发明内容
为克服上述现有技术存在的不足,本发明提供了一种基于行波法和暂态主频法的变电站电缆出线故障监测方法,其能够解决当前小电流接地系统选线困难的问题,有效实现变电站电缆出线及其配电线路的故障选线。
本发明解决其技术问题所采取的技术方案是:基于行波法和暂态主频法的变电站电缆出线故障监测方法,其特征是,包括以下步骤:
建立变电站电缆出线故障仿真模型:根据变电站电缆出线及配网模型建立变电站电缆出线故障仿真模型,所述变电站电缆出线故障仿真模型包括变压器,在变压器的出线侧连接有三条出线线路,每条出线线路中均包含电缆线路和架空线路,所述电缆线路一端与变压器相连,另一端与架空线路一端相连,架空线路的另一端悬空,在每条出线线路中均设置有仿真线路故障;
获取训练样本:分别对变电站电缆出线故障仿真模型中各条出线线路设置不同故障距离、不同过渡电阻以及不同故障初相角进行仿真,提取各条出线线路的电流初始行波和暂态信号;根据电流初始行波零模分量的幅值、极性以及暂态主频的幅值、相位,得到训练样本;
BP神经网络训练:利用训练样本对BP神经网络模型进行训练;
确定故障线路:在变电站的每条出线线路中设置零序电流互感器,通过零序电流互感器获取各条出线线路的电流初始行波和暂态信号,将电流初始行波和暂态信号输入训练好的BP神经网络进行选取故障线路。
上述方法中,所述故障路线的选取过程包括以下步骤:
获取电流初始行波零模分量的模极大值及极性:利用零序电流互感器获取各条线路的零模电流,通过小波分析方法提取初始行波波头的模极大值和极性;
提取暂态主频幅值和相位:利用零序电流互感器获取零模电流暂态波形,通过FFT算法得到各条线路暂态主频的幅值和相位;
通过神经网络进行故障选线:将提取出的初始电流行波的模极大值、极性和暂态主频的幅值、极性输入训练好的BP神经网络,确定故障线路。
上述方法中,采用ATP仿真软件进行建立变电站电缆出线仿真模型。
上述方法中,所述出线线路采用三芯结构,电缆线路的金属屏蔽层双端直接接地的方式,并且架空线路的末端悬空。
上述方法中,每条出线线路中设置的线路故障与其它两条出线线路设置的线路故障不同。
上述方法中,所述线路故障包括电缆主绝缘故障、电缆线路与架空线路连接处金属性接地故障和架空线路金属性接地故障。
上述方法中,所述变电站电缆出线故障仿真模型的建立过程包括以下步骤:
仿真建模工具和数据分析工具的选择:仿真建模工具选择4.2.0版本的PSCAD,数据分析工具选择7.1版本的MATLAB;
建立变电站电缆出线故障仿真模型和仿真模块:所述变电站电缆出线故障仿真模型包括变压器,在变压器的出线侧连接有三条出线线路,每条出线线路中均包含电缆线路和架空线路,所述电缆线路一端与变压器相连,另一端与架空线路一端相连,架空线路的另一端悬空,在每条出线线路中均设置有仿真线路故障;所述仿真模块包括电缆线路模块、架空线路模块、短路故障与故障控制模块、电缆主绝缘故障与架空线故障设置模块;
仿真参数设置:对PSCAD仿真参数设置、电缆参数、架空线路参数和故障控制器参数进行设置;
生成变电站电缆出线故障仿真模型:根据仿真模块的建立与参数设置生成变电站电缆出线故障仿真模型。
本发明的有益效果是:本发明提出了一种利用人工神经网络对行波法和暂态主频法进行融合的故障选线方法,不仅实现了行波法和暂态主频法两者的优势互补,而且解决了当前小电流接地系统选线困难的问题,有效实现了变电站电缆出线及其配电线路的故障选线。
具体实施方式
为能清楚说明本方案的技术特点,下面通过具体实施方式,并结合其附图,对本发明进行详细阐述。本发明省略了对公知组件和处理技术及工艺的描述以避免不必要地限制本发明。
如图1所示,本发明的一种基于行波法和暂态主频法的变电站电缆出线故障监测方法,它包括以下步骤:
建立变电站电缆出线故障仿真模型:根据变电站电缆出线及配网模型建立变电站电缆出线故障仿真模型,所述变电站电缆出线故障仿真模型包括变压器,在变压器的出线侧连接有三条出线线路,每条出线线路中均包含电缆线路和架空线路,所述电缆线路一端与变压器相连,另一端与架空线路一端相连,架空线路的另一端悬空,在每条出线线路中均设置有仿真线路故障;
获取训练样本:分别对变电站电缆出线故障仿真模型中各条出线线路设置不同故障距离、不同过渡电阻以及不同故障初相角进行仿真,提取各条出线线路的电流初始行波和暂态信号;根据电流初始行波零模分量的幅值、极性以及暂态主频的幅值、相位,得到训练样本;
BP神经网络训练:利用训练样本对BP神经网络模型进行训练;
确定故障线路:在变电站的每条出线线路中设置零序电流互感器,通过零序电流互感器获取各条出线线路的电流初始行波和暂态信号,将电流初始行波和暂态信号输入训练好的BP神经网络进行选取故障线路。
如图2所示,本发明所述故障路线的选取过程包括以下步骤:
获取电流初始行波零模分量的模极大值及极性:利用零序电流互感器获取各条线路的零模电流,通过小波分析方法提取初始行波波头的模极大值和极性;
提取暂态主频幅值和相位:利用零序电流互感器获取零模电流暂态波形,通过FFT算法得到各条线路暂态主频的幅值和相位;
通过神经网络进行故障选线:将提取出的初始电流行波的模极大值、极性和暂态主频的幅值、极性输入训练好的BP神经网络,确定故障线路。
本发明采用的变电站电缆出线故障仿真模型的具体建立过程如下:
一、仿真建模工具和数据分析工具的选择
电力系统上用于暂态分析的仿真软件主要有EMTP、PSCAD和MATLAB。
EMTP(Electro-Magnetic Transient Program)电磁暂态程序在电力系统中电压等级的电力仿真中广泛应用。它基于梯形积分规则,利用伴随模型作为动态元件,选择节点法建立方程,解代数方程时利用稀疏矩阵和LU因式分解法。积分步长由使用者指定,并在整个仿真过程中保持不变。EMTP包含频率相关的分布参数输电线路和电缆模型,但其设置较为繁琐,参数不易获得。
PSCAD是一个以图形为基础的电力系统模拟工具。其功能强大,自带模型库并且有友好的人机交互界面,能够显著地提高电力系统电磁暂态模拟研究的效率。借助建模包,使用者可以用图形的方法建立要进行模拟研究的电力系统模型。确定电缆的行波模型需要使用CABLE模块,通过功能选择可以产生单频率模式模型或者完全的频率相关行波模型,其中,每一导电层和绝缘层的半径和特性都是必需的。
MATLAB是Matrix Laboratory(矩阵实验室)的简称,是用于算法的开发、数据可视化、分析以及计算的高级计算语言和交互式环境,主要包括MATLAB和Simulink两大部分。其Simulink部分中的电力系统模块库(Power System Blockset),可用于复杂电力系统的建模,并进行暂态计算;小波分析工具箱(Wavelet Toolbox)适用于信号的分析、去噪、压缩等[43-44]。
在MATLAB的电力系统模块库中没有合适的相应电缆模型,综合考虑后本次建模仿真选择PSCAD4.2.0作为仿真建模工具,MATLAB7.1作为数据处理工具。
二、建立变电站电缆出线故障仿真模型和仿真模块
如图3所示,本发明所述变电站电缆出线故障仿真模型包括变压器,在变压器的出线侧连接有三条出线线路:线路1、线路2和线路3,每条出线线路中均包含电缆线路和架空线路,所述电缆线路一端与变压器相连,另一端与架空线路一端相连,架空线路的另一端悬空,在每条出线线路中均设置有仿真线路故障。由于10kV电缆大多是三芯结构,故普遍采用金属屏蔽层两端直接接地方式。仿真模型中的电缆即采用三芯结构,金属屏蔽层双端直接接地的方式,并且线路末端悬空。在仿真模型中设置了三处不同故障:f1为电缆主绝缘故障,f2为电缆与架空线连接处金属性接地故障,f3为架空线金属性接地故障。线路长度参数设置如下:线路1的电缆长130m,架空线路长6km;线路2的电缆长3.05km,架空线路长7km;线路3的电缆长100m,架空线路长10km。
所述仿真模块包括电缆线路模块、架空线路模块、短路故障与故障控制模块、电缆主绝缘故障与架空线故障设置模块。
(1)电缆线路模块:PSCAD中有三种输电线路或电缆的等效模型:PI型等值电路、Bergeron模型和依频特性模型。在线路处于基波频率下,PI型等值电路和Bergeron模型足够使用,不同之处是,Bergeron模型用分布参数方式来代替PI型等值线路中的LC元件,电阻等都是集中参数。依频特性线路模型考虑到所有频率相关的参数,该模型能对线路上发生较宽频带范围的暂态行波过程进行准确描述。本课题要对主绝缘故障时进行暂态行波测距,故障暂态行波频带较宽(一般几十兆赫兹到上百兆赫兹),因此,选用依频特性线路模型。10kV电缆仿真模型如图4所示,其中C1-C3表示电缆的导体芯线,即A、B、C三相,S1-S3表示电缆的金属屏蔽层,由于PSCAD中不含有三芯电缆模型,故利用三相不带铠装层的单芯电缆,通过设置其相对位置建立了三芯电缆的模型,并通过仿真验证符合三芯电缆的特性。
(2)架空线路模块:PSCAD仿真环境中架空线路模型同样采用依频特性,架空线路仿真模型如图5所示,Tline表示杆塔。
(3)短路故障与故障控制模块:当电缆线路发生短路故障时,故障处的电流就会迅速增大,且故障点的电阻变的很小,此时可以利用软件PSCAD中短路故障模型。故障时刻与故障持续时间可以通过故障控制器来设定和控制。
(4)电缆主绝缘故障与架空线故障设置模块:建立的电力电缆绝缘故障和架空线故障仿真模型,通过改变两段电缆的长度或架空线的长度来改变故障点位置。其中,电缆模型电源侧测量端导体电流的方向为由电源侧流向故障点处;金属护层中电流方向为由故障点处经接地线流向大地;架空线模型直接发生单相金属性接地故障。
三、仿真参数设置
(1)PSCAD的仿真参数设置:通过PSCAD软件的仿真参数设置面板,可以对仿真时间、采样步长、数据输出步长以及数据存放等进行设置。设置仿真时间为0.07s,采样步长为0.5us,数据输出步长为1us。
(2)电缆参数的设置:由于PSCAD中不带有三芯电缆的模型,故根据三芯电缆的特性建立了三芯电缆的仿真模型,并且利用该模型与实际三芯电缆的运行特性进行对比分析,验证该模型可行。电缆线路的名称、稳定状态频率以及电缆长度等参数都可以通过电缆参数设置面板进行设置。
(3)架空线路参数设置:架空线路的名称、稳定状态频率以及长度等参数都可以通过架空线路参数设置面板进行设置。
(4)故障控制器参数的设置:故障时刻与故障持续时间,可以通过故障控制器参数设置面板上进行设置,其中,故障时刻为0.032s,故障持续时间为40ms。
四、生成变电站电缆出线故障仿真模型
根据以上局部模块的建立与参数设置进行整体变电站电缆出线故障仿真模型建立,并在PSCAD仿真参数设置面板中将“Save channels to disk?”选项设为“Yes”,便于将仿真数据导出,利用Matlab进行数据处理。
假设图3中f1处电缆发生电缆主绝缘故障,并且故障相为A相,采用本发明所述方法进行故障选线的过程如下。
1、根据变电站电缆出线及配网模型建立如图6所示仿真模型。
2、利用训练样本对BP神经网络进行训练,通过训练的过程可以使其具有预测和联想记忆能力。BP神经网络的训练过程为:分别对各条出线线路设置不同故障点(位于线路20%,40%,60%、80%处)、不同故障初相角(5°,30°,60°,90°)进行仿真,提取各种情况下初始行波波头的幅值和极性以及暂态主频的幅值和相位,得到48个样本,对经过初始化的BP神经网络进行训练。
3、设置故障点位于各条线路中点,故障初相角45°时设置单相接地故障。
4、利用零序电流互感器获取各条线路的零模电流和零模电流暂态波形,采用MATLAB仿真软件通过小波分析方法提取初始行波波头的模极大值和极性,并通过FFT算法得到各条线路暂态主频的幅值和相位。
5、将提取出的初始电流行波的模极大值、极性和暂态主频的幅值、极性输入训练好的BP神经网络,确定故障线路。
由于行波选线法受故障时刻相角影响较大,受过渡电阻和故障距离影响较小;而基于暂态主频的选线方法受过渡电阻和故障距离影响较大,受故障时刻相角的影响较小;因此,本发明提出了一种利用人工神经网络对行波法和暂态主频法进行融合的故障选线方法,实现了行波法和暂态主频法两者的优势互补,解决了当前小电流接地系统选线困难的问题,有效实现了变电站电缆出线及其配电线路的故障选线。
以上所述只是本发明的优选实施方式,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也被视为本发明的保护范围。