CN104364641A - 血清及其它生物基质中的分析物的量化 - Google Patents

血清及其它生物基质中的分析物的量化 Download PDF

Info

Publication number
CN104364641A
CN104364641A CN201280053124.5A CN201280053124A CN104364641A CN 104364641 A CN104364641 A CN 104364641A CN 201280053124 A CN201280053124 A CN 201280053124A CN 104364641 A CN104364641 A CN 104364641A
Authority
CN
China
Prior art keywords
ionization
sample
biological specimen
differential mobility
source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201280053124.5A
Other languages
English (en)
Other versions
CN104364641B (zh
Inventor
瑟奇·奥格
格雷戈里·布拉雄
希沙姆·古巴拉
迈克尔·贾维斯
皮埃尔·皮卡尔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Phytronix Technologies Inc
DH Technologies Development Pte Ltd
Original Assignee
Phytronix Technologies Inc
DH Technologies Development Pte Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Phytronix Technologies Inc, DH Technologies Development Pte Ltd filed Critical Phytronix Technologies Inc
Publication of CN104364641A publication Critical patent/CN104364641A/zh
Application granted granted Critical
Publication of CN104364641B publication Critical patent/CN104364641B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/0027Methods for using particle spectrometers
    • H01J49/0031Step by step routines describing the use of the apparatus
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/82Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving vitamins or their receptors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/02Details
    • H01J49/04Arrangements for introducing or extracting samples to be analysed, e.g. vacuum locks; Arrangements for external adjustment of electron- or ion-optical components
    • H01J49/0431Arrangements for introducing or extracting samples to be analysed, e.g. vacuum locks; Arrangements for external adjustment of electron- or ion-optical components for liquid samples
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/02Details
    • H01J49/04Arrangements for introducing or extracting samples to be analysed, e.g. vacuum locks; Arrangements for external adjustment of electron- or ion-optical components
    • H01J49/0431Arrangements for introducing or extracting samples to be analysed, e.g. vacuum locks; Arrangements for external adjustment of electron- or ion-optical components for liquid samples
    • H01J49/0445Arrangements for introducing or extracting samples to be analysed, e.g. vacuum locks; Arrangements for external adjustment of electron- or ion-optical components for liquid samples with means for introducing as a spray, a jet or an aerosol
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/02Details
    • H01J49/04Arrangements for introducing or extracting samples to be analysed, e.g. vacuum locks; Arrangements for external adjustment of electron- or ion-optical components
    • H01J49/0459Arrangements for introducing or extracting samples to be analysed, e.g. vacuum locks; Arrangements for external adjustment of electron- or ion-optical components for solid samples
    • H01J49/0463Desorption by laser or particle beam, followed by ionisation as a separate step
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/02Details
    • H01J49/10Ion sources; Ion guns
    • H01J49/16Ion sources; Ion guns using surface ionisation, e.g. field-, thermionic- or photo-emission
    • H01J49/168Ion sources; Ion guns using surface ionisation, e.g. field-, thermionic- or photo-emission field ionisation, e.g. corona discharge
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/62Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating the ionisation of gases, e.g. aerosols; by investigating electric discharges, e.g. emission of cathode
    • G01N27/622Ion mobility spectrometry
    • G01N27/624Differential mobility spectrometry [DMS]; Field asymmetric-waveform ion mobility spectrometry [FAIMS]

Abstract

本发明提供用于量化生物样本中的分析物的方法及系统,其包含:制备生物样本以用于质谱分析;利用离子化源将所述所制备生物样本的至少一部分离子化以产生经离子化分析物流;将所述经离子化分析物流引入到设定于经选择以从所述经离子化分析物流萃取经离子化分析物分子的补偿电压下的差分迁移率光谱仪中;将所述差分迁移率光谱仪的输出分析物流引入到质谱仪中以检测及量化所述输出分析物流中的分析物离子。

Description

血清及其它生物基质中的分析物的量化
相关申请案交叉参考
本申请案请求在2011年10月26日提出申请的第61/551,489号美国临时申请案的优先权,所述美国临时申请案以全文引用的方式并入本文中,且本申请案请求在2012年10月10日提出申请的第61/711,871号美国临时申请案的优先权,所述美国临时申请案以全文引用的方式并入本文中。
技术领域
本发明一般来说涉及用于使用质谱来检测及量化例如血清及其它生物样本等样本中的分析物的方法及系统。
背景技术
复杂基质内所含的分析物的质谱检测及量化通常需要高分辨率分离技术以减小干扰样本内的物质的效应。以举例的方式,大多数质谱分析利用液相色谱分离技术以改善所关心分析物的下游光谱检测的选择性。尽管此些分离技术可产生较准确的量化,但样本制备及色谱分离两者均耗时且成本高,因此减小通量。
因此,需要具有增加的通量同时允许复杂生物样本中的所关心分析物(例如,血清中的睾丸激素及维生素D)的选择性检测及量化的方法及系统。
发明内容
根据各种实施例,本文提供用于使用质谱来检测及/或量化样本中的分析物的方法及系统。如下文所描述,这些方法及系统可在不使用耗时的分离技术的情况下实现复杂基质中的分析物的检测及/或量化。以举例的方式,可利用激光解吸热离子化结合差分迁移率光谱法而快速地量化多个生物样本(例如,血清)中的睾丸激素及维生素D的浓度。在各种实施例中,分析物可包含25-OH-维生素D3。在各种实施例中,分析物可包含25-OH-维生素D2。在各种实施例中,离子迁移率光谱仪可包含(举例来说)差分迁移率光谱仪(DMS)、各种几何形状的FAIMS装置,例如平行板、弯曲电极或圆柱形FAIMS装置及其它。在许多实施例中,此可在在离子化之前不使用液相色谱分离技术的情况下执行。
根据各种实施例,揭示一种量化生物样本中的分析物的方法。所述方法包括制备用于质谱分析的生物样本及利用离子化源以将所述所制备生物样本的至少一部分离子化从而产生经离子化分析物流。将所述经离子化分析物流引入到设定于经选择以从所述经离子化分析物流萃取经离子化分析物分子的补偿电压下的差分迁移率光谱仪,且将所述差分迁移率光谱仪的经输出分析物流引入到质谱仪中以检测及量化所述经输出分析物流中的分析物离子。在各种实施例中,所述分析物可包含睾丸激素。在各种实施例中,所述分析物可包含维生素D。在各种实施例中,所述分析物可包含25-OH-维生素D3。在各种实施例中,所述分析物可包含25-OH-维生素D2。
在一个方面中,离子化源可包括激光二极管热解吸(LDTD)离子化源。在一些实施例中,离子化源可包括二极管激光器以将热能赋予所制备生物样本以解吸所述生物样本的至少一部分。在相关方面中,离子化源可包括用于将经解吸生物样本离子化的APCI离子化器。
在各个方面中,质谱仪可包含串联质谱仪。举例来说,串联质谱仪可为三重四极质谱仪。在一个方面中,所述方法可包括具有约289/97、289/109及292/97的m/z值的至少一个前驱物-产物离子对跃迁。在一个方面中,所述方法可包括检测具有约401.3/365.2、401.3/257.1及401.3/201.1的m/z值的至少一个前驱物产物离子对跃迁。在各种实施例中,所述方法可包括检测具有约413.3/355.2及413.3/337.2的m/z值的至少一个前驱物-产物离子对跃迁。
所述差分迁移率光谱仪可具有各种配置。举例来说,补偿电压可为约4伏。以此方式,所述差分迁移率光谱仪可优先传输睾丸激素(举例来说)。在各种实施例中,补偿电压可在约4伏到约12伏的范围内。在各个方面中,补偿电压可在约4伏到约14伏的范围内。
在一些方面中,生物样本可在不需要液相色谱分离的情况下制备。在相关方面中,可通过执行液-液萃取且在离子化步骤之前将生物样本干燥来制备样本。在一些实施例中,所述离子化源可快速地将多个样本离子化。举例来说,在将第一生物样本离子化的约10秒内,离子化源可将额外所制备生物样本的至少一部分离子化以产生额外经离子化分析物流。在各种实施例中,所述生物样本可安置于所述离子化源的样本板上。举例来说,所述生物样本可为干的。
在一些方面中,生物样本可为血液、血浆、血清、口液及尿液中的一者。在一些实施例中,可以约0.1ng/mL的定量限制来检测生物样本中的分析物。换句话说,本文所描述的方法能够检测生物样本中的低至0.1ng/mL的分析物浓度。在各种实施例中,分析物可包含睾丸激素。在各种实施例中,分析物可包含维生素D。在各种实施例中,分析物可包含25-OH-维生素D3。在各种实施例中,分析物可包含25-OH-维生素D2。
在一个方面中,揭示一种质谱系统。所述系统包括离子化源,所述离子化源具有经配置以将热施加到样本以致使所述样本的至少一部分解吸的热源及用于将所述经解吸部分的至少一部分离子化以产生经离子化样本的离子化器。所述系统还包括与所述离子化源连通的差分迁移率光谱仪。所述差分迁移率光谱仪可从所述离子化源接收所述经离子化样本的至少一部分且传输选定差分迁移率的离子。与所述差分迁移率光谱仪连通的质谱仪经配置以分析从所述差分迁移率光谱仪接收的所述选定差分迁移率的所述离子。在各种实施例中,所述分析物可包含睾丸激素。在各种实施例中,所述分析物可包含维生素D。在各种实施例中,所述分析物可包含25-OH-维生素D3。在各种实施例中,所述分析物可包含25-OH-维生素D2。
在一些实施例中,所述热源可包括激光二极管。举例来说,所述激光二极管可经配置以产生引导到恰好含有所述样本的样本的激光束。
所述离子化器可具有各种配置以产生经离子化样本。在各种实施例中,所述离子化器可包括大气压化学离子化源。在一个方面中,所述离子化器包含产生电晕放电的离子化针。在另一方面中,所述离子化器可包括经配置以产生用于通过光离子化将所述经解吸样本离子化的光束的紫外光源。在各种实施例中,所述质谱仪可包含串联质谱仪。在各个方面中,所述质谱仪可为三重四极质谱仪。在各个方面中,所述系统可检测具有约289/97、289/109及292/97的m/z值的至少一个前驱物-产物离子对跃迁。在各个方面中,所述系统可检测具有约401.3/365.2、401/257.1及401.3/201.1的m/z值的至少一个前驱物-产物离子对跃迁。在各种实施例中,所述系统可检测具有约413.3/355.2及413.3/337.2的m/z值的至少一个前驱物-产物离子对跃迁。在各种实施例中,所述差分迁移率光谱仪可具有各种配置。举例来说,补偿电压可为约4伏。以此方式,所述差分迁移率光谱仪可优先传输睾丸激素(举例来说)。在各种实施例中,补偿电压可在约4伏到约12伏的范围内。在各个方面中,补偿电压可在约4伏到约14伏的范围内。
