CN104330362B - 一种非接触式基于超连续衰荡光谱的全血分类系统及方法 - Google Patents

一种非接触式基于超连续衰荡光谱的全血分类系统及方法 Download PDF

Info

Publication number
CN104330362B
CN104330362B CN201410546826.8A CN201410546826A CN104330362B CN 104330362 B CN104330362 B CN 104330362B CN 201410546826 A CN201410546826 A CN 201410546826A CN 104330362 B CN104330362 B CN 104330362B
Authority
CN
China
Prior art keywords
whole blood
whole
collection
blood sample
mirror
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201410546826.8A
Other languages
English (en)
Other versions
CN104330362A (zh
Inventor
万雄
王建
刘鹏希
章婷婷
王建宇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Institute of Technical Physics of CAS
Original Assignee
Shanghai Institute of Technical Physics of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Institute of Technical Physics of CAS filed Critical Shanghai Institute of Technical Physics of CAS
Priority to CN201410546826.8A priority Critical patent/CN104330362B/zh
Publication of CN104330362A publication Critical patent/CN104330362A/zh
Application granted granted Critical
Publication of CN104330362B publication Critical patent/CN104330362B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Investigating Or Analysing Biological Materials (AREA)

Abstract

本发明公开了一种非接触式基于超连续衰荡光谱的全血分类系统及方法。该方法采用超连续谱光纤激光器作为超连续谱光源,照射放置在衰荡样品腔中的全血试管,对整个超连续谱段取均匀间隔分布的M个波长,然后对该全血试管进行超连续谱的衰荡时间分辨光谱信号进行检测与分析,得到该全血样品整个谱段M个波长对应的衰荡时间t1,t2,t3,……,tM作为细胞分类特征。采用BP神经网络分类器,进行不同种类动物血细胞的判别。本发明的有益效果是,光源强度高相干性好;针对M个波长的M个光电探测器,进行衰荡时间的同步检测,提高了整个谱段衰荡时间检测的实时性;超连续谱与衰荡光谱的结合方法提高了全血鉴别的灵敏度,可在非接触情况下改进全血分类的效果。

Description

一种非接触式基于超连续衰荡光谱的全血分类系统及方法
技术领域
本发明涉及一种全血分类技术,尤其涉及一种非接触式基于超连续衰荡光谱(ring-down spectroscopy)的全血分类系统及方法。
背景技术
在进出口检测检疫部门,血液制品的检验与分类是件重要且复杂的事情。因为对于血液这种特殊样品,开放式的采集可能被操作所污染,且血样中可能携带的致病因子可能会对检测人员造成危害。因此,非接触式的能判断是何种动物血液的全血分类检测方法和仪器是急需解决的事情。
流式细胞术在血细胞分类识别中是种常见方法,但因需要探针取样,所以不满足非接触式的要求,需要开发新的方法和技术。吸收光谱技术是非接触式全血分类鉴别的可行方法之一,其通常采用氙灯或卤钨灯作为连续谱源,但试管中的全血样厚度很大,普通光源穿透血样的衰减非常大,导致信号微弱,很难探测。
针对该问题,本发明提出一种基于超连续衰荡光谱(ring-down spectroscopy)的非接触式全血神经网络分类方法。该方法采用超连续谱光纤激光器作为超连续谱光源,照射放置在衰荡样品腔中的全血试管,对整个超连续谱段取均匀间隔分布的M个波长,然后对该全血试管进行超连续谱的衰荡时间分辨光谱信号进行检测与分析,得到该全血样品整个谱段M个波长对应的衰荡时间t1,t2,t3,……,tM作为细胞分类特征。采用后向传播(backpropagation,简称BP)神经网络分类器,进行不同种类动物血细胞的判别。
本发明的有益效果是,采用了超连续谱激光光源,比常规光源氙灯或卤钨灯强度高相干性好;分光后采用针对M个波长的M个光电探测器,进行衰荡时间的同步检测,提高了整个谱段衰荡时间检测的实时性;相对常规吸收光谱测试,超连续谱衰荡光谱方法结合光谱及时域检测,提高了全血鉴别的灵敏度,可在非接触情况下改进全血分类的效果。
发明内容
本发明的目的在于提供一一种非接触式基于超连续衰荡光谱的全血分类系统及方法,克服传统流式细胞术接触采样的弊端,满足检测检疫部门特殊场合的需求。
本发明的技术方案是这样来实现的,非接触式基于超连续衰荡光谱的全血神经网络分类方法所采用的硬件系统主要由超连续谱激光器、衰荡样品腔、分光系统、电路系统及计算机构成。其中衰荡样品腔主要由具有高反射镜面的左腔镜和右腔镜,以及固定器、采集光纤固定器及试管支架组成。分光系统主要由光纤接头、入射狭缝、光栅、准直镜、聚焦镜、一维狭缝阵列及一维探测器阵列组成。电路系统主要包括探测器阵列供电电路、探测器阵列信号转换放大采集电路及USB接口。
分类方法是这样来实现的,超连续谱激光器发出的脉冲激光经过通过输出尾纤输出,输出尾纤固定在固定器,采集光纤固定在采集光纤固定器上,并通过光纤接头与分光系统联接。测试时,全血试管固定安放在试管支架上。脉冲激光穿过左腔镜、全血样品后,透射光谱分布与全血样品的光学性质有关,此外由于吸收其强度减少,部分激光穿过右腔镜、通过采集光纤进入随后的分光系统进行光谱采集与分析,部分激光经右腔镜的高反射率镜面反射再次穿过全血样品,光强进一步减小,光束再经左腔镜的高反射率镜面反射再次穿过全血样品,从而在衰荡腔内来回振荡,每次振荡都有部分激光穿过右腔镜、通过采集光纤进入随后的分光系统进行光谱采集与分析。
进入分光系统的激光依次经过入射狭缝,被准直镜反射,然后经光栅衍射,再经聚焦镜聚焦。在聚焦的一级衍射光谱位置处放置一维狭缝阵列,一维狭缝阵列覆盖整个一级衍射光谱宽度,由M条等间距等宽度的狭缝组成,用以从整个光谱段选取M个波长进行探测。M条狭缝出口排列一维探测器阵列,它由M个快速响应分立探测器元件组成,用以探测M个波长的光强随时间的变化。探测器阵列供电电路用来对一维探测器阵列进行供电,一维探测器阵列的信号经过探测器阵列信号转换放大采集电路进行同步放大、采集及模数转换,转换后的信号经过USB接口传送到计算机USB接口,被计算机中的主程序接收并进行分析。
超连续谱整个谱段M个波长的信号的强度随振荡次数的增加而逐渐减少,当采集到的信号强度为初始强度的1/e时对应的时间为衰荡时间,通过主程序进行信号随时间的分析,可计算全血样品整个谱段对应M个波长的衰荡时间t1,t2,t3,……,tM,把这些数据进行存储以供细胞鉴别。
本发明采用BP(back propagation,后向传播)神经网络算法进行动物全血分类鉴别。设需要分类的动物种类数目为N,采用三层BP神经网络,由输入层、隐含层及输出层组成。输入层由M个神经元组成;隐含层由P个神经元组成;输出层由N个神经元组成,把N种动物进行排序S1,S2,S3,……,SN,一种动物对应输出层中的一个神经元。采集N种动物的大量全血样品进行BP神经网络训练,对每个已知种类的全血样品进行训练,最终确定连接权值和阀值。
进行未知全血样品分类鉴别时,对其进行测试,把测得的t1,t2,t3,……,tM作为输入层的输入向量[t1,t2,t3,……,tM],计算BP神经网络的输出,输出层中输出为1的神经元序号对应该全血样品的类别。
本发明的有益效果是,采用了超连续谱激光光源,比常规光源氙灯或卤钨灯强度高相干性好;分光后采用针对M个波长的M个光电探测器,进行衰荡时间的同步检测,提高了整个谱段衰荡时间检测的实时性;相对常规吸收光谱测试,超连续谱衰荡光谱方法结合光谱及时域检测,提高了全血鉴别的灵敏度,可在非接触情况下改进全血分类的效果。
附图说明
图1为本发明的原理图,图2为本发明采用的分类算法示意图,图中:1——超连续谱激光器;2——输出尾纤;3——固定器;4——衰荡样品腔;5——左腔镜;6——试管支架;7——全血试管;8——全血样品;9——右腔镜;10——采集光纤固定器;11——采集光纤;12——光纤接头;13——分光系统;14——入射狭缝;15——光栅;16——准直镜;17——聚焦镜;18——一维狭缝阵列;19——一维探测器阵列;20——探测器阵列供电电路;21——探测器阵列信号转换放大采集电路;22——电路系统;23——USB接口;24——计算机USB接口;25——计算机;26——输入层;27——隐含层;28——输出层;26——神经元。
具体实施方式
非接触式基于超连续衰荡光谱的全血神经网络分类方法所采用的硬件系统结构如图1所示,硬件系统主要由超连续谱激光器1、衰荡样品腔4、分光系统13、电路系统22及计算机25构成。其中衰荡样品腔4主要由具有高反射镜面的左腔镜5和右腔镜9,以及固定器3、采集光纤固定器10及试管支架6组成。分光系统13主要由光纤接头12、入射狭缝14、光栅15、准直镜16、聚焦镜17、一维狭缝阵列18及一维探测器阵列19组成。电路系统22主要包括探测器阵列供电电路20、探测器阵列信号转换放大采集电路21及USB接口23。
在下述具体实施例中
超连续谱激光器1光谱范围400nm-2400nm,功率2.4W,超连续谱激光脉冲脉宽5ps。其发出的脉冲激光通过输出尾纤2输出,输出尾纤2固定在固定器3,采集光纤11固定在采集光纤固定器10上,并通过光纤接头12与分光系统13联接。测试时,全血试管7固定安放在试管支架6上。脉冲激光穿过左腔镜5、全血样品8后,透射光谱分布与全血样品8的光学性质有关,此外由于吸收其强度减少,部分激光穿过右腔镜9、通过采集光纤11进入随后的分光系统13进行光谱采集与分析,部分激光经右腔镜9的高反射率镜面反射再次穿过全血样品8,光强进一步减小,光束再经左腔镜5的高反射率镜面反射再次穿过全血样品8,从而在衰荡腔内来回振荡,每次振荡都有部分激光穿过右腔镜9、通过采集光纤11进入随后的分光系统13进行光谱采集与分析。
进入分光系统13的激光依次经过入射狭缝14,被准直镜16反射,然后经光栅15衍射,再经聚焦镜17聚焦。在聚焦的一级衍射光谱位置处放置一维狭缝阵列18,一维狭缝阵列覆盖整个一级衍射光谱宽度,由M条等间距等宽度的狭缝组成,用以从整个光谱段选取M个波长进行探测。M条狭缝出口排列一维探测器阵列19,它由M个快速响应分立探测器元件组成,用以探测M个波长的光强随时间的变化。探测器阵列供电电路20用来对一维探测器阵列19进行供电,一维探测器阵列19的信号经过探测器阵列信号转换放大采集电路21进行同步放大、采集及模数转换,转换后的信号经过USB接口23传送到计算机USB接口24,被计算机25中的主程序接收并进行分析。
超连续谱整个谱段M个波长的信号的强度随振荡次数的增加而逐渐减少,当采集到的信号强度为初始强度的1/e时对应的时间为衰荡时间,通过主程序进行信号随时间的分析,可计算全血样品8整个谱段对应M个波长的衰荡时间t1,t2,t3,……,tM,把这些数据进行存储以供细胞鉴别。
本发明采用BP(back propagation,后向传播)神经网络算法(如图2所示)进行动物全血分类鉴别。设需要分类的动物种类数目为N,采用三层BP神经网络,由输入层26、隐含层27及输出层28组成。输入层26由M个神经元29组成;隐含层27由P个神经元29组成;输出层28由N个神经元组成,把N种动物进行排序S1,S2,S3,……,SN,一种动物对应输出层中的一个神经元。
采集N种动物的大量全血样品进行BP神经网络训练,对每个已知种类的全血样品进行下列训练步骤:
1.确定该动物在输出层的序号,即S的序号,则该序号的输出层神经元输出为1,其它输出层神经元输出为0,确定期望输出向量。例:动物排序为3,则期望输出向量为[0,0,1,0,0…,0]。
2.进行全血样品测试,将测得的t1,t2,t3,……,tM作为输入层26的输入向量[t1,t2,t3,……,tM]。
3.指定一个很小的误差E,随机给定各神经元间的连接权值及各神经元的阀值。
4.计算隐含层、输出层各神经元的输出。求出输出向量与期望输出向量的误差,如果误差大于E,则将误差反向传递用以修正各神经元间的连接权值及各神经元的阀值。
5.以修正后的连接权值和阀值,再重复第4步,直至误差小于E结束。
对大量初始已知种类的全血样品进行BP神经网络训练,最终确定连接权值和阀值。
进行未知全血样品分类鉴别时,对其进行测试,把测得的t1,t2,t3,……,tM作为输入层26的输入向量[t1,t2,t3,……,tM],计算BP神经网络的输出,输出层中输出为1的神经元序号对应该全血样品的类别。

Claims (2)

1.一种非接触式基于超连续衰荡光谱的全血分类系统,它包括超连续谱激光器(1)、衰荡样品腔(4)、分光系统(13)、电路系统(22)及计算机(25)其特征在于:
所述的衰荡样品腔(4)包括具有高反射镜面的左腔镜(5)和右腔镜(9),以及固定器(3)、采集光纤固定器(10)及试管支架(6);
所述的分光系统(13)包括光纤接头(12)、入射狭缝(14)、光栅(15)、准直镜(16)、聚焦镜(17)、一维狭缝阵列(18)及一维探测器阵列(19);
所述的电路系统(22)包括探测器阵列供电电路(20)、探测器阵列信号转换放大采集电路(21)及USB接口(23);
超连续谱激光器(1)发出的脉冲激光通过输出尾纤(2)输出,输出尾纤(2)固定在固定器(3),采集光纤(11)固定在采集光纤固定器(10)上,并通过光纤接头(12)与分光系统(13)联接;测试时,全血试管(7)固定安放在试管支架(6)上,脉冲激光穿过左腔镜(5)、全血样品(8)后,透射光谱分布与全血样品(8)的光学性质有关,此外由于吸收其强度减少,部分激光穿过右腔镜(9)、通过采集光纤(11)进入随后的分光系统(13)进行光谱采集与分析,部分激光经右腔镜(9)的高反射率镜面反射再次穿过全血样品(8),光强进一步减小,光束再经左腔镜(5)的高反射率镜面反射再次穿过全血样品(8),从而在衰荡腔内来回振荡,每次振荡都有部分激光穿过右腔镜(9)、通过采集光纤(11)进入随后的分光系统(13)进行光谱采集与分析;进入分光系统(13)的激光依次经过入射狭缝(14),被准直镜(16)反射,然后经光栅(15)衍射,再经聚焦镜(17)聚焦;在聚焦的一级衍射光谱位置处放置一维狭缝阵列(18),一维狭缝阵列覆盖整个一级衍射光谱宽度,由M条等间距等宽度的狭缝组成,用以从整个光谱段选取M个波长进行探测,M条狭缝出口排列一维探测器阵列(19),它由M个快速响应分立探测器元件组成,用以探测M个波长的光强随时间的变化;探测器阵列供电电路(20)用来对一维探测器阵列(19)进行供电,一维探测器阵列(19)的信号经过探测器阵列信号转换放大采集电路(21)进行同步放大、采集及模数转换,转换后的信号经过USB接口(23)传送到计算机USB接口(24),被计算机(25)中的主程序接收并进行分析。
2.一种基于权利要求1所述的非接触式基于超连续衰荡光谱的全血分类系统的全血样品的类别分析方法,其特征在于方法如下:
由一维探测器阵列(19)获取的超连续谱整个谱段M个波长的信号的强度随振荡次数的增加而逐渐减少,当采集到的信号强度为初始强度的1/e时对应的时间为衰荡时间,通过主程序进行信号随时间的分析,可计算全血样品(8)整个谱段对应M个波长的衰荡时间t1,t2,t3,……,tM,把这些数据进行存储以供细胞鉴别;
采用BP神经网络算法进行动物全血分类鉴别,设需要分类的动物种类数目为N,采用三层BP神经网络,由输入层(26)、隐含层(27)及输出层(28)组成;输入层(26)由M个神经元(29)组成;隐含层(27)由P个神经元(29)组成;输出层(28)由N个神经元组成,把N种动物进行排序S1,S2,S3,……,SN,一种动物对应输出层中的一个神经元;
采集N种动物的大量全血样品进行BP神经网络训练,对每个已知种类的全血样品进行训练,最终确定连接权值和阀值,进行未知全血样品分类鉴别时,对其进行测试,把测得的t1,t2,t3,……,tM作为输入层的输入向量[t1,t2,t3,……,tM],计算BP神经网络的输出,输出层中输出为1的神经元序号对应该全血样品的类别。
CN201410546826.8A 2014-10-16 2014-10-16 一种非接触式基于超连续衰荡光谱的全血分类系统及方法 Active CN104330362B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410546826.8A CN104330362B (zh) 2014-10-16 2014-10-16 一种非接触式基于超连续衰荡光谱的全血分类系统及方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410546826.8A CN104330362B (zh) 2014-10-16 2014-10-16 一种非接触式基于超连续衰荡光谱的全血分类系统及方法

Publications (2)

Publication Number Publication Date
CN104330362A CN104330362A (zh) 2015-02-04
CN104330362B true CN104330362B (zh) 2017-02-01

Family

ID=52405132

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410546826.8A Active CN104330362B (zh) 2014-10-16 2014-10-16 一种非接触式基于超连续衰荡光谱的全血分类系统及方法

Country Status (1)

Country Link
CN (1) CN104330362B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11079401B2 (en) 2016-03-09 2021-08-03 9106634 Canada Ltd. Apparatus and method for indicating at least one property related to an object
CN108801985A (zh) * 2017-05-03 2018-11-13 中国科学院大连化学物理研究所 一种荧光光谱和吸收光谱集为一体的光谱仪
JP7057820B2 (ja) * 2017-07-19 2022-04-20 シーメンス・ヘルスケア・ダイアグノスティックス・インコーポレーテッド ハイパースペクトルイメージングを用いた検体評価方法及び検体評価装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101933809A (zh) * 2010-08-31 2011-01-05 天津大学 多波段反射光谱无创血液成分测量装置及方法
CN103852446A (zh) * 2014-03-31 2014-06-11 中国医学科学院生物医学工程研究所 一种基于光腔衰荡光谱技术的血液成分识别与分析仪器
CN103868870A (zh) * 2014-03-31 2014-06-18 中国医学科学院生物医学工程研究所 一种结合吸收光谱与反射光谱的血液成分分析系统及其分析方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007034681A1 (ja) * 2005-09-07 2007-03-29 National University Corporation Nagoya University 分光方法及び分光装置
CN204165893U (zh) * 2014-10-16 2015-02-18 中国科学院上海技术物理研究所 一种非接触式基于超连续衰荡光谱的全血分类系统

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101933809A (zh) * 2010-08-31 2011-01-05 天津大学 多波段反射光谱无创血液成分测量装置及方法
CN103852446A (zh) * 2014-03-31 2014-06-11 中国医学科学院生物医学工程研究所 一种基于光腔衰荡光谱技术的血液成分识别与分析仪器
CN103868870A (zh) * 2014-03-31 2014-06-18 中国医学科学院生物医学工程研究所 一种结合吸收光谱与反射光谱的血液成分分析系统及其分析方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Development of Broadband Cavity Ring-Down Spectroscopy for Biomedical Diagnostics of Liquid Analytes;S.S.Kiwanuka et al.;《Analytical Chemistry》;20120703;第84卷(第13期);第5489-5493页 *
Spectrally resolved cavity ring down measurement of high reflectivity mirrors using a supercontinuum laser source;Gabriele Schmidl et al.;《APPLIED OPTICS》;20091210;第48卷(第35期);第6754-6759页 *
Ssensitive Method for the Kinetic Measurement of Trace Species in Liquids Using Cavity Enhanced Absorption Spectroscopy with Broad Bandwidth Supercontinuum Radiation;Ssegawa-Ssekintu Kiwanuka et al.;《Analytical Chemical》;20100901;第82卷(第17期);第7498-7501页 *

Also Published As

Publication number Publication date
CN104330362A (zh) 2015-02-04

Similar Documents

Publication Publication Date Title
KR101805941B1 (ko) 입자 분석기에서의 펄스 파라미터 발생
TW516955B (en) Method and apparatus for detecting mastitis by using visible light rays and/or near infrared light
CN100526883C (zh) 金标免疫试纸条的反射式光度计
CN1613007A (zh) 光谱流体分析器
CN108139327A (zh) 在线过程监测
US20190072484A1 (en) Tumor cell detection method and tumor cell detection device
CN104330362B (zh) 一种非接触式基于超连续衰荡光谱的全血分类系统及方法
CN102288306B (zh) 一种同时测量激光器输出单脉冲能量和波形的方法
KR101681422B1 (ko) 다수의 레이저를 사용하는 세포 분석 장치
CN103712914A (zh) 同时检测气溶胶消光和散射系数的激光光腔衰荡光谱仪
CN107044959A (zh) 显微多模态融合光谱检测系统
CN114384548B (zh) 生物气溶胶数浓度廓线拉曼荧光激光雷达系统及预测方法
CN105606584A (zh) 一种使用拉曼光谱鉴别物品一致性的方法和系统
CN105424653A (zh) 用集成光纤探头的水果果肉组织光学特性检测系统和方法
CN109975211A (zh) 基于物联网的拉曼光谱物质监测系统及监测方法
CN108020540A (zh) 一种激光诱导击穿光谱检测系统
CN110763671A (zh) 小型频移激发拉曼检测装置
US10876973B2 (en) System and method for remote detection of SERS spectra
EP3933380A1 (en) Method and system for characterizing particles using an angular detection in a flow cytometer
CN104523241B (zh) 一种生物组织光学特性的检测装置和检测方法
US9513217B2 (en) Non-invasive method and apparatus for screening high-quality seeds
CN108195823A (zh) 一种激光诱导击穿光谱检测系统
CN2938080Y (zh) 金标免疫试纸条的反射式光度计
CN204165893U (zh) 一种非接触式基于超连续衰荡光谱的全血分类系统
CN101616627B (zh) 用于评估样本中的光学深度的光学设备

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant