CN104362094A - 一种调控铁磁性能的铁电场效应管的制备方法 - Google Patents

一种调控铁磁性能的铁电场效应管的制备方法 Download PDF

Info

Publication number
CN104362094A
CN104362094A CN201410546700.0A CN201410546700A CN104362094A CN 104362094 A CN104362094 A CN 104362094A CN 201410546700 A CN201410546700 A CN 201410546700A CN 104362094 A CN104362094 A CN 104362094A
Authority
CN
China
Prior art keywords
film
ferroelectric
preparation
field effect
regulation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201410546700.0A
Other languages
English (en)
Inventor
赵晓林
王建禄
孟祥建
韩莉
孙硕
沈宏
林铁
孙璟兰
褚君浩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Institute of Technical Physics of CAS
Original Assignee
Shanghai Institute of Technical Physics of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Institute of Technical Physics of CAS filed Critical Shanghai Institute of Technical Physics of CAS
Priority to CN201410546700.0A priority Critical patent/CN104362094A/zh
Publication of CN104362094A publication Critical patent/CN104362094A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/6684Unipolar field-effect transistors with an insulated gate, i.e. MISFET with a ferroelectric gate insulator

Abstract

本发明公开一种调控铁磁性能的铁电场效应管的制备方法。该方法用激光脉冲沉积的方法以一定的参数生长表面平整结晶性较好的Lax(CaSr)(1-x)MnO3薄膜。然后采用光刻的方法刻蚀出所需的霍尔结构的形状,然后将有机铁电聚合物溶入二甲基亚砜溶液中,通过朗缪尔-布罗基特方法,逐层将有机铁电聚合物转移至刻有霍尔结构形状的Lax(CaSr)(1-x)MnO3衬底上,经过退火处理,去除界面残留溶剂及保证薄膜具有良好结晶特性。最后再通过光刻的方法生长栅电极从而制备完成铁电场效应晶体管器件,本发明方法工艺简单,为研究有机铁电聚合物调控铁磁薄膜的磁学性能提供了保证。

Description

一种调控铁磁性能的铁电场效应管的制备方法
技术领域
本发明涉及调控铁磁材料磁性能的有机铁电场效应晶体管的制备技术,具体指一种基于聚偏氟乙烯基有机铁电聚合物作为晶体管的绝缘介质层来调控铁磁材料性能的制备方法。
背景技术
近年来,随着信息存储技术的快速发展,具有高密度、高速度、非挥发、低能耗的新概念随机存储器的研究是一个意义重大并颇具难度的课题。其中,用电场替代磁场或电流来控制磁性以实现信息的高速度、低能耗写入是至关重要的。为了实现这个目标,一个可行并有效的方法就是利用多铁性材料及其磁电耦合效应。磁电耦合效应最早发现于单相多铁材料Cr2O3中[Physical Review Letters 6,607(1961)],随后在单相多铁材料BiFeO3中也发现了磁电耦合效应[Science 299,1719(2003)],但单相多铁材料磁电耦合系数小,居里温度低,因而很难得到实际应用。为此,美国、欧洲各国、日本等科技发达的国家纷纷投入大量资金开展人工复合多铁材料。在这一领域,清华大学的南策文教授和南京大学刘俊明教授领导的研究小组在实验和理论方面做了大量开创性工作,受到国际该领域同行的高度重视。
在铁磁/铁电多铁异质结体系中,研究的重点是电场对磁性的调控如利用电场改变铁磁薄膜的磁各向异性、磁化强度、磁矫顽力和居里温度等,综合多铁异质电场调控磁性的众多成果,磁性调控机制主要有两种:(1)界面应变调制机制,其调控原理是压电相和压磁相两者通过界面的应力相互作用,实现电场对磁性控制。这个领域的代表性工作是Eerenstein等人在BaTiO3衬底上外延生长40nm厚La0.67Sr0.33MnO3薄膜,并观测到明显的电场对薄膜磁性的调控行为[Nature Materials,6,348(2007)]。与此同时,Thiele等人也在(001)取向的Pb(Mg1/3Nb2/3)Ti0.28O3单晶和La0.7A0.3MnO3(A=Sr,Ca)薄膜的外延结构中实现了电场对磁性的调控[Physical Review B,75,05448(2007)]。Sahoo[Physical ReviewB,76,092108(2007)]等人研究了Fe/BaTiO3多铁异质结构中电场对磁性的调控,结果表明通过电场改变界面的磁弹性耦合,从而改变多晶Fe薄膜单轴各向异能,使易磁化轴的方向在面内和面外之间旋转。基于界面应变调制机制的磁电耦合,铁电薄膜往往会受到衬底的“夹持”效应而难以完全发挥其应变特性,从而大大减弱了磁电耦合效应。另外,由于几乎所有的铁电材料的应变在双极性电场作用下都呈现出蝶形曲线的形式,因此在应变调制的体系中,几乎所有结果都是磁矩或矫顽场随电场的变化表现为蝶形曲线行为。这类行为中最大的问题在于电场对磁的调控是“挥发的”,即当施加在样品上的电场撤回为零时,由于应变随电场的撤销而消失,从而导致磁性薄膜对电场的响应也回到了未加电场时的初始状态,这对应用时很不利的。(2)界面电荷机制。这种机制的代表性工作是Molegraaf[Advanced Materials,21,3470(2009)]等人在PbZr0.2Ti0.8O3/La0.8Sr0.2MnO3/SrTiO3中所做的电场对La0.8Sr0.2MnO3薄膜磁性的调控。随着PZT极化反转,La0.8Sr0.2MnO3的磁化强度受到显著调制,并且磁化强度随着电场的变化为回滞曲线,表明磁性的调控是“非挥发”的。其磁性调控机制主要是:PbZr0.2Ti0.8O3是典型的铁电薄膜,电场极化后在体内产生很大的电场,表面有极化电荷,界面处的电场使La0.8Sr0.2MnO3的空穴浓度发生变化,最终导致了磁化强度的变化。值得一提的是,在界面电荷调制体系中还有一些十分重要的工作。
有机铁电聚合物PVDF基多铁异质结体系中,PVDF基铁电聚合物作为铁电相,其硬度远小于铁磁相可减小界面应力传递。此外,P(VDF/TrFE)的铁电性可与无机氧化物铁电材料相比拟。因此,P(VDF/TrFE)基多铁异质结是研究界面电荷机制并有望实现磁性调控的最佳体系。2008年,Stolichnov[NatureMaterial,7,464(2008)]在稀磁半导体(In,Mn)As/P(VDF/TrFE)体系中发现了电场对(In,Mn)As磁各向异性和居里温度的调制。2011年,Mardana[Nano Letters,11,3862(2011)]研究Co/P(VDF-TrFE)异质结的磁电耦合效应,发现利用P(VDF/TrFE)的极化反转能使Co薄膜的磁各向异性发生50%的改变。2012年,Lukashev[ACS Nano,6,9745(2012)]理论计算Co/P(VDF-TrFE)超晶格结构中P(VDF-TrFE)极化反转对界面磁各向异性的影响,从理论上证实了Mardana的实验结果。这些研究结果表明,随着P(VDF/TrFE)薄膜极化反转,在界面处产生的电场使相邻的铁磁材料的载流子浓度发生变化,最终导致了铁磁薄膜磁性的变化。而且P(VDF/TrFE)基多铁异质的理论和实验都表明磁调控效应的大小决定于界面处铁电薄膜的极化强度、屏蔽电荷的自旋极化以及铁磁屏蔽电荷密度。
本专利基于PVDF基有机铁电场效应管器件结构研究铁电极化对铁磁材料的磁性能的研究,从实验中获得磁性调控的手段,为进一步揭示磁电耦合效应的微观机制提供了基础。
发明内容
本发明提出一种调控铁磁材料磁性能的PVDF基铁电场效应晶体管的制备方法,实现了有机铁电聚合物薄膜对铁磁材料性能调控的器件的制备。
一种调控铁磁性能的铁电场效应管的制备方法。其特征包括以下步骤:
(1)采用激光脉冲沉积在100取向的SrTiO3衬底上生长10nm厚的Lax(CaSr)(1-x)MnO3(以下简称LCSMO)薄膜,其中衬底材料SrTiO3衬底为100取向的氧化物单晶,衬底的表面粗糙度低于2纳米,铁磁材料LCSMO薄膜的厚度为10nm。
(2)在LCSMO薄膜表面经过旋涂光刻胶、烘烤、紫外光曝光、显影、烘烤、Ar离子刻蚀等步骤得到所需的霍尔结构的图形;再次经过光刻步骤将霍尔结构的引脚溅射生长Au电极。
(3)将有机铁电聚合物溶液滴均匀铺入朗缪尔-布罗基特设备已经注入静置超纯水的液体槽中,待有机铁电聚合物均匀分布在液面,并通过挤压成膜的液面,通过控制液面表面压力使薄膜成膜连续;将连续薄膜通过水平转移朗缪尔-布罗基特方法转移至有LCSMO图形的衬底上,通过逐层转移一定厚度的PVDF基有机铁电聚合物薄膜,并将生长的薄膜经过退火处理,薄膜的退火温度110-135℃,维持4小时后,冷却至室温,便得到高结晶性PVDF基铁电聚合物薄膜。
(4)在已经生长好PVDF基铁电聚合物的衬底上热蒸发100nm的金属Al,再经过旋涂光刻胶、烘烤、紫外光曝光、显影、烘烤、Ar离子刻蚀等步骤得到所需的栅电极的图形结构,经过上述步骤便得到PVDF基铁电场效应晶体管器件。
所述的旋涂光刻胶的转速为4k转每分钟,烘烤温度为85摄氏度,紫外光曝光时间为20秒。
所述的PVDF基有机铁电聚合物为聚偏氟乙烯-三氟乙烯共聚物P(VDF-TrFE)。
所述的PVDF基有机铁电聚合物溶液的溶剂为二甲基亚砜,其溶液浓度的质量百分含量为0.01%。
所述的超纯水的电阻为18.2兆欧姆,液面表面压控制在5毫牛顿每米。
本发明特点在于制备一种调控铁磁材料磁性能的PVDF基铁电场效应晶体管器件,利用该方法制备的晶体管器件,其工艺简单,成本低,易于制备。
附图说明:
图1为调控铁磁材料磁性能的PVDF基铁电场效应晶体管的制备流程图;
图2为采用本方法制备的场效应晶体管的结构图;
图3为采用本方法制备的场效应晶体管的铁电材料对铁磁材料电阻的调控变化图。
图3中,1号曲线为LCSMO的电阻随栅压的变化关系,2号曲线PVDF基铁电聚合物极化强度随栅压的变化关系。
具体实施方式:
下面将是结合附图1,表述本发明的具体实施方法。具体步骤依次为:
a,实施例1:
将SrTiO3衬底材料清洗干净保证其表面的平整度,采用PLD方法生长结晶性良好的10nm厚La0.67Ca0.23Sr0.1MnO3薄膜。然后在La0.67Ca0.23Sr0.1MnO3薄膜表面经过旋涂光刻胶、烘烤、紫外光曝光、显影、烘烤、Ar离子刻蚀等步骤得到所需的Hall Ball的图形结构;再经过lift-off步骤将Hall Bar的引脚溅射生长Ti-Au电极;
其中所述的旋涂光刻胶的转速为4k转每分钟,烘烤温度为85摄氏度,紫外光曝光时间为20秒。
将PVDF基聚合物P(VDF-TrFE)溶于二甲基亚砜溶液中,其溶液浓度为质量百分含量为0.01%。然后将P(VDF-TrFE)有机铁电聚合物二甲基亚砜溶液均匀铺入已经注入静置超纯水的朗缪尔-布罗基特设备的液体槽中,超纯水电阻为18.2兆欧姆,待有机铁电聚合物均匀分布在液面,并通过挤压成膜的液面,通过控制液面表面压力至5毫牛每米,使薄膜成膜连续;
其中所述超纯水电阻为18.2兆欧姆。
将连续薄膜通过水平转移朗缪尔-布罗基特方法转移至已经制备出HallBar图形的La0.67Ca0.23Sr0.1MnO3薄膜衬底上,通过重复转移P(VDF-TrFE)有机铁电聚合物薄膜,得到一定厚度的铁电薄膜,并将生长的铁电薄膜经过退火处理4小时,退火温度为135℃,冷却至室温,可形成具有调控铁磁材料磁性能的PVDF基铁电场效应晶体管器件。其器件结构图可参照附图2。

Claims (4)

1.一种调控铁磁性能的铁电场效应管的制备方法,其特征包括以下步骤:
(1)采用激光脉冲沉积在100取向的SrTiO3衬底上生长10nm厚的Lax(CaSr)(1-x)MnO3(以下简称LCSMO)薄膜,其中衬底材料SrTiO3衬底为100取向的氧化物单晶,衬底的表面粗糙度低于2纳米,铁磁材料LCSMO薄膜的厚度为10nm;
(2)在LCSMO薄膜表面经过旋涂光刻胶、烘烤、紫外光曝光、显影、烘烤、Ar离子刻蚀等步骤得到所需的霍尔结构的图形;再次经过光刻步骤将霍尔结构的引脚溅射生长Au电极;
(3)将有机铁电聚合物溶液滴均匀铺入朗缪尔-布罗基特设备已经注入静置超纯水的液体槽中,待有机铁电聚合物均匀分布在液面,并通过挤压成膜的液面,通过控制液面表面压力使薄膜成膜连续;将连续薄膜通过水平转移朗缪尔-布罗基特方法转移至有LCSMO图形的衬底上,通过逐层转移一定厚度的PVDF基有机铁电聚合物薄膜,并将生长的薄膜经过退火处理,薄膜的退火温度110-135℃,维持4小时后,冷却至室温,便得到高结晶性PVDF基铁电聚合物薄膜;
(4)在已经生长好PVDF基铁电聚合物的衬底上热蒸发100nm的金属Al,再经过旋涂光刻胶、烘烤、紫外光曝光、显影、烘烤、Ar离子刻蚀等步骤得到所需的栅电极的图形结构,经过上述步骤便得到PVDF基铁电场效应晶体管器件。
2.根据权利要求1所述的一种调控铁磁性能的铁电场效应管的制备方法,其特征在于,所述的旋涂光刻胶的转速为4k转每分钟,烘烤温度为85摄氏度,紫外光曝光时间为20秒。
3.根据权利要求1所述的一种调控铁磁性能的铁电场效应管的制备方法,其特征在于,所述的PVDF基有机铁电聚合物溶液的溶剂为二甲基亚砜,其溶液浓度的质量百分含量为0.01%。
4.根据权利要求1所述的一种调控铁磁性能的铁电场效应管的制备方法,其特征在于,所述的超纯水的电阻为18.2兆欧姆,液面表面压控制在5毫牛顿每米。
CN201410546700.0A 2014-10-16 2014-10-16 一种调控铁磁性能的铁电场效应管的制备方法 Pending CN104362094A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410546700.0A CN104362094A (zh) 2014-10-16 2014-10-16 一种调控铁磁性能的铁电场效应管的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410546700.0A CN104362094A (zh) 2014-10-16 2014-10-16 一种调控铁磁性能的铁电场效应管的制备方法

Publications (1)

Publication Number Publication Date
CN104362094A true CN104362094A (zh) 2015-02-18

Family

ID=52529346

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410546700.0A Pending CN104362094A (zh) 2014-10-16 2014-10-16 一种调控铁磁性能的铁电场效应管的制备方法

Country Status (1)

Country Link
CN (1) CN104362094A (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105762178A (zh) * 2016-03-04 2016-07-13 西安电子科技大学 基于GeSn材料的铁电场效应晶体管及其制备方法
CN108417708A (zh) * 2018-04-15 2018-08-17 湖南工程学院 一种调控超薄铁磁薄膜磁性能的铁电器件的制备方法
CN108428622A (zh) * 2018-03-30 2018-08-21 湖南工程学院 一种高热释电系数pvdf基多层膜的制备方法
CN109545959A (zh) * 2018-10-16 2019-03-29 叶建国 一种存储器件及其制造方法
CN112928158A (zh) * 2019-12-05 2021-06-08 电子科技大学 一种基于自旋织构的存储器及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101143932A (zh) * 2007-08-22 2008-03-19 中国科学院上海技术物理研究所 铁电聚合物分子空间排列可控的薄膜生长方法
CN102544093A (zh) * 2010-12-09 2012-07-04 中国科学院物理研究所 半导体场效应结构、及其制备方法和用途
WO2014081248A1 (en) * 2012-11-22 2014-05-30 University Of Seoul Industry Cooperation Foundation Semiconductor device using paper as a substrate and method of manufacturing the same
CN103848997A (zh) * 2014-01-17 2014-06-11 中国科学院上海技术物理研究所 一种pvdf基有机铁电聚合物超晶格制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101143932A (zh) * 2007-08-22 2008-03-19 中国科学院上海技术物理研究所 铁电聚合物分子空间排列可控的薄膜生长方法
CN102544093A (zh) * 2010-12-09 2012-07-04 中国科学院物理研究所 半导体场效应结构、及其制备方法和用途
WO2014081248A1 (en) * 2012-11-22 2014-05-30 University Of Seoul Industry Cooperation Foundation Semiconductor device using paper as a substrate and method of manufacturing the same
CN103848997A (zh) * 2014-01-17 2014-06-11 中国科学院上海技术物理研究所 一种pvdf基有机铁电聚合物超晶格制备方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105762178A (zh) * 2016-03-04 2016-07-13 西安电子科技大学 基于GeSn材料的铁电场效应晶体管及其制备方法
CN108428622A (zh) * 2018-03-30 2018-08-21 湖南工程学院 一种高热释电系数pvdf基多层膜的制备方法
CN108417708A (zh) * 2018-04-15 2018-08-17 湖南工程学院 一种调控超薄铁磁薄膜磁性能的铁电器件的制备方法
CN109545959A (zh) * 2018-10-16 2019-03-29 叶建国 一种存储器件及其制造方法
CN112928158A (zh) * 2019-12-05 2021-06-08 电子科技大学 一种基于自旋织构的存储器及其制备方法

Similar Documents

Publication Publication Date Title
Shirsath et al. Single-crystal-like textured growth of CoFe2O4 thin film on an amorphous substrate: A self-bilayer approach
CN104362094A (zh) 一种调控铁磁性能的铁电场效应管的制备方法
Liu et al. Local enhancement of polarization at PbTiO3/BiFeO3 interfaces mediated by charge transfer
Fernandez et al. Thin‐film ferroelectrics
Huang et al. Exchange bias in a La0. 67Sr0. 33MnO3/NiO heterointerface integrated on a flexible mica substrate
Liu et al. Electric-field control of magnetism in Co40Fe40B20/(1-x) Pb (Mg1/3Nb2/3) O3-xPbTiO3 multiferroic heterostructures with different ferroelectric phases
Ahn et al. Multiferroic properties and ferroelectric domain structures of Yb-doped BiFeO3 thin films on glass substrates
Zhang et al. Large Low-Field Magnetoresistance (LFMR) Effect in Free-Standing La0. 7Sr0. 3MnO3 Films
Zhao et al. Electric-field-controlled nonvolatile magnetization rotation and magnetoresistance effect in Co/Cu/Ni Spin valves on piezoelectric substrates
CN102071399B (zh) 全钙钛矿多铁性磁电复合薄膜
Borisov et al. Magnetoelectric properties of the Co/PbZr x Ti 1− x O 3 (001) interface studied from first principles
Namiki et al. Room-temperature manipulation of magnetization angle, achieved with an all-solid-state redox device
Seo et al. Room temperature ferroelectricity of YCrO3 thin films on Rh single crystals
Tan et al. Improved polarization retention in epitaxial BiFeO3 thin films induced by strain relaxation
Ortega et al. Multiferroic behavior of heterostructures composed of lanthanum and bismuth ferrite
Li et al. Self-poling-induced magnetoelectric effect in highly strained epitaxial BiFeO3/La0. 67Sr0. 33MnO3− δ multiferroic heterostructures
Wong et al. Enhanced tunability of electrical and magnetic properties in (La, Sr) MnO3 thin films via field-assisted oxygen vacancy modulation
Mun et al. Magnetic property modulation of Ni thin films transferred onto flexible substrates
Shin et al. Flexoelectric switching characteristics depending on crystallinity of highly c-oriented epitaxial SrBi2Nb2O9 thin film
Peng et al. Voltage Control of Perpendicular Magnetic Anisotropy in Multiferroic Composite Thin Films under Strong Electric Fields
Ahn et al. Deposition-rate-dependent ferroelectric properties of epitaxially grown BaTiO3 thin films
CN104600192A (zh) 具有电荷轨道有序转变及各向异性场致电阻效应的异质结构材料及其制备方法和用途
Ruan et al. Preparation and device applications of ferroelectric β-PVDF films
Kim et al. Resistive switching characteristics of ferroelectric BiFeO3 nanodot prepared by dip-pen nanolithography
Shin et al. Ferroelectric domain structure and polarization switching speed of highly (111)-oriented polycrystalline YMnO3 thin films on glass substrates

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20150218

WD01 Invention patent application deemed withdrawn after publication