附图说明
所属领域的技术人员应理解,下文所描述的图式仅用于说明目的。所述图式并不打算以任何方式限制申请者的教示内容的范围。
图1例示根据申请者的教示内容的各种实施例的用于量化分析物的方法。
图2例示根据申请者的教示内容的各种实施例的用于量化分析物的系统。
图3展示根据申请者的教示内容的激光二极管热解吸(LDTD)离子化源的示意图。
图4展示根据申请者的教示内容的各种实施例当串联使用LDTD源及离子迁移率装置以分析经掺和血清睾丸激素校准物时空白中的干扰的减小。
图5展示根据申请者的教示内容的各种实施例的准确性及可重复性。
图6展示根据申请者的教示内容的各种实施例的标准曲线结果。
图7展示根据申请者的教示内容的各种实施例的标准曲线结果。
图8展示根据申请者的教示内容的各种实施例当串联使用LDTD源及离子迁移率装置以分析维生素D时干扰的减小。
图9展示根据申请者的教示内容的各种实施例当仅使用LDTD源且将离子迁移率装置关断以分析维生素D时的干扰。
图10展示根据申请者的教示内容的各种实施例当串联使用LDTD源及离子迁移率装置以分析维生素D时及当仅使用LDTD且将离子迁移率装置关断时空白中的干扰的比较。
图11展示根据申请者的教示内容的各种实施例的标准曲线结果。
具体实施方式
所属领域的技术人员应理解,本文所描述的方法及系统为非限制性示范性实施例且申请者的揭示内容的范围仅由权利要求书界定。尽管结合各种实施例描述申请者的教示内容,但并不打算将申请者的教示内容限定于此些实施例。相反,申请者的教示内容涵盖各种替代、修改及等效方案,如所属领域的技术人员将了解。结合一个示范性实施例所图解说明或描述的特征可与其它实施例的特征组合。此些修改及变化打算包括在申请者的揭示内容的范围内。
根据各种实施例,提供用于量化生物样本中的所关心分析物的方法。图1描绘根据申请者的教示内容用于量化分析物的方法的一个示范性实施例。如所展示,所述方法可包括制备生物样本、将样本离子化、将离子输入到差分迁移率光谱仪(DMS)中及质量分析DMS的输出。
如所属领域的技术人员将了解,可制备含有或可能含有所关心分析物的样本以用于质谱分析。以举例的方式,样本可为生物样本,例如血液、血清、血浆、口液或尿液。可使用根据本文的教示内容修改的此项技术中已知的各种技术来制备样本。在一些实施例中,根据申请者的教示内容的方法可消除耗时的样本制备步骤。举例来说,在一些实施例中,制备样本不需要包括使用液相色谱以分离样本中存在的可能干扰物质。在一个方面中,样本制备可包括执行液-液萃取及干燥,如本文所论述。
可接着将所制备样本离子化。可使用根据本文的教示内容修改的此项技术中已知的各种离子化技术来将所制备样本离子化。在一个实施例中,可使用激光二极管热解吸来将多个样本依序离子化,如本文所论述。在示范性实施例中,安置于样本板上的所制备样本例如可通过对样本板(例如,与样本热接触的一部分)或样本本身辐射以使样本的一部分汽化来解吸。可将样本的经解吸部分传输到离子化器以将经解吸样本离子化。如所属领域的技术人员将了解,可利用根据本文的教示内容修改的各种离子化技术来将样本离子化。以举例的方式,可使用大气压化学离子化或光离子化来将经解吸样本的一部分离子化。
在经离子化之后,可将样本的一部分递送到差分迁移率光谱仪以从经离子化样本至少部分地萃取选定经离子化分析物。如所属领域的技术人员将了解,差分迁移率光谱仪的补偿电压可经选择以优先传输所关心分析物。以举例的方式,补偿电压可设定为约4伏以将经离子化睾丸激素优先传输到下游质量分析仪。在各种实施例中,补偿电压可在约4伏到约12伏的范围内。在各个方面中,补偿电压可在约4伏到约14伏的范围内。
退出DMS的离子可由下游质谱仪分析,例如串联质谱仪。如所属领域的技术人员将了解,可利用用于分析由差分迁移率光谱仪传输的离子的各种技术。以举例的方式,可观察选定MRM跃迁以找到所关心分析物以实现样本中的分析物的定量。在其中检测及量化睾丸激素的一个示范性实施例中,可使用具有约289/97、289/109及292/97的m/z值的至少一个产物-前驱物离子对跃迁。在其中检测及量化25-OH-维生素D3的一个示范性实施例中,可使用具有约401.3/365.2、401.3/257.1及401.3/201.1的m/z值的至少一个产物-前驱物离子对跃迁。在其中检测及量化25-OH-维生素D2的一个示范性实施例中,可使用具有约413.3/355.2及413.3/337.2的m/z值的至少一个产物-前驱物离子对跃迁。
根据各种实施例,提供用于量化生物样本中的所关心分析物的质谱系统。图2描绘用于量化分析物的系统的一个示范性实施例。如所展示,所述系统包括操作地耦合到差分迁移率光谱仪(DMS)的离子化源及下游质量分析仪。如所属领域的技术人员将了解,根据申请者的教示内容的系统可用于量化各种生物样本中所存在的各种分析物,例如睾丸激素及维生素D。在各种实施例中,分析物可包含25-OH-维生素D3。在各种实施例中,所述分析物可包含25-OH-维生素D2。
如本文所论述,可在离子化之前制备样本。可接着使用各种离子化源将样本离子化。举例来说,可使用APCI及光离子化来将样本离子化。在一个实施例中,离子化源可为激光二极管热解吸离子化源,其可有效地解吸及/或离子化所制备样本。由加拿大魁北克的菲特尼斯技术公司(Phytronix Technologies,Inc.)制造的LDTD S-960/S-3480为可如所论述(举例来说,如在以下实例部分中所描述)操作的此种源的一个实例。
可接着将经离子化样本传输到DMS,其可选择性地将所关心分析物(例如,睾丸激素、维生素D等)传输到下游质量分析仪。在各种实施例中,可在系统中引入化学改进剂,举例来说,在DMS接口中。尽管将DMS及质量分析仪描绘为单独的组件,但所属领域的技术人员将了解DMS可实施为集成单元。以举例的方式,SelexIONTM离子迁移率装置可与如马萨诸塞州弗雷明汉(Framingham,MA)的AB SCIEX所生产的5500三重四极质谱仪直接介接。如所属领域的技术人员将了解,质量分析仪可具有各种配置且可为操作地耦合到DMS的独立质量分析仪。以举例的方式,质量分析仪可为串联质谱仪、三重四极、QqTOF或阱TOF质谱仪。
实例
