CN104362870B - Control method, device and the rectifier of rectifier - Google Patents
Control method, device and the rectifier of rectifier Download PDFInfo
- Publication number
- CN104362870B CN104362870B CN201410602709.9A CN201410602709A CN104362870B CN 104362870 B CN104362870 B CN 104362870B CN 201410602709 A CN201410602709 A CN 201410602709A CN 104362870 B CN104362870 B CN 104362870B
- Authority
- CN
- China
- Prior art keywords
- rectifier
- controller
- current
- voltage
- equation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000000034 method Methods 0.000 title abstract description 14
- 238000006243 chemical reaction Methods 0.000 claims abstract description 29
- 238000013016 damping Methods 0.000 claims description 15
- 238000002347 injection Methods 0.000 claims description 5
- 239000007924 injection Substances 0.000 claims description 5
- 239000011159 matrix material Substances 0.000 claims description 5
- 230000001131 transforming effect Effects 0.000 claims description 2
- 239000003990 capacitor Substances 0.000 claims 1
- 238000010586 diagram Methods 0.000 description 8
- 235000001008 Leptadenia hastata Nutrition 0.000 description 3
- 244000074209 Leptadenia hastata Species 0.000 description 3
- 238000001914 filtration Methods 0.000 description 3
- 239000000243 solution Substances 0.000 description 3
- 230000010349 pulsation Effects 0.000 description 2
- 230000001360 synchronised effect Effects 0.000 description 2
- 238000004364 calculation method Methods 0.000 description 1
- 238000011217 control strategy Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000013178 mathematical model Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M7/00—Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
- H02M7/02—Conversion of ac power input into dc power output without possibility of reversal
- H02M7/04—Conversion of ac power input into dc power output without possibility of reversal by static converters
- H02M7/12—Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
- H02M7/21—Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
- H02M7/217—Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
- H02M7/2173—Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only in a biphase or polyphase circuit arrangement
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Rectifiers (AREA)
Abstract
The present invention relates to power electronic technique and field of non-linear control, disclose control method, device and the rectifier of a kind of rectifier, by the input voltage u for obtaining rectifier DC-DC conversion sectiondc, input current idc, output voltage uDC, obtain the amplitude I of desired alternating currentmrAnd the sinusoidal voltage u of 6 times of power frequenciesr, according to the controller for establishing DC-DC conversion section based on EL equation model, the switching tube of the DC-DC conversion section is controlled.The current break that single switch three-phase rectifier can be effectively reduced, prevents current distortion.
Description
Technical Field
The invention relates to the field of power electronic technology and nonlinear control, in particular to a control method and device of a rectifier and the rectifier.
Background
In order to meet the comprehensive performance requirements of the industrial rectifier, research on a unidirectional hybrid three-phase voltage type rectifier is started abroad. The unidirectional hybrid three-phase voltage type rectifier is formed by connecting two rectifiers A, B working in different topological structures and working frequencies in parallel, and supplies power to the same load. The input current of the rectifier A, B is synthesized as a sinusoidal current synchronized to the grid voltage. The rectifier A generally comprises a single-switch three-phase rectifier consisting of a three-phase diode bridge rectifier and a boost type DC/DC converter, and bears most of load power; the rectifier B is a three-phase voltage source type PWM rectifier working at high frequency and bears a small part of load power. In a single-switch three-phase voltage mode rectifier, a single-switch three-phase rectifier a (shown in fig. 1) inputs the current shown in fig. 2. Under the condition that the load power and the voltage thereof are known, according to the three-phase alternating current voltage u and the power balance of the alternating current side and the direct current side, the expected alternating current sinusoidal current of the unidirectional mixed three-phase voltage type rectifier synchronous with the three-phase alternating current voltage can be obtained. According to the requirements of unit power factor of network side of unidirectional mixed three-phase voltage type rectifier and low harmonic wave of alternating currentaThe desired grid-side ac current is iar ═ Imrsin ω t, and Imr can be calculated from the ac-side to load power balance. Taking phase a as an example, i.e. iar ═ idar+ iaar (iar, idar and iar are respectively the desired phase currents of the unidirectional hybrid three-phase voltage-type rectifier and the rectifiers a and B), and idr is the desired current on the direct-current side, as shown in fig. 3, since the desired input current idar of the rectifier a has an abrupt change, which necessarily causes the desired current iarr of the rectifier B to have an abrupt change, the rectifier B cannot track the desired current having the abrupt change and distort the input current (as indicated by a dashed coil in fig. 3). Therefore, when the desired ac sinusoidal current of the single-phase hybrid three-phase voltage-type rectifier is known, minimizing the number of sudden changes of the desired current of the rectifiers a and B is a problem that needs to be solved urgently to realize the ac sinusoidal current of the single-phase hybrid three-phase voltage-type rectifier.
Disclosure of Invention
The invention provides a rectifier control method and device and a rectifier, and solves the technical problem that in the prior art, the sudden change of input current of a single-switch three-phase rectifier is large.
The purpose of the invention is realized by the following technical scheme:
a method of controlling a rectifier, comprising:
obtaining input voltage u of DC-DC conversion part of rectifierdcInput current idcOutput voltage uDC;
Obtaining the desired amplitude I of the alternating currentmrAnd 6 times of power frequency sinusoidal AC voltage ur;
Controlling a switching tube of the DC-DC conversion part according to a controller which establishes the DC-DC conversion part based on an EL equation model, wherein the controller is a passive controller based on the EL equation model, and the input of the controller of the rectifier is udc、idc、uDC、idrAnd ra1,idrFor an input current idcIs the expected value of idrFrom ImrAnd urObtaining ofa1For injecting damping, of said controllerThe output is the driving voltage u of the switching tubeg。
A control device for a rectifier, comprising:
a first obtaining module for obtaining an input voltage u of the DC-DC conversion part of the rectifierdcInput current idcOutput voltage uDC
A second obtaining module for obtaining the amplitude I of the desired alternating currentmrAnd 6 times of power frequency sinusoidal AC voltage ur;
The control module is used for establishing a controller of the DC-DC conversion part according to an EL equation model and controlling a switching tube of the DC-DC conversion part, wherein the controller is a passive controller based on the EL equation model, and the input of the controller of the rectifier is udc、idc、uDC、idrAnd ra1,idrFor an input current idcIs the expected value of idrFrom ImrAnd urObtaining ofa1For injecting damping, the output of the controller is the driving voltage u of the switching tubeg。
A rectifier comprises a three-phase diode bridge rectifier, a DC/DC converter and a controller of the rectifier, wherein the controller of the rectifier is used for acquiring an input voltage u of a DC-DC conversion part of the rectifierdcInput current idcOutput voltage uDC(ii) a Obtaining the desired amplitude I of the alternating currentmrAnd 6 times of power frequency sinusoidal AC voltage ur(ii) a Controlling a switching tube of the DC-DC conversion part according to a controller which establishes the DC-DC conversion part based on an EL equation model, wherein the controller is a passive controller based on the EL equation model, and the input of the controller of the rectifier is udc、idc、uDC、idrAnd ra1,idrFor an input current idcIs the expected value of idrFrom ImrAnd urObtaining ofa1To inject damping, the output of the controller isDrive voltage u of switching tubeg。
According to the control method and device of the rectifier and the rectifier provided by the invention, the input voltage u of the DC-DC conversion part of the rectifier is obtaineddcInput current idcOutput voltage uDCObtaining the desired amplitude I of the alternating currentmrAnd 6 times of power frequency sinusoidal AC voltage urAnd a controller of the DC-DC conversion part is established according to an EL equation model, and a switching tube of the DC-DC conversion part is controlled. The current sudden change of the single-switch three-phase rectifier can be effectively reduced, and the current distortion is prevented.
Drawings
In order to more clearly illustrate the embodiments of the present invention or the technical solutions in the prior art, the drawings needed in the embodiments will be briefly described below, and it is obvious that the drawings in the following description are only some embodiments of the present invention, and it is obvious for those skilled in the art to obtain other drawings without creative efforts.
FIG. 1 is a circuit diagram of a single switch three phase rectifier in a single direction hybrid three phase voltage mode rectifier;
FIG. 2 is a waveform diagram of an input current of a single-switch three-phase rectifier according to an embodiment of the present invention;
FIG. 3 is a waveform diagram of the a-phase voltage, current and DC side current at the AC side of rectifiers A and B;
FIG. 4 is a waveform diagram of the a-phase voltage, current and DC-side current at the AC side of the rectifiers A and B after applying the solution of the embodiment of the present invention;
fig. 5 is a circuit diagram of a single-switch three-phase rectifier provided in an embodiment of the present invention;
fig. 6 is a flowchart of a control method of a rectifier according to an embodiment of the present invention;
fig. 7 is a schematic structural diagram of a control device of a rectifier according to an embodiment of the present invention.
Detailed Description
In order to make the aforementioned objects, features and advantages of the present invention comprehensible, embodiments accompanied with figures are described in further detail below.
In order to realize the current waveform shown in fig. 4, a single-switch three-phase rectifier circuit structure shown in fig. 5 is adopted, and fig. 5 is different from fig. 1 in that three small inductors La are added on the alternating current side. In the circuit diagram of the single-switch three-phase rectifier provided in the embodiment of the invention, as shown in fig. 5, the single-switch three-phase rectifier comprises two parts, namely a three-phase diode bridge rectifier and a DC/DC converter, respectively, and the input voltage of the converter is udcInput current is idcOutput voltage of uDCThe driving voltage of the switch tube T is ug,
Based on the circuit diagram shown in FIG. 5, the driving voltage u is appliedgFor example, a method for controlling a rectifier according to an embodiment of the present invention is described, and as shown in fig. 6, the method includes the following steps:
step 601, obtaining an input voltage u of a DC-DC conversion part of a rectifierdcInput current idcOutput voltage uDC;
Step 602, obtaining an amplitude I of the desired AC currentmrAnd 6 times of power frequency sinusoidal AC voltage ur;
Wherein the desired AC current amplitude ImrThe sine alternating voltage u is obtained by load power balance calculation of an alternating current side and is 6 times of the power frequencyrBy udcObtained by a band-pass filter. To realize a direct side current idcIn sinusoidal pulsation, the desired current i in sinusoidal pulsation is obtaineddr. Due to idcIs formed by combining three-phase alternating currents of a single-switch three-phase rectifier, if i can be controlleddcTracing idrThe current shown in fig. 4 can be realized. Due to udcWith the desired idrWith the same ripple frequency, in order to obtain a desired current i in sinusoidal rippledrThe required sine alternating current of 6 times of power frequency is firstly measured by udcObtaining u by a band-pass filterr。
Step 603, establishing a controller of the DC-DC conversion part according to the EL equation model, and controlling a switching tube of the DC-DC conversion part.
Wherein the controller is a passive controller based on an EL equation model, and the input of the controller of the rectifier is udc、idc、uDC、idrAnd ra1,idrFor an input current idcIs the expected value of idrFrom ImrAnd urObtaining ofa1For injecting damping, the output of the controller is the driving voltage u of the switching tubeg. Input current idcIs expected value idrFrom the formula idr=0.5Imr+KurObtaining, wherein K is an adjustable positive number.
In order to obtain a passive control strategy of the rectifier based on an EL equation (Euler-Lagrange, Euler-Lagrange equation), step 603 requires a controller of the rectifier to be established according to a mathematical model of an EL equation model, and specifically includes the following steps:
603-1, obtaining KVL and KCL equations according to kirchhoff's law;
wherein, KVL equation isEquation of KCL asWherein R isLThe DC side equivalent load is C, and the DC side capacitance is C.
Step 603-2, transforming the KVL and KCL equations into an EL equation model;
wherein the EL equation model is
Step 603-3, injecting damping into the EL equation modelTo obtain the controllerControl law of (2);
wherein, an input current i is setdcThe desired current vector is xrError current vector xe=xr-x. The EL equation is modeled asBecome intoError energy function ofThe passive controller based on the EL equation has good steady-state performance, but has slow convergence speed, and in order to accelerate the system convergence speed, the passive controller based on the EL equation has good steady-state performanceInjecting damping into the controller to make the error energy function become zero rapidly, and injecting R by using dampingdxe=(R+Ra)xe,RaFor dampingEntering the matrix, and then inputting the matrix, ra1>0,ra2is greater than 0. When a damping injection matrix is introduced, it becomesDeriving an energy error function Let the control law of the controller beThe derivative of the energy error function with respect to timeSo that He(x)→0,x→xr;
Step 603-4, establishing a controller of the rectifier according to the control law of the controller, and controlling the rectifierOutput of the device
Wherein, under the control law of the controller, the rectifier can realize the control target and adjust RaCan adjust He(x) Is received byConverging to a speed of 0. The driving voltage of the switching tube for realizing the control target can be obtained by the control law
The control method of the rectifier provided by the invention obtains the input voltage u of the DC-DC conversion part of the rectifierdcInput current idcOutput voltage uDCObtaining the desired amplitude I of the alternating currentmrAnd 6 times of power frequency sinusoidal AC voltage urAnd a controller of the DC-DC conversion part is established according to an EL equation model, and a switching tube of the DC-DC conversion part is controlled. The current sudden change of the single-switch three-phase rectifier can be effectively reduced, and the current distortion is prevented.
An embodiment of the present invention further provides a control device of a rectifier, as shown in fig. 7, including:
a first obtaining module 710 for obtaining an input voltage u of the rectifier DC-DC converting partdcAnd inputCurrent idcOutput voltage uDC
A second obtaining module 720 for obtaining the desired amplitude I of the AC currentmrAnd 6 times of power frequency sinusoidal AC voltage ur;
A control module 730, configured to establish a controller of the DC-DC conversion portion according to an EL equation model, and control a switching tube of the DC-DC conversion portion, where the controller is a passive controller based on the EL equation model, and an input of the controller of the rectifier is udc、idc、uDC、idrAnd ra1,idrFor an input current idcIs the expected value of idrFrom ImrAnd urObtaining ofa1For injecting damping, the output of the controller is the driving voltage u of the switching tubeg。
Wherein the second obtaining module 720 includes:
a current calculating unit 721 for calculating a current according to ImrAnd urObtaining the idrWherein i isdr=0.5Imr+Kur;
A load power calculating unit 722 for calculating and obtaining the amplitude I of the desired AC current according to the load power balance of the AC sidemr;
A filtering unit 723 for filtering udcFiltering out the sinusoidal alternating voltage u of 6 times of power frequencyr
The embodiment of the invention also provides a rectifier which comprises a three-phase diode bridge rectifier, a DC/DC converter and a controller of the rectifier, wherein the controller of the rectifier is used for acquiring the input voltage u of the DC-DC conversion part of the rectifierdcInput current idcOutput voltage uDC(ii) a Obtaining the desired amplitude I of the alternating currentmrAnd 6 times of power frequency sinusoidal AC voltage ur(ii) a A controller for establishing a DC-DC conversion part according to an EL equation modelSwitching a part of switching tubes for control, wherein the controller is a passive controller based on an EL equation model, and the input of the controller of the rectifier is udc、idc、uDC、idrAnd ra1,idrFor an input current idcIs the expected value of idrFrom ImrAnd urObtaining ra1 as injection damping, and the output of the controller is the driving voltage u of the switching tubeg。
Through the above description of the embodiments, those skilled in the art will clearly understand that the present invention may be implemented by software plus a necessary hardware platform, and certainly may be implemented by hardware, but in many cases, the former is a better embodiment. With this understanding in mind, all or part of the technical solutions of the present invention that contribute to the background can be embodied in the form of a software product, which can be stored in a storage medium, such as a ROM/RAM, a magnetic disk, an optical disk, etc., and includes instructions for causing a computer device (which can be a personal computer, a server, or a network device, etc.) to execute the methods according to the embodiments or some parts of the embodiments of the present invention.
The present invention has been described in detail, and the principle and embodiments of the present invention are explained herein by using specific examples, which are only used to help understand the method and the core idea of the present invention; meanwhile, for a person skilled in the art, according to the idea of the present invention, there may be variations in the specific embodiments and the application scope, and in summary, the content of the present specification should not be construed as a limitation to the present invention.
Claims (1)
1. Rectifier comprising a three-phase diode bridge rectifier, a DC/DC converter and a rectifier controller, wherein the rectifier controller is adapted to obtain an input voltage u of the rectifier DC-DC conversion sectiondcInput current idcOutput voltage uDC(ii) a Obtaining the desired amplitude I of the alternating currentmrAnd 6 times of power frequency sinusoidal AC voltage ur(ii) a Controlling a switching tube of the DC-DC conversion part according to a controller which establishes the DC-DC conversion part based on an EL equation model, wherein the controller is based on an EL equationA passive controller of the model, the input of the controller of the rectifier being udc、idc、uDC、idrAnd ra1,idrFor an input current idcIs the expected value of idrFrom ImrAnd urObtaining ofa1For injecting damping, the output of the controller is the driving voltage u of the switching tubeg(ii) a The three-phase diode bridge rectifier comprises an inductor La and a full bridge rectifier formed by six diodes; the inductor La is connected in series on the alternating current side of the full-bridge rectifier; the input current idcIs expected value idrFrom the formula idr=0.5Imr+KurObtaining, wherein K is an adjustable positive number;
the controller for establishing the DC-DC conversion part based on the EL equation model comprises the following components: obtaining KVL and KCL equations according to kirchhoff's law, wherein the KVL equation isKCL equation isWherein R isLThe direct current side equivalent load is C, and the direct current side capacitor is C;
transforming the KVL and KCL equations into an EL equation modelWherein,
injecting damping into the EL equation modelTo obtain a control law of the controller; wherein, an input current i is setdcThe desired current vector is xrError current vector xe=xr-x; the EL equation is modeled asError energy function ofThe passive controller based on the EL equation has good steady-state performance, but the convergence speed is slow, in order to accelerate the system convergence speed, damping is injected into the controller, so that an error energy function is quickly changed into zero, and damping injection R is adopteddxe=(R+Ra)xe,RaIn order to damp the injection matrix, ra1>0,ra2is greater than 0; when a damping injection matrix is introduced, it becomesDeriving an energy error function Let the control law of the controller beThe derivative of the energy error function with respect to timeSo that He(x)→0,x→xr;
Establishing control of the rectifier according to the control law of the controllerA controller, an output of the controller of the rectifierAnd L is a direct current side inductor.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410602709.9A CN104362870B (en) | 2014-10-31 | 2014-10-31 | Control method, device and the rectifier of rectifier |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410602709.9A CN104362870B (en) | 2014-10-31 | 2014-10-31 | Control method, device and the rectifier of rectifier |
Publications (2)
Publication Number | Publication Date |
---|---|
CN104362870A CN104362870A (en) | 2015-02-18 |
CN104362870B true CN104362870B (en) | 2019-03-22 |
Family
ID=52530105
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201410602709.9A Expired - Fee Related CN104362870B (en) | 2014-10-31 | 2014-10-31 | Control method, device and the rectifier of rectifier |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN104362870B (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104868742B (en) * | 2015-05-28 | 2017-07-11 | 西南交通大学 | It is a kind of to realize the virtual power control method that full-bridge isolates DC DC converter decompression transformation pattern minimum current stress |
CN105764184A (en) * | 2016-03-17 | 2016-07-13 | 宁波市江东精诚自动化设备有限公司 | Wireless intelligent dimming switch |
CN111446873B (en) * | 2020-04-30 | 2021-08-17 | 北京信息科技大学 | Nonlinear passive current control method |
CN112600413B (en) * | 2020-11-05 | 2022-04-12 | 北京信息科技大学 | Internal resistance observation method and internal resistance observer of DC-DC converter |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CH699531B1 (en) * | 2006-02-28 | 2010-03-31 | Eth Zuerich Eth Transfer | Constant component-afflicted alternating current measuring device for use in e.g. single pulse unidirectional rectifier system, has control device outputting control signal at control input of transistor connected with winding |
-
2014
- 2014-10-31 CN CN201410602709.9A patent/CN104362870B/en not_active Expired - Fee Related
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CH699531B1 (en) * | 2006-02-28 | 2010-03-31 | Eth Zuerich Eth Transfer | Constant component-afflicted alternating current measuring device for use in e.g. single pulse unidirectional rectifier system, has control device outputting control signal at control input of transistor connected with winding |
Non-Patent Citations (2)
Title |
---|
Analysis and Implementation of a Hybrid High-Power-Factor Three-Phase Unidirectional Rectifier;Ricardo Luiz Alves et al.;《IEEE TRANSACTIONS ON POWER ELECTRONICS》;20090330;第24卷(第3期);第632-640页 |
基于EL模型的BOOST型DC/DC变换器无源控制器;王久和;《北京信息科技大学学报》;20121031;第27卷(第5期);第17-20页 |
Also Published As
Publication number | Publication date |
---|---|
CN104362870A (en) | 2015-02-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Liu et al. | Modeling and SVPWM control of quasi-Z-source inverter | |
CN105006825B (en) | A kind of electric power electric transformer and its control method of high quality of power supply output | |
Xiao et al. | Virtual flux direct power control for PWM rectifiers based on an adaptive sliding mode observer | |
CN104377727B (en) | A kind of combining inverter multiple target works in coordination with the unbalance control method of optimization | |
CN108880209B (en) | Active damping control method of active third harmonic injection matrix converter | |
CN204886199U (en) | Adapt to power electronic transformer uneven and non - linear load | |
CN104362870B (en) | Control method, device and the rectifier of rectifier | |
CN112653342B (en) | Complex vector current loop decoupling control device and method under static coordinate system | |
Rong et al. | Output feedback control of single-phase UPQC based on a novel model | |
CN107908829A (en) | Onboard electric systems method for analyzing stability based on unified large-signal model | |
CN103595280A (en) | Deadbeat control method of solar power generating system inverter under condition of voltage unbalance | |
CN108306332A (en) | A kind of LCL type grid-connected inverting system and curren tracing control method | |
CN109672212B (en) | LCL grid-connected inverter current inner loop full-order sliding mode virtual control method | |
Bayhan | Grid voltage sensorless model predictive control for a single-phase T-type rectifier with an active power decoupling circuit | |
CN106130351A (en) | A kind of electric automobile DC charger output voltage ripple suppression system and method | |
Zhou et al. | LCL type grid-connected converter no startup inrush current control method based on capacitor branch voltage feedforward | |
CN104362675B (en) | Inverter system and photovoltaic grid inverter control method and device | |
Marzouki et al. | Nonlinear control of three-phase active rectifiers based L and LCL filters | |
CN108631624B (en) | Cascaded H-bridge rectifier based on three-dimensional modulation and control method thereof | |
CN112350595B (en) | Analog impedance control method for inhibiting input unbalance influence of AC/DC matrix converter | |
CN106300352A (en) | Control Method of Active Power Filter based on natural coordinates orientation | |
Yu et al. | A Lyapunov stability theory-based control method for three-level shunt active power filter | |
Asadi et al. | An improved current control method of shunt active power filter based on state-space variables under asymmetrical and non-sinusoidal conditions | |
CN104122432A (en) | Three-level active power filter (APF) reference current detection method suitable for distorted or unbalanced situation | |
Shin et al. | An MRAS based current harmonics reduction for three phase PWM rectifier under input voltage distortion |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20190322 Termination date: 20191031 |