CN1043581C - 一种掺钕、铈、铬的钇铝石榴石晶体 - Google Patents

一种掺钕、铈、铬的钇铝石榴石晶体 Download PDF

Info

Publication number
CN1043581C
CN1043581C CN 94119660 CN94119660A CN1043581C CN 1043581 C CN1043581 C CN 1043581C CN 94119660 CN94119660 CN 94119660 CN 94119660 A CN94119660 A CN 94119660A CN 1043581 C CN1043581 C CN 1043581C
Authority
CN
China
Prior art keywords
crystal
neodymium
yag
cerium
chromium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
CN 94119660
Other languages
English (en)
Other versions
CN1107905A (zh
Inventor
桂尤喜
冀天来
王永国
杨浔
吴树成
李谊军
姚广涛
谷幻英
朱长水
张敏
牛令倩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NO 11 INST MINISTRY OF ELECTRO
Original Assignee
NO 11 INST MINISTRY OF ELECTRO
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NO 11 INST MINISTRY OF ELECTRO filed Critical NO 11 INST MINISTRY OF ELECTRO
Priority to CN 94119660 priority Critical patent/CN1043581C/zh
Publication of CN1107905A publication Critical patent/CN1107905A/zh
Application granted granted Critical
Publication of CN1043581C publication Critical patent/CN1043581C/zh
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Lasers (AREA)
  • Luminescent Compositions (AREA)

Abstract

本发明涉及掺钕、铈、铬的钇铝石榴石激光晶体材料,其化学式为
Y3-x-yNdxCeyAl5-zCrzO12
其中x、y、z分别代表掺入晶体中的Nd3+、Ce3+、Cr3+的原子分数,其掺入浓度范围分别为:
0.03>X;0.03<X≤0.09
3×10-5≤y≤0.06
5×10-5≤Z≤0.10
该材料比掺钕的钇铝石榴石激光效率高30%以上,阈值低,抗紫外辐照和热稳定性能好,并适合于风冷和无水冷条件下长期运行,激光输出稳定可靠。

Description

一种掺钕、铈、铬的钇铝石榴石晶体
本发明涉及一种掺钕、铈、铬的钇铝石榴石激光晶体材料。
现在广泛使用的掺钕钇铝石榴石(以下简称Nd∶YAG)激光晶体材料存在以下三方面不足,一是掺入晶体中的激活离子Nd3+的浓度较低,通常在0.6~1.2at%范围内,因而激光效率低。当Nd3+浓度高于1.2at%时,晶体光学质量明显降低,激光输出性能变差。造成Nd3+浓度低的原因是Nd3+的离子半径比被替代的基质中Y3+的离子半径大得较多,Nd3+进入晶体中引起晶格失配,当掺Nd3+浓度增高时,晶格畸变严重。另一个问题是晶体中Nd3+离子吸收光泵能量的利用率低,即闪光灯泵浦激光效率低。原因是Nd3+的吸收是由4f3电子组态内受迫电偶极跃迁产生,吸收振子强度小、带宽窄。再一个问题是晶体受紫外光辐照容易产生附加着色(色心),色心的形成导致激光输出降低和不稳定。
由于上述问题,Nd∶YAG晶体激光效率不高,尤其是在闪光灯泵浦低能量输入的情况下效率低,并且泵浦需要采取滤紫外措施,否则激光输出能量(或功率)下降或不稳定。
为了提高Nd∶YAG晶体的激光效率,长期以来人们开展了大量研究工作。概括起来这些工作主要有几个方面:一是在Nd∶YAG晶体中掺入离子半径比Nd3+小的离子,进行体积补偿,以减小因掺Nd3+所引起的晶格畸变,从而达到提高晶体光学质量和激光效率的目的。例如Nd∶Lu∶YAG晶体(USP,3.632,521),其中Lu3+是掺入的离子半径比Nd3+小的体积补偿离子。这种晶体由于激光效率提高不明显,同时Lu2O3原材料价格昂贵,用量又较大,故实际生产中未采用。另一种途径是在晶体中掺入敏化离子,利用敏化离子强而宽吸收带能够大量吸收光泵能量并将吸收的能量有效地转移给Nd3+的敏化作用来提高激光输出效率。例如Nd∶Ce∶YAG晶体(J.Mares,Czeech.J.Phys B35,883,1985),其中Ce3+是掺入的敏化离子。要获得高效率的Ce3+向Nd3+能量转移,敏化离子Ce3+与激活离子Nd3+的浓度比例须达到一定的水平,即晶体中应掺入较高浓度的Ce3+离子。但是由于Ce3+的离子半径比被替代的基质中Y3+的离子半径大得较多,较高浓度Ce3+离子掺杂必定造成严重的晶格畸变,导致晶体生长困难和光学质量降低,并且带来晶体热效应增强,热稳定性变差,光束束散角增大等一些不利影响。
为了解决Nd∶Ce∶YAG晶体严重热效应问题,可采用在晶体中掺入晶格补偿离子,以减小晶格畸变和提高晶体热学性能。如Nd∶Tb∶Ce∶YAG晶体(CN1088635)是采用离子半径比Ce3+、Nd3+小的Tb3+作为晶格补偿离子掺入Nd∶Ce∶YAG中部分或全部替代Ce3+,已取得一定效果。但是Tb3+与Nd3+、Ce3+离子都是替代Y3+进入石榴石结构十二面体中心格位,其减小晶格畸变作用效果不如采用离子半径较小的离子替代Al3+进入八面体中心格位明显,因而它对解决Nd∶Ce∶YAG晶体严重热效应问题并不理想。若采用Tb3+全部替代晶体中Ce3+,则因Tb3+对Nd3+的敏化作用远不如Ce3+有效而造成激光效率降低。而且Tb为贵重稀有元素,量少且价格昂贵,大量掺杂和推广应用将受到限制。为了改进,本发明采用普通过渡金属Cr3+离子作为晶格补偿和敏化离子,掺入到Nd∶Ce∶YAG中替代Al3+进入石榴石结构八面体中心格位,同时增强晶格补偿作用和敏化作用。
YAG(Y3Al5O12)晶体为石榴石结构,属立方晶系,空间群Oh(10)-Ia3d,晶格常数12.002埃。YAG中可掺入各种三价稀土离子部分或全部替代Y3+,掺入后保持石榴石晶体结构不变,只是晶格常数稍有改变。离子半径比Y3+大的三价稀土离子可部分替代Y3+,随掺入的稀土离子半径的增大晶格常数略有增大。《激光基质钇铝石榴石的发展》(陆学善编,科学出版社,1972年出版,第19页)书中指出,在YAG中Nd3+只能部分替代Y3+,YAG中掺钕最高重量百分比浓度限为3.20%(原子分数为0.13)。三掺Nd∶Tb∶Ce∶YAG晶体(CN1088635)在其掺杂浓度范围内其石榴石型晶体结构未变,属立方晶系,空间群Oh(10)-Ia3d,晶格常数大致在12.02埃附近。本发明三掺Nd∶Ce∶Cr∶YAG晶体掺钕浓度低于YAG最高掺杂浓度限,并与三掺Nd∶Tb∶Ce∶YAG晶体(CN1088635)掺杂浓度范围相近,为石榴石结构,属立方晶系,空间群Oh(10)-Ia3d,晶格常数在12.002埃附近。
本发明的目的是提高Nd∶YAG晶体激光效率,降低激光阈值,提高抗紫外辐射能力和热稳定性,同时保持晶体较高的光学质量。
本发明的目的可以通过以下措施来达到,在钇铝石榴石中同时掺入钕、铈、铬离子,并控制其浓度。
钇铝石榴石是一种混合氧化物晶体,晶格中阳离子有三种不同的对称位置。Nd3+和Ce3+掺入晶体中替代十二面体中心的Y3+,Cr3+替代八面体中心的Al3+。掺钕、铈、铬的钇铝石榴石晶体化学式可用下式表示:
       Y3-x-yNdxCeyAl5-zCrzO12
其中x、y、z分别代表掺入钇铝石榴石晶体中的Nd3+、Ce3+、Cr3+的原子数,其掺入浓度范围分别为:
0.03>X;0.03<X≤0.09
3×10-5≤Y≤0.06
5×10-5≤Z≤0.10
晶体中激活离子Nd3+产生1.06μm(4F3/24I11/2跃迁)或者1.32μm(4F3/24I13/2跃迁)激光发射。Ce3+为敏化离子,它在340nm和445nm附近有强而宽的吸收带,在480~750nm范围产生强的宽带荧光发射。Nd3+在445nm附近无吸收,在340nm附近无强吸收,而在Ce3+荧光发射波长范围内有强吸收。因此Ce3+可吸收泵浦光中Nd3+不能吸收的部分,并以辐射和无辐射转移方式将吸收的能量转移给Nd3+。Cr3+同时起敏化和体积补偿作用,它在430nm和590nm附近有两个强而宽的吸收带,荧光发射带在650~780nm范围。Cr3+吸收泵浦光能通过2E和4T2态以无辐射和辐射转移方式将吸收的能量转移给Nd3+的激光上能级4F3/2。试验表明,Cr3+可减小因离子半径比Y3+大的Nd3+、Ce3+离子掺入所引起的晶格失配,有效提高晶体中Nd3+、Ce3+浓度。此外Ce3+、Cr3+还可抑制紫外辐照所引起的色心形成。
采用本发明的掺钕、铈、铬的钇铝石榴石(以下简称Nd∶Ce∶Cr∶YAG)晶体,并适当控制掺杂浓度范围,激光效率比Nd∶YAG高30%以上,如果在较低泵浦能量输入条件下,输出效率可高出Nd∶YAG 50%以上,激光阈值在1.5J以下,晶体具有优良抗紫外性能,采用不滤紫外闪光灯泵浦不出现激光输出降低和不稳定,晶体可在较宽的温度范围内稳定工作,采用无水冷或风冷条件长时间运行,激光输出稳定可靠。Nd∶Ce∶Cr∶YAG晶体适用于各种方式运转的Nd∶YAG激光器,特别适合于小型化、无水冷、高可靠激光器中使用。
本发明结合下面实施方案进一步叙述,在YAG中掺入Nd1.5at%,Ce1×10-3~2.0at%,Cr1×10-3~2.0at%,用提拉法生长的此种浓度范围的晶体加工出φ5×80mm激光棒,两端面对1.06μm增透,采用不滤紫外氙灯泵浦,激光输出效率比同样尺寸的Nd∶YAG提高30%以上,若泵浦输入能量较低,效率高50%以上。

Claims (1)

1、一种钇铝石榴石激光晶体材料,有掺钕的钇铝石榴石激光晶体材料,其特征是:该钇铝石榴石激光晶体材料中掺有钕、铈、铬离子,其化学式为:
        Y3-x-yNdxCeyAl5-zCrzO12
其中x、y、z分别代表掺入晶体中的Nd3+、Ce3+、Cr3+的原子分数,其掺入浓度范围分别为:
  0.03>X;0.03<X≤0.09
  3×10-5≤Y≤0.06
  5×10-5≤Z≤0.10
CN 94119660 1994-12-16 1994-12-16 一种掺钕、铈、铬的钇铝石榴石晶体 Expired - Lifetime CN1043581C (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 94119660 CN1043581C (zh) 1994-12-16 1994-12-16 一种掺钕、铈、铬的钇铝石榴石晶体

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 94119660 CN1043581C (zh) 1994-12-16 1994-12-16 一种掺钕、铈、铬的钇铝石榴石晶体

Publications (2)

Publication Number Publication Date
CN1107905A CN1107905A (zh) 1995-09-06
CN1043581C true CN1043581C (zh) 1999-06-09

Family

ID=5039318

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 94119660 Expired - Lifetime CN1043581C (zh) 1994-12-16 1994-12-16 一种掺钕、铈、铬的钇铝石榴石晶体

Country Status (1)

Country Link
CN (1) CN1043581C (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100376508C (zh) * 2005-04-30 2008-03-26 中国科学院理化技术研究所 制备掺钕钆镓石榴石纳米粉的凝胶燃烧合成方法
CN100434574C (zh) * 2005-12-02 2008-11-19 西南技术物理研究所 掺镱和四价铬钇铝石榴石激光晶体的生长方法
CN100447308C (zh) * 2007-04-30 2008-12-31 山东大学 掺杂钙钽镓石榴石晶体的制备方法和用途
CN100447309C (zh) * 2007-04-30 2008-12-31 山东大学 掺杂钙锂钽镓石榴石晶体的制备方法和用途
US20120020073A1 (en) * 2009-03-23 2012-01-26 Koninklijke Philips Electronics N.V. Optically pumped solid-state laser and lighting system comprising said solid-state laser
CN103409805A (zh) * 2013-08-13 2013-11-27 安徽环巢光电科技有限公司 一种掺有钕、铈和铬的钇铝石榴石晶体及其制备方法
CN103409806A (zh) * 2013-08-13 2013-11-27 安徽环巢光电科技有限公司 一种掺钕、铈和铬的钇铝石榴石晶体的退火方法
CN103833348B (zh) * 2013-12-31 2015-07-01 北京雷生强式科技有限责任公司 一种自激辐射吸收材料及其制备方法
CN112919909A (zh) * 2021-03-18 2021-06-08 苏州璋驰光电科技有限公司 一种用于调q激光的复合结构激光陶瓷及其制备方法

Also Published As

Publication number Publication date
CN1107905A (zh) 1995-09-06

Similar Documents

Publication Publication Date Title
Verstegen et al. Cerium and terbium luminescence in LaMgAl11O19
CN1043581C (zh) 一种掺钕、铈、铬的钇铝石榴石晶体
Auzel Upconversion processes in coupled ion systems
Sehrawat et al. Crystal structure and photophysical features of greenish perovskite type SrLa2Al2O7: Er3+ nanocrystals for down conversion white LEDs
Zhang et al. Upconversion luminescence in Er3+ doped and Yb3+/Er3+ codoped yttria nanocrystalline powders
Zhang et al. Photoluminescence properties of Ca3WO6: Eu3+ red phosphor
Chai et al. 2.7 μm emission from transparent Er3+, Tm3+ codoped yttrium aluminum garnet (Y3Al5O12) nanocrystals–tellurate glass composites by novel comelting technology
Liu et al. Dominant red emission (4F9/2→ 4I15/2) via upconversion in YAG (Y3Al5O12): Yb3+, Er3+ nanopowders
Zhang et al. Synthesis and characterizations of novel Ba2La8 (SiO4) 6O2: Eu3+ oxyapatite phosphors
CN100484896C (zh) 发绿光的高硅氧玻璃的制造方法
CN104804737A (zh) 一种Gd2O3:Dy3+纳米颗粒的合成方法
Pang et al. Upconversion luminescence properties of Er3+–Bi3+ codoped CaSnO3 nanocrystals with perovskite structure
Yan et al. Luminescence properties of rare earth (Eu3+ and Tb3+ complexes with conjugated carboxylic acids and 1, 10-phenanthroline incorporated in silica matrix
Zharikov et al. Active media for high-efficiency neodymium lasers with nonselective pumping
Zhang et al. Photoluminescence, transmittance and electrical properties of Eu3+-doped Al2O3-SrO glasses synthesized by an aerodynamic levitation technique
Tian et al. Structure, luminescence properties and anti-thermal quenching of a novel Eu3+-activated red phosphor based on the negative thermal expansion material In0. 5Sc1. 5 (MoO4) 3
Wang et al. Al2O3–Ce: YAG composite phosphor ceramics for white laser lighting: Novel preparation and regulatable properties
CN102102017B (zh) 发光材料及其制备方法
Lu et al. High-efficient, bicolor-emitting GdVO4: Dy3+ phosphor under near ultraviolet excitation
Liu et al. Tunable Photoluminescence and cathodoluminescence properties of Eu3+-doped LaInO3 nanocrystalline phosphors
Tanaka et al. Cu+-doped CaO P2O5 glasses for lasers
Tao et al. Effect of Al3+ on the spectroscopic properties of Eu2+-and Tb3+-Doped high silica glass
CN115849721A (zh) 一种无机钙钛矿量子点玻璃及其制备方法
WO2023184675A1 (zh) 一种近紫外激发的led用红色荧光粉及制备方法
Zhang et al. Upconversion photoluminescence properties of Er3+-doped Ca12Al14O33 aluminate ceramics

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CX01 Expiry of patent term

Expiration termination date: 20141216

Granted publication date: 19990609