申请者的教示内容可参考下文所呈现的实例及所得数据而甚至更全面地理解。所属领域技术人员通过考虑本说明书及实践本文所揭示的本教示内容将显而易见申请者的教示内容的其它实施例。打算将这些实例仅视为示范性。
Laser Diode Thermal DesorptionTM(LDTD)离子化源技术耦合到配备有SelexIONTM差分离子迁移率装置的质谱仪,从而实现用于生物基质中的分析物的分析的高通量容量。LDTD源允许样本在大气压下的快速激光热解吸,后续接着APCI型离子化。分析物的LDTD-MS/MS分析的定量下限可受由于同质异位分析物的存在而产生的空白干扰限制,然而,LDTD源与串联质谱仪之间的SelexIONTM差分离子迁移率装置的添加提供增强的选择性,且有效地允许同质异位分析物的分离。图3展示LDTD离子化源的示意图。LDTD使用激光二极管来产生及控制样本支撑件上的热,所述样本支撑件为96孔板。接着经由样本固持器转移能量以使样本干燥,样本在由APCI区中的气体运载之前汽化。由于不存在溶剂及流动相,具有对离子抑制的强抵抗的高效率质子化表征离子化。此允许7秒样本-样本分析时间的极高通量能力(无推迟)。使用差分迁移率光谱法,SelexIONTM离子迁移率装置通过提供分离同质异位物质的正交手段而实现优于传统MS/MS分析的增强的选择性。当在由MS/MS分析之前不使用液相色谱分离同质异位物质时此能力变得尤其重要。在所述实例中,离子迁移率单元直接介接到5500质谱仪的前部,且通过将补偿电压(CoV)参数调谐到4V的值而优化以用于睾丸激素的检测。样本制备如下:
1.将100μL的血清样本转移到硼硅酸盐试管。
2.将20μL的IS工作储备溶液(10ng/mL)添加到每一试管。
3.将300μL的NaOH(IN)吸入到硼硅酸盐试管中且使用旋涡混合器混合10秒。
4.将400μL的MTBE添加到试管且使用旋涡混合器混合30秒。
5.在环境温度下将试管竖直放置5分钟且以14000rpm离心5分钟。
6.将200μL的上部层清液转移到干净的硼硅酸盐试管并在45℃下在N2气体中蒸发干燥。
7.样本在40μL复原溶液中复原且使用旋涡混合器混合60秒。
8.接着以14000rpm将试管离心1分钟以沉淀任何不溶或微粒物质。
9.将干净的无沉淀物溶液转移到配备有200μL内插管的硼硅酸盐HPLC小瓶。
如图4中所展示,当串联使用LDTD源与SelexIONTM离子迁移率装置以分析经掺合血清睾丸激素校准物时,空白中的干扰从65%减小到接近零,从而产生定量下限的10x改善。样本制备是由以1:4v/v比使用乙酸乙酯对人类血浆的简单液-液萃取构成的。将2μl的上部层直接存放到96孔板且允许在分析之前干燥。这些结果表示优于在不存在SelexIONTM离子迁移率装置的情况下获得的结果的显著改善。
定量下限为0.1ng/ml,且化验显示超过5个数量级的极好线性,其中r2=0.99972。准确性及可重复性在接受值内,如图5中所展示。样本-样本运行时间仅为7秒。相比之下,使用常规LC-MS/MS的等效分析将通常每样本需要大约3到5分钟。
结果表明在L/L血清萃取中,基线显著降低且降低到可能实现合适的LOQ的点,如图4中所展示。此在不引入DMS接口中的化学改进剂的情况下实现。在这些条件下,睾丸激素具有4V的最佳COV。通过引入改进剂可能实现额外选择性。
使用LDTD/SelexIONTM组合发现并分析所萃取经掺和血清校准剂。重复所述实验得到两组标准曲线结果,如图6及7中所展示。所述结果展示良好线性。
串联使用LDTD源及离子迁移率装置(在此实例中为Selexlon)来分析维生素D以分离7-α-羟基-4-胆甾烯-3-酮的同质异位干扰。Laser Diode Thermal DesorptionTM(LDTD)离子化源耦合到配备有SelexIONTM差分离子迁移率单元的质谱仪,从而实现用于生物基质中的25-羟基维生素D2及D3的分析的高通量容量,其中样本-样本分析时间为9秒。血浆样本的制备是由蛋白质沉淀添加甲醇后续接着使用己烷的液-液萃取构成的。将5μl的上部层存放在专有96孔板中且允许在分析之前干燥。通过差分迁移率光谱仪的作用将已知干扰25-OH-D3的MS/MS跃迁的内生同质异位化合物7α-羟基-胆甾烯-3-酮分离,如个别标准的特定解吸所演示。使用根据Chromsystem设定的多级校准物来制备校准曲线。通过用经汽提血清稀释校准物来制备额外曲线级。进行多个测试以用于验证。通过首先测量6个不同血浆样本的原始水平且将其与已知量的25-OH-D3掺合来评价基质效应。观察恒定内生+经掺合数量。特异性测量为在定量限制下空白级峰值区域与信号区域的比较。可重复性测试为同日间及异日间重复的测量。在基质中评价稳定性,在室温及4℃下萃取并干燥到Lazwell板上。最后,在QC中掺合6种伴随药物(咖啡因、醋氨酚等)以验证可能的干扰。范围从1到65ng/ml及1.5到94ng/ml的定量分别用于25-OH-维生素D3及D2。对于两种化合物,空白级小于LOQ的20%。为评估准确性及精确性,一式三份地对校准点及QC进行分析。n=3的可重复性范围从0.6%到12.3%。QC的所计算浓度在所报告值的15%内。LC MS/MS与LDTD MS/MS样本之间的关系由r2=0.952表达。以LDTD MS/MS在9秒内分析样本符合所有验证参数的监管环境的指导方针。
样本制备如下:
·根据Chromsystem的血浆标准
·来自经双重汽提血浆的空白:浓度<1ng/ml
·血浆的连续稀释
·氘化的内部标准
·20μl的血浆与40μl的MeOH一起粉碎
·40μl的上清液+20μl的水饱和NaCl+40μl己烷
·2μl沉淀物
如图8中所展示,当LDTD源及离子迁移率装置及差分迁移率装置SelexIONTM(在此实例中)接通且串联使用以分析维生素D时,来自7-α-羟基-4-胆甾烯-3-酮的干扰为0.6%。相比之下,如图9中所展示,当仅使用LDTD源且差分迁移率装置关断时,来自7-α-羟基-4-胆甾烯-3-酮的干扰为16.9%。
图10展示当LDTD源及SelexIONTM离子迁移率装置接通且串联用于分析维生素D时,与当仅使用LDTD源而差分迁移率装置关断时相比空白中的干扰减小。
图11展示展示良好线性的标准曲线结果。
基于上文所描述的实施例,所属领域的技术人员将了解根据申请者的教示内容的方法及系统的其它特征及优点。因此,申请者的教示内容不受已特定展示及描述的内容限制,除非所附权利要求书指示。本文所引用的所有公开案及参考文献均以全文引用的方式明确并入本文中。

Claims (20)

1.一种量化生物样本中的分析物的方法,其包含:
制备生物样本以用于质谱分析,
利用离子化源将所述所制备生物样本的至少一部分离子化以产生经离子化分析物流,
将所述经离子化分析物流引入到设定于经选择以从所述经离子化分析物流萃取经离子化分析物分子的补偿电压下的差分迁移率光谱仪中,
将所述差分迁移率光谱仪的输出分析物流引入到质谱仪中以检测及量化所述输出分析物流中的分析物离子。
2.根据权利要求1所述的方法,其中所述分析物包含睾丸激素。
3.根据权利要求1所述的方法,其中所述分析物选自由25-OH-维生素D2及25-OH-维生素D3组成的群组。
4.根据权利要求1所述的方法,其中所述离子化源包含激光二极管热解吸LDTD离子化源。
5.根据权利要求1所述的方法,其中所述质谱仪包含串联质谱仪。
6.根据权利要求5所述的方法,其中检测具有约289/97、289/109、292/97、401.3/365.2、401.3/257.1、401.3/201.1、413.3/355.2及413.3/337.2的m/z值的至少一个前驱物-产物离子对跃迁。
7.根据权利要求1所述的方法,其中所述补偿电压为约4伏到约14伏。
8.根据权利要求1所述的方法,其中以约0.1ng/mL的定量限制来检测所述睾丸激素。
9.根据权利要求1所述的方法,其中所述离子化源包含二极管激光器以将热能赋予所述所制备生物样本以解吸所述所制备生物样本的至少一部分。
10.根据权利要求9所述的方法,其中所述离子化源包含用于将所述经解吸生物样本离子化的APCI离子化器。
11.根据权利要求1所述的方法,其中在无需液相色谱分离的情况下制备所述生物样本。
12.根据权利要求11所述的方法,其中制备所述样本包含执行液-液萃取及在所述离子化步骤之前将所述生物样本干燥。
13.根据权利要求12所述的方法,其进一步包含利用所述离子化源将额外所制备生物样本的至少一部分离子化以在将所述所制备生物样本离子化的约10秒内产生额外经离子化分析物流。
14.一种质谱系统,其包含:
离子化源,其具有经配置以将热施加到样本以产生经解吸样本的热源及用于将所述经解吸样本的至少一部分离子化以产生经离子化样本的离子化器,
差分迁移率光谱仪,其与所述离子化源连通,所述差分迁移率光谱仪经配置以从所述离子化源接收所述经离子化样本的至少一部分且传输选定差分迁移率的离子,及
质谱仪,其与所述差分迁移率光谱仪连通,所述质谱仪经配置以分析从所述差分迁移率光谱仪接收的所述选定差分迁移率的所述离子。
15.根据权利要求14所述的系统,其中所述样本包含睾丸激素。
16.根据权利要求14所述的系统,其中所述样本选自由25-OH-维生素D2及25-OH-维生素D3组成的群组。
17.根据权利要求14所述的系统,其中所述热源包含激光二极管。
18.根据权利要求17所述的系统,其中所述离子化器包含大气压化学离子化源。
19.根据权利要求14所述的系统,其中所述离子化器包含经配置以产生用于通过光离子化将所述经解吸样本离子化的光束的紫外光源。
20.根据权利要求14所述的系统,其中所述质谱仪包含串联质谱仪。
CN201280053124.5A 2011-10-26 2012-10-26 血清及其它生物基质中的分析物的量化 Active CN104364641B (zh)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US201161551489P 2011-10-26 2011-10-26
US61/551,489 2011-10-26
US201261711871P 2012-10-10 2012-10-10
US61/711,871 2012-10-10
PCT/IB2012/002158 WO2013061146A1 (en) 2011-10-26 2012-10-26 Quantification of an analyte in serum and other biological matrices

Publications (2)

Publication Number Publication Date
CN104364641A true CN104364641A (zh) 2015-02-18
CN104364641B CN104364641B (zh) 2017-06-06

Family

ID=48167190

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201280053124.5A Active CN104364641B (zh) 2011-10-26 2012-10-26 血清及其它生物基质中的分析物的量化

Country Status (5)

Country Link
US (1) US9209003B2 (zh)
EP (1) EP2776822B1 (zh)
CN (1) CN104364641B (zh)
CA (1) CA2867996C (zh)
WO (1) WO2013061146A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114341625A (zh) * 2019-06-28 2022-04-12 阿尔托大学注册基金会 定量拉曼光谱

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2867996C (en) * 2011-10-26 2020-03-10 Dh Technologies Development Pte. Ltd. Quantification of an analyte in serum and other biological matrices
EP2850644B1 (en) * 2012-05-18 2018-10-31 DH Technologies Development Pte. Ltd. Modulation of instrument resolution dependant upon the complexity of a previous scan
EP3152185B1 (en) * 2014-06-04 2023-10-04 Roche Diagnostics GmbH Method and usage of a salt for separating epimers by ion mobility spectrometry
AU2015298380A1 (en) * 2014-08-05 2017-02-16 Dh Technologies Development Pte. Ltd. Methods for distinguishing dioleinates of aged and non-aged olive oil
WO2016055886A1 (en) * 2014-10-08 2016-04-14 Dh Technologies Development Pte. Ltd. Dynamic orthogonal analysis method
CN106248773B (zh) * 2016-07-19 2018-11-23 中国检验检疫科学研究院 一种快速测定多维片中维生素b1和维生素c的方法
EP4097752A4 (en) * 2020-01-31 2024-02-21 Phytronix Tech Inc METHODS AND SYSTEMS FOR DETECTING AND QUANTIFYING A TARGET ANALYTE IN A SAMPLE BY MASS SPECTROMETRY IN NEGATIVE ION MODE

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1296564A (zh) * 1998-02-11 2001-05-23 劳伦斯·V·哈里 使用gc/ims的手持检测系统
US20060054807A1 (en) * 2004-09-15 2006-03-16 Phytronix Technologies, Inc. Ionization source for mass spectrometer
CN101036213A (zh) * 2004-08-02 2007-09-12 奥斯通有限公司 离子迁移率谱仪
US20070272852A1 (en) * 2006-01-26 2007-11-29 Sionex Corporation Differential mobility spectrometer analyzer and pre-filter apparatus, methods, and systems
WO2008008826A2 (en) * 2006-07-11 2008-01-17 Excellims Corporation Methods and apparatus for the ion mobility based separation and collection of molecules
WO2009143623A1 (en) * 2008-05-30 2009-12-03 Mds Analytical Technologies Method and system for vacuum driven differential mobility spectrometer/mass spectrometer interface with adjustable resolution and selectivity
CN101770924A (zh) * 2008-12-30 2010-07-07 株式会社岛津制作所 一种解吸电离装置
US20110133069A1 (en) * 2009-12-03 2011-06-09 Brett Holmquist Methods for detecting dihydroxyvitamin d metabolites by mass spectrometry
US20110174964A1 (en) * 2010-01-15 2011-07-21 California Institute Of Technology Continuous flow mobility classifier interface with mass spectrometer

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5777324A (en) * 1996-09-19 1998-07-07 Sequenom, Inc. Method and apparatus for maldi analysis
WO2002080223A1 (en) * 2001-03-29 2002-10-10 Wisconsin Alumni Research Foundation Piezoelectric charged droplet source
US20080177359A1 (en) * 2002-05-03 2008-07-24 Advanced Light Technology, Llc. Differential photochemical and photomechanical processing
AU2003298597A1 (en) * 2002-10-12 2004-05-25 Sionex Corporation NOx MONITOR USING DIFFERENTIAL MOBILITY SPECTROMETRY
CA2550088A1 (en) * 2003-12-18 2005-07-07 Sionex Corporation Methods and apparatus for enhanced ion based sample detection using selective pre-separation and amplification
US20090084979A1 (en) * 2004-10-07 2009-04-02 Dewalch Norman Binz High-speed molecular analyzer system and method
US20090218481A1 (en) * 2004-10-07 2009-09-03 Dewalch Norman Binz High-Speed Molecular Analyzer System and Method
US8440968B2 (en) * 2005-02-14 2013-05-14 Micromass Uk Limited Ion-mobility analyser
WO2006119167A1 (en) * 2005-04-29 2006-11-09 Sionex Corporation Compact gas chromatography and ion mobility based sample analysis systems, methods, and devices
US7579589B2 (en) * 2005-07-26 2009-08-25 Sionex Corporation Ultra compact ion mobility based analyzer apparatus, method, and system
US7518108B2 (en) * 2005-11-10 2009-04-14 Wisconsin Alumni Research Foundation Electrospray ionization ion source with tunable charge reduction
US7880140B2 (en) * 2007-05-02 2011-02-01 Dh Technologies Development Pte. Ltd Multipole mass filter having improved mass resolution
US8173959B1 (en) * 2007-07-21 2012-05-08 Implant Sciences Corporation Real-time trace detection by high field and low field ion mobility and mass spectrometry
US8217345B2 (en) * 2007-10-18 2012-07-10 Dh Technologies Development Pte. Ltd. Interface between differential mobility analyzer and mass spectrometer
US7858927B2 (en) * 2007-11-23 2010-12-28 Dh Technologies Development Pte, Ltd. Apparatus and method for operating a differential mobility analyzer with a mass spectrometer
EP2112683A1 (en) * 2008-04-22 2009-10-28 IEE INTERNATIONAL ELECTRONICS &amp; ENGINEERING S.A. Differential mobility spectrometer and operating method therefor
US20090317916A1 (en) * 2008-06-23 2009-12-24 Ewing Kenneth J Chemical sample collection and detection device using atmospheric pressure ionization
CA2733891C (en) * 2008-10-01 2017-05-16 Dh Technologies Development Pte. Ltd. Method, system and apparatus for multiplexing ions in msn mass spectrometry analysis
US8384023B2 (en) * 2009-01-23 2013-02-26 Ionwerks, Inc. Post-ionization of neutrals for ion mobility oTOFMS identification of molecules and elements desorbed from surfaces
US8350212B2 (en) * 2009-03-17 2013-01-08 Dh Technologies Development Pte. Ltd. Ion optics drain for ion mobility
GB201018184D0 (en) * 2010-10-27 2010-12-08 Micromass Ltd Asymmetric field ion mobility in a linear geometry ion trap
US8610058B2 (en) * 2010-11-03 2013-12-17 University Of North Texas Silver and silver nanoparticle MALDI matrix utilizing online soft landing ion mobility
GB201114735D0 (en) * 2011-08-25 2011-10-12 Micromass Ltd Mass spectrometer
CA2867996C (en) * 2011-10-26 2020-03-10 Dh Technologies Development Pte. Ltd. Quantification of an analyte in serum and other biological matrices
US9653278B2 (en) * 2011-12-28 2017-05-16 DH Technologies Development Ptd. Ltd. Dynamic multipole Kingdon ion trap
EP2850643B1 (en) * 2012-05-18 2020-01-22 DH Technologies Development Pte. Ltd. Method and system for introducing make-up flow in an electrospray ion source system

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1296564A (zh) * 1998-02-11 2001-05-23 劳伦斯·V·哈里 使用gc/ims的手持检测系统
CN101036213A (zh) * 2004-08-02 2007-09-12 奥斯通有限公司 离子迁移率谱仪
US20060054807A1 (en) * 2004-09-15 2006-03-16 Phytronix Technologies, Inc. Ionization source for mass spectrometer
US20070272852A1 (en) * 2006-01-26 2007-11-29 Sionex Corporation Differential mobility spectrometer analyzer and pre-filter apparatus, methods, and systems
WO2008008826A2 (en) * 2006-07-11 2008-01-17 Excellims Corporation Methods and apparatus for the ion mobility based separation and collection of molecules
WO2009143623A1 (en) * 2008-05-30 2009-12-03 Mds Analytical Technologies Method and system for vacuum driven differential mobility spectrometer/mass spectrometer interface with adjustable resolution and selectivity
CN101770924A (zh) * 2008-12-30 2010-07-07 株式会社岛津制作所 一种解吸电离装置
US20110133069A1 (en) * 2009-12-03 2011-06-09 Brett Holmquist Methods for detecting dihydroxyvitamin d metabolites by mass spectrometry
US20110174964A1 (en) * 2010-01-15 2011-07-21 California Institute Of Technology Continuous flow mobility classifier interface with mass spectrometer

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ABU B.KANU ET AL.: "Ion mobility-mass spectrometry", 《JOURNAL OF MASS SPECTROMETRY》, vol. 43, no. 1, 16 January 2008 (2008-01-16), pages 1 - 22, XP 055006825, DOI: doi:10.1002/jms.1383 *
VOISLAV BLAGOJEVIC ET AL.: "Differential Mobility Spectrometry of Isomeric Protonated Dipetides: Modifier and Field Effects on Ion Mobility and Stability", 《ANALYTICAL CHEMISTRY》, vol. 83, no. 9, 1 May 2011 (2011-05-01), pages 3471 - 3472, XP 055180972, DOI: doi:10.1021/ac200100s *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114341625A (zh) * 2019-06-28 2022-04-12 阿尔托大学注册基金会 定量拉曼光谱

Also Published As

Publication number Publication date
EP2776822A4 (en) 2015-05-27
CN104364641B (zh) 2017-06-06
CA2867996A1 (en) 2013-05-02
US20140291505A1 (en) 2014-10-02
US9209003B2 (en) 2015-12-08
EP2776822B1 (en) 2016-09-21
CA2867996C (en) 2020-03-10
WO2013061146A1 (en) 2013-05-02
EP2776822A1 (en) 2014-09-17

Similar Documents

Publication Publication Date Title
CN104364641A (zh) 血清及其它生物基质中的分析物的量化
Strathmann et al. Current and future applications of mass spectrometry to the clinical laboratory
Vogeser et al. Liquid chromatography tandem-mass spectrometry (LC-MS/MS)-technique and applications in endocrinology
Patti Separation strategies for untargeted metabolomics
de Raad et al. High-throughput platforms for metabolomics
Putri et al. Current metabolomics: technological advances
Gallien et al. Selectivity of LC-MS/MS analysis: implication for proteomics experiments
Wong et al. An overview of label-free quantitation methods in proteomics by mass spectrometry
Gao et al. A reversed-phase capillary ultra-performance liquid chromatography–mass spectrometry (UPLC-MS) method for comprehensive top-down/bottom-up lipid profiling
CN103308621B (zh) 高通量液相色谱法串联质谱法检测25羟基维生素d的方法
Midttun et al. Determination of vitamins A, D and E in a small volume of human plasma by a high‐throughput method based on liquid chromatography/tandem mass spectrometry
Xia et al. LC-FAIMS-MS/MS for quantification of a peptide in plasma and evaluation of FAIMS global selectivity from plasma components
Russo et al. Detection of buffalo mozzarella adulteration by an ultra‐high performance liquid chromatography tandem mass spectrometry methodology
CN106093261B (zh) 一种鉴别蜂蜜中掺入淀粉类糖浆的方法
CN102680565B (zh) 同位素稀释电喷雾萃取电离串联质谱快速检测尿肌酐的分析方法
Arrizabalaga-Larrañaga et al. Determination of banned dyes in red spices by ultra-high-performance liquid chromatography-atmospheric pressure ionization-tandem mass spectrometry
Strzelecka et al. Evaluation of dimethyl sulfoxide (DMSO) as a mobile phase additive during top 3 label-free quantitative proteomics
Khanal et al. Supercharging and multiple reaction monitoring of high‐molecular‐weight intact proteins using triple quadrupole mass spectrometry
Saidi et al. Neuropeptidomics: Comparison of parallel reaction monitoring and data‐independent acquisition for the analysis of neuropeptides using high‐resolution mass spectrometry
CN110044998B (zh) 通过质谱法定量他莫昔芬及其代谢物
Yang et al. Determination of palonosetron in human plasma by ultra performance liquid chromatography–tandem mass spectrometry and its application to a pharmacokinetic study
Schreiber Advantages of using triple quadrupole over single quadrupole mass spectrometry to quantify and identify the presence of pesticides in water and soil samples
Yu et al. An ultraperformance liquid chromatography–tandem mass spectrometry method for determination of anastrozole in human plasma and its application to a pharmacokinetic study
Sharma et al. A laconic review on liquid chromatography mass spectrometry (LC-MS) based proteomics technology in drug discovery
CN109580849B (zh) 一种测定中药口服液中指标性成分的方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant