微珠50。激光照射到样品池11底面后被反射,依次通过物镜10、四分之一波片9、第一偏振分束器8,然后在第二偏振分束器23上发生反射,通过第二凸透镜24照射到第三偏振分束器25上,然后分成两束。其中一束到达光瞳光度计26,实时测量激光的强度,该强度用来标度光阱力的大小。另一束到达第二位置探测器27,实时测量激光的位置,该位置用来标度微珠50的位置。所述第一位置探测器22、第二位置探测器27、光瞳光度计26与中央处理器连接,实时监测激光的强度。中央处理器处理数据后可以得到激光对微珠50所施加的力和微珠50的位移。为了便于直接观测样品,在所述激光显微装置和样品池11轴线上增加可见光源28,可见光源28固定在圆桶17内。可见光依次经第三凸透镜29、样品池11、物镜10、四分之一波片9、第一偏振分束器8、第二偏振分束器23、第四凸透镜30,到达摄像机31。摄像机31接收到可见光源28通过激光显微装置投射过来的样品池11中的图像,并实时地将接收到的图像传输到中央处理器。可见光成像装置用于观测光阱和样品,并为操作提供信息。所述位移电机12与样品池11连接,并受中央处理器控制,能够精确控制样品池11在三维方向的移动。通过位移电机12移动样品池11,使可见光成像装置能拍到第一层流通道中合适位置的图像。调节扭摆器3,使激光聚焦到第一层流通道32中,捕捉两个微珠50形成两个光阱。再移动样品池11,使两个微珠50移动到第二层流管道33中。通过光阱控制两个微珠50与一个第二实验分子48的两端分别结合。继续移动样品池11,使两个微珠50与一个第二实验分子48的结合体移动到第四层流通道35中。在移动样品池11的过程中,可见光成像装置始终显示两个光阱附近图像。磁铁13与所述连接环14固定连接,所述旋转马达19可带动转轴16旋转,所述皮带15连接转轴16与连接环14,这样,旋转马达19转动时,磁铁13可以随之转动。所述圆桶17与所述连接环14活动连接,当连接环14旋转时,圆桶17不会转动。所述连接杆51连接圆桶17与旋转马达19,所述固定杆18连接圆桶17与所述直线马达20,直线马达20可带动连接杆51在竖直方向移动,这时,磁铁13也会在竖直方向移动。磁镊装置中的旋转马达19和直线马达20与中央处理器连接,通过中央处理器控制旋转马达19及直线马达20的动作。直线马达20可以精确控制磁铁13与样品池11的距离,用来实现实验分子的拉伸。旋转马达19可以带动磁铁13旋转,使样品池11中的磁球49随之旋转,进而实现实验分子的扭转。第一实验分子47的一端接在第四层流通道35上部,另一端接在磁球49上,通过控制样品池11下方的磁铁13就能控制第一实验分子47的拉伸和扭转。第二实验分子48的两端分别接有两个微珠50,两个微珠50被激光捕捉形成两个光阱并被控制,通过光阱来控制第二实验分子48动作,使两个实验分子接触或者分离。实验中可以用磁镊装置来控制第一实验分子47的拉伸和扭转,然后通过两个光阱来控制第二实验分子48动作,使第二实验分子48与第一实验分子47接触或者分离。当第一实验分子接触47与第二实验分子48时,我们可以通过激光监测装置测量反应和相互作用的参数,如位移、时间、力、频率、能量和反应动力学。
综上所述,本发明实施例提供的一种磁镊和光镊测控系统具有如下技术效果。
本发明提供的磁镊和光镊测控系统的表面与与磁球表面连接的第一实验分子及与微珠表面结合的第二实验分子设置在样品池内,样品动作装置与样品池连接,样品动作装置带动样品池动作,用于精确控制样品池在三维方向的移动,激光发射装置发射激光,激光发射装置发射的激光照射到样品池内,用于捕捉样品池内的微珠,激光通过激光显微装置照射在微珠上,在微珠的折射下形成光阱,用于控制所述微珠,激光监测装置接收激光发射装置发射的激光,用于测量激光的精确位置及强度,可见光成像装置拍摄样品池内的图像,用于实时观察样品池中的情况,磁镊装置设置在样品池下方,用于控制样品池内的磁球,中央处理器与激光监测装置连接,用于实时监测激光的位置及强度,中央处理器与可见光成像装置连接,用于接收可见光成像装置拍摄的图像,中央处理器与样品动作装置连接,用于精确控制样品动作装置动作,中央处理器与磁镊装置连接,控制磁镊装置动作,中央处理器与激光发射装置连接,控制激光发射装置动作,可以同时用光阱和磁镊操控两个不同的分子,自由度大,力程大,精确度高。
最后所应说明的是,以上具体实施方式仅用以说明本发明的技术方案而非限制,尽管参照实例对本发明进行了详细说明,本领域的普通技术人员应当理解,可以对本发明的技术方案进行修改或者等同替换,而不脱离本发明技术方案的精神和范围,其均应涵盖在本发明的权利要求范围当中。

Claims (10)

1.一种磁镊和光镊测控系统,用于控制实验溶液内的与磁球(49)表面连接的第一实验分子(47)及与微珠(50)表面结合的第二实验分子(48),所述实验溶液包括微珠(50)的溶液、含有所述第二实验分子(48)的溶液及实验缓冲液;其特征在于,所述测控系统包括:
样品池(11),与所述磁球(49)表面连接的第一实验分子(47)及与所述微珠(50)表面结合的第二实验分子(48)设置在所述样品池(11)内;
样品动作装置,所述样品动作装置与所述样品池(11)连接,所述样品动作装置带动所述样品池(11)动作,用于精确控制所述样品池(11)在三维方向的移动;
激光发射装置,所述激光发射装置发射并调控激光;所述激光发射装置发射的激光照射到所述样品池(11)内,用于捕捉所述样品池(11)内的微珠(50),所述激光在所述微珠(50)的折射下形成光阱,所述激光控制所述微珠(50);
激光显微装置,所述激光通过所述激光显微装置照射在所述微珠(50)上;
激光监测装置,所述激光监测装置接收所述激光发射装置发射的激光,用于测量激光的精确位置及强度;
可见光成像装置,所述激光显微装置配合所述可见光成像装置观察样品池(11);所述可见光成像装置显微放大所述样品池(11)内的可见光图像,用于实时观察样品池(11)中的情况;
磁镊装置,所述磁镊装置设置在所述样品池(11)处,用于控制所述样品池内的所述磁球(49);
中央处理器,所述中央处理器与所述激光监测装置连接,用于实时监测激光的位置及强度;所述中央处理器与所述可见光成像装置连接,用于接收所述可见光成像装置拍摄的图像;所述中央处理器与所述样品动作装置连接,用于控制所述样品动作装置动作;所述中央处理器与所述磁镊装置连接,控制所述磁镊装置动作;所述中央处理器与所述激光发射装置连接,控制所述激光发射装置动作。
2.根据权利要求1所述的磁镊和光镊测控系统,其特征在于,所述样品池(11)包括:
金属框架(46),所述金属框架(46)与所述样品动作装置连接,所述样品动作装置带动所述金属框架(46)动作;
溶液腔机构,所述溶液腔机构设置在所述金属框架(46)上;所述与所述磁球(49)表面连接的第一实验分子(47)及与所述微珠(50)表面结合的第二实验分子(48)进入所述溶液腔机构;
进液管(36),所述进液管(36)与所述溶液腔机构一端连接,用于输送所述实验溶液;
出液管(41),所述出液管(41)与所述溶液腔机构另一端连接,用于排出所述实验溶液。
3.根据权利要求2所述的磁镊和光镊测控系统,其特征在于,所述溶液腔机构包括:
第一层流通道(32),所述第一层流通道(32)的第一进液口(37)与所述进液管(36)连接,所述含有所述微珠(50)的溶液通过所述第一进液口(37)进入所述第一层流通道(32);所述第一层流通道(32)的第一出液口(42)与所述出液管(41)连接,含有所述微珠(50)的溶液通过所述第一出液口(42)排出所述第一层流通道(32);
第二层流通道(33),所述第二层流通道(33)的第二进液口(38)与所述进液管(36)连接,所述含有所述第二实验分子(48)的溶液通过所述第二进液口(38)进入所述第二层流通道(33);所述第二层流通道的第二出液口(43)与所述出液管(41)连接,含有所述第二实验分子(48)的溶液通过所述第二出液口(43)排出所述第二层流通道(33);
第三层流通道(34),所述第三层流通道(34)的第三进液口(39)与所述进液管(36)连接,所述实验缓冲液通过所述第三进液口(39)进入所述第三层流通道(34);所述第三层流通道(34)的第三出液口(44)与所述出液管(41)连接,实验缓冲液通过所述第三出液口(44)排出所述第三层流通道(34);
第四层流通道(35),所述第四层流通(35)的第四进液口(40)与所述进液管(36)连接,与所述磁球(49)表面连接的第一实验分子(47)通过所述第四进液口(40)进入所述第四层流通道(35);所述第四层流通道(35)的第四出液口(45)与所述出液管(41)连接,所述表面与第一实验分子(47)连接的磁球(49)通过所述第四出液口(45)排出所述第四层流通道(35)。
4.根据权利要求1所述的磁镊和光镊测控系统,其特征在于,所述样品动作装置包括:
位移电机(12),所述位移电机(12)与所述样品池(11)连接,用于带动所述样品池(11)动作;所述中央处理器与所述位移电机(12)连接,用于控制所述位移电机(12)动作。
5.根据权利要求1所述的磁镊和光镊测控系统,其特征在于,所述激光发射装置包括:
激光器(1),所述激光器(1)发射激光;
光纤(2),所述光纤(2)传导所述激光器(1)发射的激光;
扭摆器(3),所述扭摆器(3)与所述中央处理器连接,所述中央处理器控制所述扭摆器(3)动作;所述光纤(2)设置在所述扭摆器(3)内,所述扭摆器(3)改变所述光纤(2)位置;
脉冲式声光调制器(4),所述脉冲式声光调制器(4)接收所述扭摆器(3)内光纤(2)传递的激光;
分光片(5),所述分光片(5)将所述脉冲式声光调制器(4)传递的激光进行分光;
第一平凸透镜(6),所述第一平凸透镜(6)接收所述分光片(5)分散的激光;
第二平凸透镜(7),所述第二平凸透镜(7)接收所述第一平凸透镜(6)传递的激光。
6.根据权利要求1所述的磁镊和光镊测控系统,其特征在于,所述激光显微装置包括:
第一偏振分束器(8),所述第一偏振分束器(8)接收所述激光发射装置发射的激光;
四分之一波片(9),所述四分之一波片(9)接收所述第一偏振分束器(8)传递的激光;
物镜(10),所述物镜(10)接收所述四分之一波片(9)传递的激光。
7.根据权利要求1所述的磁镊和光镊测控系统,其特征在于,所述激光监测装置包括:
第一凸透镜(21),所述第一凸透镜(21)接收所述激光发射装置发射的激光;
第一位置探测器(22),所述第一位置探测器(22)接收所述第一凸透镜(21)传递的激光,用于实时测量激光的精确位置;所述第一位置探测器(22)与所述中央处理器连接,用于将实时测量的激光的位置信号发送到所述中央处理器;
第二偏振分束器(23),所述第二偏振分束器(23)接收所述样品池(11)反射的激光;
第二凸透镜(24),所述第二凸透镜(24)接收所述第二偏振分束器(23)传递的激光;
第三偏振分束器(25),所述第三偏振分束器(25)接收所述第二凸透镜(24)传递的激光;
第二位置探测器(27),所述第二位置探测器(27)接收所述第三偏振分束器(25)传递的激光,实时测量激光位置,用于标度微颗粒物的位置;所述第二位置探测器(27)与所述中央处理器连接,用于将微颗粒物的位置信号发送到所述中央处理器;
光瞳光度计(26),所述光瞳光度计(26)接收所述第三偏振分束器(25)传递的激光,实时测量激光强度,用于标度光阱力的大小;所述光瞳光度计(26)与所述中央处理器连接,用于将所述光阱力大小的信号传递给所述中央处理器。
8.根据权利要求1所述的磁镊和光镊测控系统,其特征在于,所述可见光成像装置包括:
光源(28),所述光源(28)发射可见光;
第三凸透镜(29),所述第三凸透镜(29)接收所述光源(28)发射的可见光;
第四凸透镜(30),所述第四凸透镜(30)接收依次穿过所述第三凸透镜(29)、所述样品池(11)及所述激光显微装置的可见光;
摄像机(31),所述摄像机(31)接收所述第四凸透镜(30)投射过来的所述样品池(11)内的图像;所述中央处理器与所述摄像机(31)连接,用于接收所述摄像机(31)拍摄的图像。
9.根据权利要求1所述的磁镊和光镊测控系统,其特征在于,所述磁镊装置包括:
磁铁(13),所述磁铁(13)设置在所述样品池(11)下方;所述磁铁(13)控制所述样品池(11)内表面与第一实验分子(47)连接的磁球(49)动作;
动力部件,所述动力部件与所述磁铁(13)连接,用于控制所述磁铁(13)动作;所述动力部件与所述中央处理器连接,所述中央处理器控制所述动力部件动作。
10.根据权利要求9所述的磁镊和光镊测控系统,其特征在于,所述动力部件包括:
连接环(14),所述连接环(14)与所述磁铁(13)连接,用于支撑所述磁铁(13);
皮带(15),所述皮带(15)与所述连接环(14)连接,用于带动所述连接环(14)动作;
转轴(16),所述转轴(16)与所述皮带(15)连接,用于带动所述皮带(15)动作;
旋转马达(19),所述旋转马达(19)与所述转轴(16)连接,用于带动所述转轴(16)转动;所述旋转马达(19)与所述中央处理器连接,所述中央处理器控制所述旋转马达(19)动作;
圆桶(17),所述圆桶(17)与所述连接环(14)活动连接,用于支撑所述连接环(14);
连接杆(51),所述连接杆(51)一端与所述圆桶(17)连接,另一端与所述旋转马达(19)连接,用于支撑所述旋转马达(19);
固定杆(18),所述固定杆(18)一端与所述圆桶(17)连接;
直线马达(20),所述直线马达(20)与所述固定杆(18)另一端连接,用于带动所述固定杆(18)在竖直方向上动作;所述直线马达(20)与所述中央处理器连接,所述中央处理器控制所述直线马达(20)动作。
CN201410627408.1A 2014-11-10 2014-11-10 一种磁镊和光镊测控系统 Active CN104374697B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410627408.1A CN104374697B (zh) 2014-11-10 2014-11-10 一种磁镊和光镊测控系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410627408.1A CN104374697B (zh) 2014-11-10 2014-11-10 一种磁镊和光镊测控系统

Publications (2)

Publication Number Publication Date
CN104374697A CN104374697A (zh) 2015-02-25
CN104374697B true CN104374697B (zh) 2017-02-15

Family

ID=52553744

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410627408.1A Active CN104374697B (zh) 2014-11-10 2014-11-10 一种磁镊和光镊测控系统

Country Status (1)

Country Link
CN (1) CN104374697B (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105004702A (zh) * 2015-06-18 2015-10-28 华中科技大学 一种双成像磁镊系统
CN108645795B (zh) * 2018-04-28 2020-01-14 华南理工大学 一种多通道单蛋白磁镊测控方法和系统
CN108998001A (zh) * 2018-07-10 2018-12-14 长沙健金电子技术有限公司 一种利用光镊装置捕获磁性粒子及其制备方法
CN109444047A (zh) * 2018-09-15 2019-03-08 天津大学 一种单分子力学测试的高效实现方法
CN109239937A (zh) * 2018-09-15 2019-01-18 天津大学 一种光镊自动化操控装置
CN109801732B (zh) * 2019-03-20 2020-05-22 中国人民解放军国防科技大学 一种二维自冷却激光光镊装置和方法
CN110132920B (zh) * 2019-05-16 2020-11-27 北京大学 一种基于激光操控微球镜的光学超分辨成像装置及其方法
CN114910662B (zh) * 2022-04-26 2023-05-23 浙江大学 结合磁阱和光阱实现高真空环境悬浮微球的装置及方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1722374B1 (en) * 2005-05-13 2013-08-14 nAmbition GmbH Method for determining the state of activation of a protein
CN1869650B (zh) * 2006-05-29 2010-09-08 中国科学院物理研究所 单分子操纵横向磁镊装置
CN103278663B (zh) * 2013-05-21 2015-08-26 温州大学 一种基于玻璃微针的单分子力谱方法
CN104101739B (zh) * 2014-07-31 2016-12-07 华中科技大学 一种磁镊装置

Also Published As

Publication number Publication date
CN104374697A (zh) 2015-02-25

Similar Documents

Publication Publication Date Title
CN104374697B (zh) 一种磁镊和光镊测控系统
JP6914265B2 (ja) 生体試料のための自動化された分析ツール
CN104216103B (zh) 一种微管和光镊测控系统
US11207684B2 (en) Method and system for studying biological cells
CN103364326B (zh) 利用全息激光控制分类物质的系统和方法
US6804385B2 (en) Method and device for selectively targeting cells within a three-dimensional specimen
CN106404623B (zh) 悬浮泥沙浓度监测系统及监测方法
US10996147B2 (en) Sample preparation method and sample preparing apparatus
CN107532991A (zh) 用于分选和处理分析物的方法、系统和装置
CN105784662A (zh) 基于多光阱编码微球阵列和双光子荧光检测的液相悬浮式生物芯片
JP2016217888A (ja) 細胞検出装置および細胞検出方法
US20120129158A1 (en) Systems and methods for identifying and disrupting cellular organelles
JP2021106597A (ja) 試料作製方法、試料作製キット、観察方法および観察装置
CN103743714A (zh) 一种倾斜宽场光切片扫描成像显微系统及其成像方法
CN203705345U (zh) 一种倾斜宽场光切片扫描成像显微系统
CN109188672A (zh) 一种光镊系统的可控旋转操作装置及方法
US9506912B2 (en) High-throughput platform for in-vivo sub-cellular screens on vertebrate larvae
NL2020862B1 (en) Probing mechanical properties of biological matter
CN112779156A (zh) 一种基于空间光调制技术的纳秒脉冲激光穿孔系统和方法
US10739260B2 (en) Optical analyzing device
KR102279585B1 (ko) 버블을 이용한 실시간 수중 파티클 감지시스템
JP7042301B2 (ja) 細胞検出方法
CN105310677B (zh) 一种测量血液流量的设备及方法
Furie et al. Thrombus formation in a living mouse
JP2005530136A (ja) 薬物の候補を同定するためのスクリーニング法及び装置

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant