CN104318321A - 一种钢铁企业多能源介质集成调度优化方法 - Google Patents

一种钢铁企业多能源介质集成调度优化方法 Download PDF

Info

Publication number
CN104318321A
CN104318321A CN201410536017.9A CN201410536017A CN104318321A CN 104318321 A CN104318321 A CN 104318321A CN 201410536017 A CN201410536017 A CN 201410536017A CN 104318321 A CN104318321 A CN 104318321A
Authority
CN
China
Prior art keywords
gas
steam
formula
unit
stm
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201410536017.9A
Other languages
English (en)
Other versions
CN104318321B (zh
Inventor
曾亮
梁小兵
欧燕
叶理德
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wisdri Engineering and Research Incorporation Ltd
Original Assignee
Wisdri Engineering and Research Incorporation Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wisdri Engineering and Research Incorporation Ltd filed Critical Wisdri Engineering and Research Incorporation Ltd
Priority to CN201410536017.9A priority Critical patent/CN104318321B/zh
Publication of CN104318321A publication Critical patent/CN104318321A/zh
Application granted granted Critical
Publication of CN104318321B publication Critical patent/CN104318321B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/04Forecasting or optimisation specially adapted for administrative or management purposes, e.g. linear programming or "cutting stock problem"
    • G06Q10/043Optimisation of two dimensional placement, e.g. cutting of clothes or wood

Landscapes

  • Business, Economics & Management (AREA)
  • Human Resources & Organizations (AREA)
  • Engineering & Computer Science (AREA)
  • Strategic Management (AREA)
  • Economics (AREA)
  • Marketing (AREA)
  • Game Theory and Decision Science (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Development Economics (AREA)
  • Operations Research (AREA)
  • Quality & Reliability (AREA)
  • Tourism & Hospitality (AREA)
  • Physics & Mathematics (AREA)
  • General Business, Economics & Management (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)

Abstract

本发明适用于钢铁企业能源调度技术领域,提供了一种钢铁企业多能源介质集成调度优化方法,包括:获取钢铁企业能源系统网络拓扑结构及除煤气、蒸汽和电力各子系统中可调度的关键设备和其它公辅设备之外各主要生产工序及设备在未来多个调度周期内对煤气、蒸汽和电力三种能源介质的需求量和产生量信息;建立煤气子系统的调度子模型J1;建立蒸汽子系统的调度子模型J2;建立电力子系统的调度子模型J3;建立钢铁企业多能源介质多周期集成优化调度模型为:MinJ=J1+J2+J3,其约束条件为各个子系统需分别满足的所述约束条件的总和;求解优化调度结果,从综合调度和全局优化的角度给出了多能源介质集成优化调度的技术方案,对具体实践的指导意义明确。

Description

一种钢铁企业多能源介质集成调度优化方法
技术领域
本发明属于钢铁企业能源调度技术领域,尤其涉及一种钢铁企业多能源介质集成调度优化方法。
背景技术
钢铁工业是国民经济的基础性支柱产业,同时又是资源、能源密集型产业。能源消耗是决定钢铁工业生产成本和利润的重要因素,也是影响环境负荷的主要原因。一方面,钢铁企业生产流程长,工序、设备繁多,各工序间相互衔接,且每种工序、设备都与多种能源介质关联;另一方面,钢铁企业需要用到的能源种类超过20种,这些能源介质不仅各自存在产耗、储存、缓冲和输配等多种形态,而且相互之间有着复杂的转换、替代等关联关系,这都使得整个钢铁企业能源系统网络结构紧密耦合、错综复杂。因此,对钢铁企业能源系统的研究具有理论和现实两方面的重要意义。
近年来,国内外研究人员已经在钢铁企业能源系统研究工作中取得了许多成果,大致可归为能源预测及能源平衡、调度两个方向。其中,能源平衡、调度的研究成果主要集中在煤气或蒸汽等单一能源介质系统中,而综合考虑多种能源介质的耦合关系并实施优化调度的成果还不多见。文献(孙彦广.钢铁企业能量流网络信息模型及多种能源介质动态调控[C].香山科学会议第356次学术讨论会.2009:123-131.)于2009年在香山科学会议上提出了多种能源介质分解-协调优化策略和实现方法,以提升能源中心调控水平,实现钢铁企业能源系统高效有序运行。文献(罗先喜,苑明哲,徐化岩,等.面向钢铁企业的先进能源管理系统研究新进展[J].信息与控制.2011,40(6):819-828.)把基于全流程优化控制与系统节能思想的能源系统作为钢铁企业能源系统发展的高级阶段。这些成果高屋建瓴,以高度概括的方式为钢铁企业能源系统的研究指明了方向,但唯一的缺憾是它们都聚焦在理论层面,对具体实践的指导不明确。
目前,规模在300万t以上钢铁企业的能源调度大都具备了较好的网络和数据等硬件基础条件,不同程度地实现了能源集中监视,以及能源调度与生产调度的信息共享,但仍然存在一些不可忽视的关键问题,在文献中(张玉庆,徐化岩.钢铁企业能源中心的现状与发展趋势[J].冶金自动化.2011,35(4):15-19.)明确指出:对单一能源介质的调度模型研究较多,多介质协同调度研究较少,而单介质优化无法解决系统优化问题,甚至出现不满足其他介质约束而使优化结果无效的情形。
发明内容
本发明实施例的目的在于提供一种钢铁企业多能源介质集成调度优化方法,以解决现有技术中缺少钢铁企业多能源介质集成调度优化方法的问题。
本发明实施例是这样实现的,一种钢铁企业多能源介质集成调度优化方法,所述方法包括以下步骤:
步骤1,获取钢铁企业能源系统网络拓扑结构及除煤气、蒸汽和电力各子系统中可调度的关键设备和其它公辅设备之外各主要生产工序及设备在未来多个调度周期内对煤气、蒸汽和电力三种能源介质的需求量和产生量信息;
步骤2,建立煤气子系统的调度子模型为:并确定所述煤气子系统的调度子模型的约束条件包括煤气平衡约束、煤气子系统中各单元设备(包含煤气混合站、加压站、煤气柜和放散塔等)的工艺约束,以及除煤气柜消耗的煤气数量之外的变量的非负约束;
其中,为煤气放散惩罚;progas为将剩余的煤气作为商品煤气外售而产生的收益;
步骤3,建立蒸汽子系统的调度子模型为: J 2 = buy fue + fed wat + pun emi stm + pun dwg stm + buy stm , 确定所述蒸汽子系统的调度子模型的约束条件包括:蒸汽平衡约束、蒸汽子系统中各单元设备的工艺约束和所有变量的非负约束;
其中,buyfue为锅炉外购燃料的费用,用于计算燃煤锅炉或掺烧煤气锅炉在煤气之外其他燃料的费用;fedwat为锅炉给水费用;为蒸汽放散惩罚;为蒸汽降级使用惩罚;buystm为外购蒸汽成本;
步骤4,建立电力子系统的调度子模型为:J3=buyele-proele,确定所述电力子系统的调度子模型的约束条件包括电力需求平衡约束、电力子系统中变量的非负约束和外购电量和外售电量不能同时大于0的约束;
其中,buyele为外购电力成本;proele为电力富余时倒送返网带来的收益;
步骤5,建立钢铁企业多能源介质多周期集成优化调度模型为:
Min J=J1+J2+J3,即其目标函数取为各个子系统的目标函数之和,其约束条件为各个子系统需分别满足的所述约束条件的总和;
步骤6,根据所述钢铁企业多能源介质多周期集成优化调度模型求解优化调度结果。
本发明实施例提供的一种钢铁企业多能源介质集成调度优化方法的有益效果包括:
(1)克服了传统研究仅对单一能源介质进行平衡和调度的缺陷,用同一个模型描述煤气-蒸汽-电力等多种介质多周期的集成优化调度这一技术难题,不但综合考虑了钢铁企业多种能源介质的耦合关系,进而实现了对多介质耦合问题进行有效解耦,还从综合调度和全局优化的角度给出了多能源介质集成优化调度的技术方案,对具体实践的指导意义明确。
(2)所建立的钢铁企业煤气-蒸汽-电力等多介质多周期集成优化调度模型具有现有研究成果所不具备的综合性,以及与实际系统的近似性:在煤气子系统中考虑所有煤气公辅设施的工艺约束和合成转炉煤气存在性,在蒸汽子系统中考虑动力厂主要热力设备的单元模型及工艺约束,在电力子系统中考虑分时电价和内部电网分网运行特点。上述特点使得本发明得到的多能源介质集成优化调度方案更具可行性和准确性。
(3)钢铁企业多能源介质集成优化调度这一技术方案的取得,实现了副产煤气的“零”放散,减少了蒸汽了盲目生产,实现了蒸汽的“零”放散,实现了电力负荷的削峰填谷,最达到了充分利用二次能源,提高能源综合利用效率的目的,最终也实现了钢铁企业能源总成本的最小化和经济效益的最大化。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本发明提供的钢铁企业多能源介质集成调度优化方法的流程图;
图2为典型钢铁企业煤气子系统拓扑结构图;
图3为典型钢铁企业蒸汽和电力子系统拓扑结构图;
图4为本发明提供的实施例中某钢铁企业的煤气、蒸汽和电力子系统拓扑结构简图;
图5为本发明提供的实施例中得到的高炉煤气优化调度结果;
图6为本发明提供的实施例中得到的焦炉煤气优化调度结果;
图7为本发明提供的实施例中得到的转炉煤气优化调度结果;
图8为本发明提供的实施例中得到的高压蒸汽优化调度结果;
图9为本发明提供的实施例中得到的中压蒸汽优化调度结果;
图10为本发明提供的实施例中得到的低压蒸汽优化调度结果;
图11为本发明提供的实施例中得到的电力优化调度结果。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
为了说明本发明所述的技术方案,下面通过具体实施例来进行说明。
如图1所示为本发明提供的钢铁企业多能源介质集成调度优化方法的流程图,所述方法包括以下步骤:
步骤1,获取钢铁企业能源系统网络拓扑结构及除煤气、蒸汽和电力各子系统中可调度的关键设备和其它公辅设备之外各主要生产工序及设备在未来多个调度周期内对煤气、蒸汽和电力三种能源介质的需求量和产生量信息。
步骤2,建立煤气子系统的调度子模型为:并确定该煤气子系统的调度子模型的约束条件包括煤气平衡约束、煤气子系统中各单元设备(包含煤气混合站、加压站、煤气柜和放散塔等)的工艺约束,以及除煤气柜消耗的煤气数量之外的变量的非负约束。
其中,为煤气放散惩罚;progas为将剩余的煤气(如焦炉煤气)作为商品煤气外售而产生的收益。
步骤3,建立蒸汽子系统的调度子模型为: J 2 = buy fue + fed wat + pun emi stm + pun dwg stm + buy stm , 确定蒸汽子系统的调度子模型的约束条件包括:蒸汽平衡约束、蒸汽子系统中各单元设备的工艺约束和所有变量的非负约束。
其中,buyfue为锅炉外购燃料的费用,用于计算燃煤锅炉或掺烧煤气锅炉在煤气之外其他燃料的费用;fedwat为锅炉给水费用;为蒸汽放散惩罚;为蒸汽降级使用惩罚;buystm为外购蒸汽成本。
步骤4,建立电力子系统的调度子模型为:J3=buyele-proele,确定电力子系统的调度子模型的约束条件包括电力需求平衡约束、电力子系统中变量的非负约束和外购电量和外售电量不能同时大于0的约束。
其中,buyele为外购电力成本;proele为电力富余时倒送返网带来的收益。
步骤5,建立钢铁企业多能源介质多周期集成优化调度模型为:
Min J=J1+J2+J3,即其目标函数取为各个子系统的目标函数之和,其约束条件为各个子系统需分别满足的约束条件的总和。
步骤6,根据钢铁企业多能源介质多周期集成优化调度模型求解优化调度结果。
本发明实施例,克服了传统研究仅对单一能源介质进行平衡和调度的缺陷,用同一个模型描述煤气-蒸汽-电力等多种介质多周期的集成优化调度这一技术难题,不但综合考虑了钢铁企业多种能源介质的耦合关系,进而实现了对多介质耦合问题进行有效解耦,还从综合调度和全局优化的角度给出了多能源介质集成优化调度的技术方案,对具体实践的指导意义明确。
实施例一
本发明实施例提供的钢铁企业多能源介质集成调度优化方法中,
步骤1中获取的钢铁企业能源系统网络拓扑结构包括:各类能源介质管网信息,以及煤气、蒸汽和电力子系统中的可调度的关键设备和其它公辅设备等单元设备信息。
步骤2中:
Min J 1 = pun emi gas - pro gas = Σ t Σ j ∈ EMI Σ i ∈ GAS p i emi · x i , j , t sume - Σ t Σ i ∈ GAS p i sal · S i , t gas - - - ( 1 )
s . t . ∀ i , t , F i , t gas + Σ j ∈ AUX x i , j , t gen - Σ j ∈ AUX x i , j , t sume - Σ m ∈ BOI c i , m , , t gas - S i , t gas = D i , t gas - - - ( 2 )
∀ j ∈ MIX , t , h i 1 gas · x i 1 , j , t sume + h i 2 gas · x i 2 , j , t sume = h i ′ gas · x i ′ , j , t gen - - - ( 3 )
∀ j ∈ MIX , t , x i 1 , j , t sume + x i 2 , j , t sume = x i ′ , j , t gen - - - ( 4 )
∀ j ∈ MIX , t , x i 1 , j , t sume + x i 2 , j , t sume ≤ A j max - - - ( 5 )
∀ j ∈ MIX , t , α j min ≤ x i 1 , j , t sume / x i 2 , j , t sume ≤ α j max - - - ( 6 )
∀ j ∈ PRE , t , x i , j , t sume = x i ′ , j , t gen - - - ( 7 )
∀ j ∈ PRE , t , x i , j , t sume ≤ A j max - - - ( 8 )
∀ j ∈ HLD , t , V j min ≤ x i , j , t sume · T + V j , t - 1 ≤ V j max - - - ( 9 )
∀ j ∈ HLD , t , | x i , j , t sume | ≤ v j max - - - ( 10 )
∀ j ∈ EMI , t , x i , j , t sume ≤ A j max - - - ( 11 )
x i , j , t sume , x i , j , t gen , S i , t gas ≥ 0 , i ∈ GAS , j ∈ { MIX ∪ PRE ∪ EMI } - - - ( 12 )
式(1)为煤气子系统的目标函数,t为调度周期序号;j为煤气公辅设备序号,EMI为煤气放散塔子集;i为煤气介质序号,GAS为煤气介质集合,包含所有的单一煤气和混合煤气;为煤气i的放散价格,单位为CNY/kNm3为设备j在周期t内煤气i的消耗量,单位为kNm3/h;为煤气i的外售价格,单位为CNY/kNm3为在周期t内煤气i的外售量,单位为kNm3/h。
式(2)为煤气平衡约束,即每种煤气介质i在调度周期t内的供需平衡,具体为煤气i在周期t内的预测产生量与煤气公辅设备的产生量之和,减去煤气公辅设备的消耗量和锅炉的消耗量以及煤气的外售量等于该煤气的预测需求量m为锅炉序号,BOI为锅炉集合。
式(3)~(11)为煤气子系统中各个单元设备的工艺约束条件,具体地:
式(3)~(6)为煤气混合站的工艺约束,MIX为煤气混合站子集,i1、i2为混合站的2种输入煤气介质序号,i′为其输出的混合煤气序号。式(3)为能量平衡约束,为煤气i的热值,单位为GJ/kNm3,相应地,分别为混合站的输入煤气介质i1、i2和输出煤气介质i′的热值,分别为对应的消耗量或产生量。式(4)为物料平衡约束。式(5)为混合能力约束,为煤气混合站的混合能力上限,单位为kNm3/h。式(6)为混合配比约束,分别为煤气混合站j的混合配比上限和下限。
式(7)~(8)为煤气加压站的工艺约束,PRE为煤气加压站子集,i和i′分别为加压站入口和出口煤气介质序号。式(7)为加压站的物料平衡约束,为加压站入口煤气消耗量,为加压站出口煤气产生量。式(8)为加压能力约束,为煤气加压站的加压能力上限,单位为kNm3/h。
式(9)~(10)为煤气柜的工艺约束,HLD为煤气柜子集。式(9)为煤气柜柜位约束,为煤气吞吐量,T为调度周期的时间长度,单位为h,Vj,t-1为煤气柜j在上一周期t-1末的柜位,单位为kNm3分别为煤气柜j的可用柜位上限和下限,单位为kNm3。式(10)为煤气柜吞吐能力约束,为煤气柜j的吞吐能力上限,单位为kNm3/h。
式(11)为煤气放散塔的放散能力约束,EMI为煤气放散塔子集,为煤气放散量,为煤气放散塔的放散能力上限,单位为kNm3/h。
式(12)为除煤气柜消耗的煤气数量之外,其余变量的非负约束。
本发明实施例中,步骤3中:
Min J 2 = buy fue + fed wat + pun emi stm + pun dwg stm + buy stm - - - ( 13 )
buy fue = Σ t Σ m ∈ BOI Σ r ∈ FUE p r fue · c r , m , t fue - - - ( 14 )
fed wat = Σ t Σ m ∈ BOI p wat · c m , t wat - - - ( 15 )
pun emi stm = Σ t Σ s ∈ STM p s emi · E s , t stm - - - ( 16 )
pun dwg stm = Σ t Σ s ∈ STM Σ l ∈ VAL p s dwg · y s , l , t in - - - ( 17 )
buy stm = Σ t Σ s ∈ STM p s buy · B s , t stm - - - ( 18 )
s . t . ∀ s , t , F s , t stm + Σ m ∈ BOI y s , m , t + Σ m ∈ TUR ( y s , n , t out - y s , n , t in ) + Σ s , tl ∈ VAL ( y s , l , t out - y s , l , t in ) + B s , t stm - E s , t stm = D s , t stm - - - ( 19 )
∀ m , t , ( Σ i ∈ GAS h i gas · c i , m , t gas + Σ r ∈ FUE h r fue · c r , m , t fue ) · η m = h s stm · y s , m , t - h wat · c m , t wat - - - ( 20 )
∀ m , t , y s , m , t = c m , t wat - - - ( 21 )
∀ m , t , y s , m , t ≤ A m max - - - ( 22 )
∀ m , t , C i , m min ≤ c i , m , t gas ≤ C i , m max - - - ( 23 )
∀ m , t , H m min ≤ Σ i ∈ GAS h i gas · c i , m , t gas / Σ i ∈ GAS c i , m , t gas ≤ H m max - - - ( 24 )
∀ n , t z n , t = ( h s stm · y s , n , t in - Σ s ′ STM h s ′ stm · y s ′ , n , t out ) · η n - - - ( 25 )
∀ n , t y s , n , t in = Σ s ′ ∈ STM y s ′ , n , t out - - - ( 26 )
∀ n , t Y n in , min ≤ y s , n , t in ≤ Y n in , max - - - ( 27 )
∀ n , t Y s ′ , n out , min ≤ y s ′ , n , t out ≤ Y s ′ , n out , max - - - ( 28 )
∀ n , t z n , t ≤ A n max - - - ( 29 )
∀ l , t y s , l , t in = y s ′ , l , t out - - - ( 30 )
∀ l , t y s , l , t in ≤ A l max - - - ( 31 )
c i , m , t gas , c r , m , t fue , c m , t wat , y s , m , t ≥ 0 i ∈ GAS , r ∈ FUE , s ∈ STM , m ∈ BOI - - - ( 32 )
z n , t ≥ 0 , n ∈ TUR - - - ( 33 )
y s , l , t in , y s ′ , l , t out ≥ 0 , s , s ′ ∈ STM , l ∈ VAL - - - ( 34 )
E s , t stm , B s , t stm ≥ 0 , s ∈ STM - - - ( 35 )
E s , t stm · B s , t stm = 0 , s ∈ STM - - - ( 36 )
其中,式(14)~(18)为目标函数中各个子项的计算方法。式(14)中,m为锅炉序号,BOI为锅炉集合;r为燃料序号,FUE为锅炉燃料集合;为燃料r的外购价格,单位为CNY/(103*kgce);为锅炉m在周期t内燃料r的消耗量,单位为103*kgce/h。式(15)中,pwat为锅炉给水的价格,单位为CNY/t;为锅炉m在周期t内的给水量,单位为t/h。式(16)中,s为蒸汽序号,STM为蒸汽集合;为蒸汽s的放散价格,单位为CNY/t;为在周期t内蒸汽s的放散量,单位为t/h。式(17)中,l为减温减压阀序号,VAL为减温减压阀集合;为蒸汽s的降级价格,单位为CNY/t;为减温减压阀l在周期t内入口蒸汽s的流量,单位为t/h。式(18)中,为蒸汽s的外购价格,单位为CNY/t;为在周期t内蒸汽s的外购量(t/h)。
式(19)为蒸汽平衡约束,即:对于任意等级的蒸汽s在调度周期t内的供需平衡,预测产生量锅炉产汽量ys,m,t、汽轮机出口抽汽/凝汽量减温减压阀出口数量与外购数量之和,减去汽轮机入口消耗量减温减压阀入口数量和放散量等于该等级蒸汽的预测需求量
式(20)~(36)为蒸汽子系统中各个单元设备的工艺约束条件,具体地:
式(20)~(24)为锅炉的工艺约束。式(20)为锅炉的能量平衡约束,为燃料r的热值,单位为GJ/(103*kgce);ηm为锅炉m的效率;为蒸汽s的比焓,单位为GJ/t;hwat为锅炉给水的比焓,单位为GJ/t,为锅炉m在周期t内的给水量,单位为t/h。式(21)为锅炉的物料平衡约束,即在忽略排污率的情况下,锅炉产汽量等于给水量。式(22)为锅炉运行负荷约束,为锅炉m的蒸发能力上限,单位为t/h。式(23)为掺烧/全烧煤气锅炉的煤气流量约束,分别为锅炉m的煤气i流量上限和下限,单位为t/h。式(24)为掺烧/全烧煤气锅炉的混合煤气热值约束,分别为锅炉m的混合煤气热值上限和下限,单位为GJ/kNm3
式(25)~(29)为汽轮机的工艺约束。式(25)为汽轮机的能量平衡约束,s为入口进汽序号,s′为出口抽汽/凝汽序号,模型考虑了多级抽汽的情况,ηn为汽轮机n的效率。式(26)为汽轮机的物流平衡约束,即入口进汽量最终都将以抽汽或凝汽的方式排出。式(27)为入口蒸汽流量约束,分别为汽轮机n入口蒸汽流量上限和下限,单位为t/h。式(28)为出口蒸汽流量约束,分别为汽轮机n出口蒸汽s′的抽汽/凝汽流量上限和下限,单位为t/h。式(29)为汽轮机的额定功率约束,为汽轮机n的额定功率,单位为MW。
式(30)~(31)为减温减压阀的工艺约束。式(30)为减温减压阀的物料平衡约束,即入口蒸汽流量等于出口蒸汽流量s为入口蒸汽序号,s′为出口降温降压后的蒸汽序号。式(31)为其能力约束,为减温减压阀l的能力上限,单位为t/h。
式(32)~(35)为所有变量的非负约束。式(36)为蒸汽放散量和外购量不能同时大于0的约束。
步骤4中:
Min J 3 = buy ele - pro ele = Σ t p t buy · B t ele - Σ t p t sal · S t ele - - - ( 37 ) s . t . ∀ t , F t ele + Σ n ∈ TUR z n , t + B t ele - S t ele = D t ele - - - ( 38 )
B t ele , S t ele ≥ 0 - - - ( 39 )
B t ele · S t ele = 0 - - - ( 40 )
式(37)中,为在周期t内电力的外购价格,单位为CNY/(MW·h),为在周期t内的外购电量,单位为MW·h/h;为在周期t内电力的外售价格,单位为CNY/(MW·h),为在周期t内的外售电量,单位为MW·h/h。
式(38)为电力供需平衡约束,即:预测产生量汽轮机产生的电量zn,t与外购电量之和,减去外售电量等于电力的预测需求量
式(39)为电力子系统中变量的非负约束,式(40)为外购电量和外售电量不能同时大于0的约束。
步骤5中:
Min J = J 1 + J 2 + J 3 s . t . ( 2 ) ~ ( 12 ) ( 19 ) ~ ( 36 ) ( 38 ) ~ ( 40 ) , 即约束条件为前文中式(2)~(12)、(19)~(36)和(38)~(40)定义的约束条件的总和。
进一步的,本发明实施例中步骤6调用智能进化算法进行求解,计算中采用惩罚函数法处理数学模型中的多个约束条件,即个体违反约束条件的程度由惩罚函数确定,通过在目标函数上增加惩罚项来构造新的个体适应度。步骤6之后还可以包括:人工判断是否接受计算求得的解,是则输出该解,否则执行步骤6重新计算求解。
实施例二
本发明提供的实施例二为本发明提供的一种钢铁企业多能源介质集成调度优化方法的具体应用实施例。
以大型全流程钢铁联合企业为例说明。图2为典型钢铁企业煤气子系统拓扑结构图,图3为典型钢铁企业蒸汽和电力子系统拓扑结构图。由图2可知,钢铁企业的主要副产煤气有高炉煤气(BFG)、焦炉煤气(COG)和转炉煤气(LDG),它们分别由高炉、焦炉和转炉产生。各种煤气介质的主管网上配备有对应的煤气柜和放散塔,主要生产工序用户,如炼铁厂、炼钢厂和宽厚板厂等也分别连接到不同的管网中。除单一煤气介质之外,可能还存在混合煤气,它由两种不同的单一介质在混合站混制而成,混合煤气也供给不同的主生产工序用户或热电厂等。由图3可知,蒸汽和电力子系统中包含的单元设备主要有锅炉、蒸汽轮机和减温减压器,其中,燃料锅炉用于燃烧煤气或其他燃料产生蒸汽,蒸汽轮机则由蒸汽驱动产生电力;有些钢铁企业可能还包含燃气-蒸汽联合循环发电机组(CCPP),在图3中,将CCPP拆解为燃气轮机、余热锅炉和蒸汽轮机,燃气轮机用煤气燃烧后产生的高温高压烟气直接推动透平产生电力,做完功之后的烟气输入余热锅炉中产生蒸汽。
图4为某钢铁企业的煤气、蒸汽和电力子系统拓扑结构简图,针对该钢铁企业在未来5个调度周期内的煤气-蒸汽-电力等能源介质进行集成优化调度,周期的时间长度为1h。副产煤气有高炉煤气、焦炉煤气和转炉煤气,蒸汽也分高、中、低压三种不同品质的蒸汽,它们在各个调度周期内的富余量或需求量等预测结果见表1~2。煤气子系统中与每种煤气对应分别设置了1座煤气柜和放散塔,蒸汽和电力子系统中有2台动力锅炉和2台蒸汽轮机,其中,动力锅炉为全烧煤气锅炉,各设备参数见表3~4。
表1各调度周期内副产煤气的富余量(单位:kNm3/h)
表2各调度周期内蒸汽和电力的需求量(单位:t/h或MW.h/h)
表3锅炉设备参数
表4蒸汽轮机设备参数
通过应用本发明公开的方法,经优化计算得到的该钢铁企业在未来5个调度周期内的煤气-蒸汽-电力等多能源介质集成优化调度结果分别如表5~11所示,相应的结果同时用图5~11表示。
表5高炉煤气调度结果(单位:kNm3/h)
Table8SchedulingresultofBFG
表6焦炉煤气调度结果(单位:kNm3/h)
Table9SchedulingresultofCOG
表7转炉煤气调度结果(单位:kNm3/h)
Table10SchedulingresultofLDG
表8高压蒸汽调度结果(单位:t/h)
Table11SchedulingresultofHPS
表9中压蒸汽调度结果(单位:t/h)
Table12SchedulingresultofMPS
表10低压蒸汽调度结果(单位:t/h)
Table13SchedulingresultofLPS
表11电力调度结果(单位:MW.h/h)
Table14SchedulingresultofLPS
由表5~7(分别对应图5~7)可知,所有煤气的富余量加上煤气柜吞吐量均被锅炉吸纳,实现了煤气的“零”放散。锅炉也充分发挥了其作为重要的煤气缓冲用户的功效,在满足其自身工艺约束和安全生产的前提下,锅炉尽可能最大限度的消耗副产煤气,如图5中2#锅炉在周期1、2内的BFG消耗量,图6中1#锅炉在周期1、2内的COG消耗量,以及2#锅炉在周期1、2、3、4内的COG消耗量均已达上限值。
由表8~10(分别对应图8~10)可知,1、2#锅炉产生的高压蒸汽全部分配给汽轮机。中压蒸汽和低压蒸汽的需求量中除少部分外购之外,其余大部分均由1#和2#汽轮机抽汽满足;并且,各等级蒸汽均无放散,有效的避免了蒸汽盲目生产而导致的放空。可以看出,由于1#汽轮机的发电效率较2#高,所以大部分低压蒸汽均由2#汽轮机抽出,这样自发电量较多,但是由于受1#汽轮机凝汽流量上限的限制,在入口高压蒸汽流量较大的前提下,必须有部分做功后的减压蒸汽从中压和低压侧抽出。
各周期的目标函数值见表12。
表12各周期的目标函数值(单位:CNY/h)
Table12Objectivevalueineachschedulingperiod
本领域普通技术人员还可以理解,实现上述实施例方法中的全部或部分步骤是可以通过程序来指令相关的硬件来完成,所述的程序可以存储于一计算机可读取存储介质中,所述的存储介质,包括ROM/RAM、磁盘、光盘等。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (7)

1.一种钢铁企业多能源介质集成调度优化方法,其特征在于,所述方法包括:
步骤1,获取钢铁企业能源系统网络拓扑结构及除煤气、蒸汽和电力各子系统中可调度的关键设备和其它公辅设备之外各主要生产工序及设备在未来多个调度周期内对煤气、蒸汽和电力三种能源介质的需求量和产生量信息;
步骤2,建立煤气子系统的调度子模型为:并确定所述煤气子系统的调度子模型的约束条件包括煤气平衡约束、煤气子系统中各单元设备的工艺约束,以及除煤气柜消耗的煤气数量之外的变量的非负约束;所述煤气子系统中的单元设备包含煤气混合站、加压站、煤气柜和放散塔;
其中,为煤气放散惩罚;progas为将剩余的煤气作为商品煤气外售而产生的收益;
步骤3,建立蒸汽子系统的调度子模型为: J 2 = buy fue + fed wat + pun emi stm + pun dwg stm + buy stm , 确定所述蒸汽子系统的调度子模型的约束条件包括:蒸汽平衡约束、蒸汽子系统各单元设备的工艺约束和所有变量的非负约束;
其中,buyfue为锅炉外购燃料的费用,用于计算燃煤锅炉或掺烧煤气锅炉在煤气之外其他燃料的费用;fedwat为锅炉给水费用;为蒸汽放散惩罚;为蒸汽降级使用惩罚;buystm为外购蒸汽成本;
步骤4,建立电力子系统的调度子模型为:J3=buyele-proele,确定所述电力子系统的调度子模型的约束条件包括电力需求平衡约束、电力子系统中变量的非负约束和外购电量和外售电量不能同时大于0的约束;
其中,buyele为外购电力成本;proele为电力富余时倒送返网带来的收益;
步骤5,建立钢铁企业多能源介质多周期集成优化调度模型为:
MinJ=J1+J2+J3,即其目标函数取为各个子系统的目标函数之和,其约束条件为各个子系统需分别满足的所述约束条件的总和;
步骤6,根据所述钢铁企业多能源介质多周期集成优化调度模型求解优化调度结果。
2.如权利要求1所述的方法,其特征在于,所述步骤1中获取的钢铁企业能源系统网络拓扑结构包括:各类能源介质管网信息,以及煤气、蒸汽和电力子系统中的可调度的关键设备和其它公辅设备的单元设备信息。
3.如权利要求1所述的方法,其特征在于,所述步骤2中:
Min J 1 = pun emi gas - pro gas = Σ t Σ j ∈ EMI Σ i ∈ GAS p i emi · s i , j , t sume - Σ t Σ t ∈ GAS p i sal · S i , t gas - - - ( 1 )
s . t . ∀ i , t , F i , t gas + Σ j ∈ AUX x i , j , t gen - Σ j ∈ AUX x i , j , t sume - Σ m ∈ BOI c i , m , t gas - S i , t gas = D i , t gas - - - ( 2 )
∀ j ∈ MIX , t , h i 1 gas · x i 1 , j , t sume + h i 2 gas · x i 2 , j , t sume = h i ′ gas · x i ′ , j , t gen - - - ( 3 )
∀ j ∈ MIX , t , x i 1 , j , t sume + x i 2 , j , t sume = x i ′ , j , t gen - - - ( 4 )
∀ j ∈ MIX , t , x i 1 , j , t sume + x i 2 , j , t sume ≤ A j max - - - ( 5 )
∀ j ∈ MIX , t , α j min ≤ x i 1 , j , t sume / x i 2 , j , t sume ≤ α j max - - - ( 6 )
∀ j ∈ PRE , t , x i , j , t sume = x j ′ , j , t gen - - - ( 7 )
∀ j ∈ PRE , t , x i , j , t sume ≤ A j max - - - ( 8 )
∀ j ∈ HLD , t , v j min ≤ x i , j , t sume · T + V j , t - 1 ≤ V j max - - - ( 9 )
∀ j ∈ HLD , t , | x i , j , t sume | ≤ v j max - - - ( 10 )
∀ j ∈ EMI , t , x i , j , t sume ≤ A j max - - - ( 11 )
x i , j , t sume , x i , j , t gen , S i , t gas ≥ 0 , i ∈ GAS , j ∈ { MIX ∪ PRE ∪ EMI } - - - ( 12 )
式(1)为煤气子系统的目标函数,t为调度周期序号;j为煤气公辅设备序号,EMI为煤气放散塔子集;i为煤气介质序号,GAS为煤气介质集合,包含所有的单一煤气和混合煤气;为煤气i的放散价格,单位为CNY/kNm3为设备j在周期t内煤气i的消耗量,单位为kNm3/h;为煤气i的外售价格,单位为CNY/kNm3为在周期t内煤气i的外售量,单位为kNm3/h;
式(2)为煤气平衡约束,即每种煤气介质i在调度周期t内的供需平衡,具体为煤气i在周期t内的预测产生量与煤气公辅设备的产生量之和,减去煤气公辅设备的消耗量和锅炉的消耗量以及煤气的外售量等于该煤气的预测需求量m为锅炉序号,BOI为锅炉集合;
式(3)~(11)为煤气子系统中各个单元设备的工艺约束条件:
式(3)~(6)为煤气混合站的工艺约束,MIX为煤气混合站子集,i1、i2为混合站的2种输入煤气介质序号,i′为其输出的混合煤气序号;式(3)为能量平衡约束,为煤气i的热值,单位为GJ/kNm3,相应地,分别为混合站的输入煤气介质i1、i2和输出煤气介质i′的热值,分别为对应的消耗量或产生量;式(4)为物料平衡约束;式(5)为混合能力约束,为煤气混合站的混合能力上限,单位为kNm3/h;式(6)为混合配比约束,分别为煤气混合站j的混合配比上限和下限;
式(7)~(8)为煤气加压站的工艺约束,PRE为煤气加压站子集,i和i′分别为加压站入口和出口煤气介质序号;式(7)为加压站的物料平衡约束,为加压站入口煤气消耗量,为加压站出口煤气产生量;式(8)为加压能力约束,为煤气加压站的加压能力上限,单位为kNm3/h;
式(9)~(10)为煤气柜的工艺约束,HLD为煤气柜子集;式(9)为煤气柜柜位约束,为煤气吞吐量,T为调度周期的时间长度,单位为h,Vj,t-1为煤气柜j在上一周期t-1末的柜位,单位为kNm3分别为煤气柜j的可用柜位上限和下限,单位为kNm3;式(10)为煤气柜吞吐能力约束,为煤气柜j的吞吐能力上限,单位为kNm3/h;
式(11)为煤气放散塔的放散能力约束,EMI为煤气放散塔子集,为煤气放散量,为煤气放散塔的放散能力上限,单位为kNm3/h;
式(12)为除煤气柜消耗的煤气数量之外,其余变量的非负约束。
4.如权利要求1所述的方法,其特征在于,所述步骤3中:
Min J 2 = buy fue + fed wat + pun emi stm + pun dwg stm + buy stm - - - ( 13 )
buy fue = Σ t Σ m ∈ BOI Σ r ∈ FUE p r fue · c r , m , t fue - - - ( 14 )
fed wat = Σ t Σ m ∈ BOI p wat · c m , t wat - - - ( 15 )
pun emi stm = Σ t Σ s ∈ STM p s emi · E s , t stm - - - ( 16 )
p dwg stm = Σ t Σ s ∈ STM Σ l ∈ VAL p s dwg · y s , l , t in - - - ( 17 )
buy stm = Σ t Σ s ∈ STM p s buy · E s , t stm - - - ( 18 )
s . t . ∀ s , t , F s , t stm + Σ m ∈ BOI y s , m , t + Σ n ∈ TUR ( y s , n , t out - y s , n , t in ) + Σ l ∈ VAL ( y s , l , t out - y s , l , t in ) + B s , t stm - E s , t stm = D s , t stm - - - ( 19 )
∀ m , t , ( Σ i ∈ GAS h i gas · c i , m , t gas + Σ r ∈ FUE h r fue · c r , m , t fue ) · η m = h s stm · y s , m , t - h wat · c m , t wat - - - ( 20 )
∀ m , t , y s , m , t = c m , t wat - - - ( 21 )
∀ m , t , y s , m , t ≤ A m max - - - ( 22 )
∀ m , t , C i , m min ≤ c i , m , t gas ≤ C i , m max - - - ( 23 )
∀ m , t , H m min ≤ Σ i ∈ GAS h i gas · c i , m , t gas / Σ i ∈ GAS c i , m , t gas ≤ H m max - - - ( 24 )
∀ n , t , z n , t = ( h s stm · y s , n , t in - Σ s ′ ∈ STM h s ′ stm · y s ′ , n , t out ) · η n - - - ( 25 )
∀ n , t , y s , n , t in = Σ s ′ ∈ STM y s ′ , n , t out - - - ( 26 )
∀ n , t , Y n in , min ≤ y s , n , t in ≤ Y n in , max - - - ( 27 )
∀ n , t , Y s ′ , n out , min · y s ′ , n , t out ≤ Y s ′ , n out , max - - - ( 28 )
∀ n , t , z n , t ≤ A n max - - - ( 29 )
∀ l , t , y s , l , t in = y s ′ , l , t out - - - ( 30 )
∀ l , t , y s , l , t in ≤ A l max - - - ( 31 )
c i , m , t gas , c r , m , t fue , c m , t wat , y s , m , t ≥ 0 , i ∈ GAS , r ∈ FUE , s ∈ STM , m ∈ EOI - - - ( 32 )
zn,t≥0 n∈TUR                                (33)
y s , l , t in , y s ′ , l , t out ≥ 0 , s , s ′ ∈ STM , l ∈ VAL - - - ( 34 )
E s , t stm , B s , t stm ≥ 0 , s ∈ STM - - - ( 35 )
E s , t stm , B s , t stm = 0 , s ∈ STM - - - ( 36 )
式(14)中,m为锅炉序号,BOI为锅炉集合;r为燃料序号,FUE为锅炉燃料集合;为燃料r的外购价格,单位为CNY/(103*kgce);为锅炉m在周期t内燃料r的消耗量,单位为103*kgce/h;式(15)中,pwat为锅炉给水的价格,单位为CNY/t;为锅炉m在周期t内的给水量,单位为t/h;式(16)中,s为蒸汽序号,STM为蒸汽集合;为蒸汽s的放散价格,单位为CNY/t;为在周期t内蒸汽s的放散量,单位为t/h;式(17)中,l为减温减压阀序号,VAL为减温减压阀集合;为蒸汽s的降级价格,单位为CNY/t;为减温减压阀l在周期t内入口蒸汽s的流量,单位为t/h;式(18)中,为蒸汽s的外购价格,单位为CNY/t;为在周期t内蒸汽s的外购量(t/h);
式(19)为蒸汽平衡约束,对于任意等级的蒸汽s在调度周期t内的供需平衡,预测产生量锅炉产汽量ys,m,t、汽轮机出口抽汽/凝汽量减温减压阀出口数量与外购数量之和,减去汽轮机入口消耗量减温减压阀入口数量和放散量等于该等级蒸汽的预测需求量
式(20)~(24)为锅炉的工艺约束,式(20)为锅炉的能量平衡约束,为燃料r的热值,单位为GJ/(103*kgce);ηm为锅炉m的效率;为蒸汽s的比焓,单位为GJ/t;hwat为锅炉给水的比焓,单位为GJ/t,为锅炉m在周期t内的给水量,单位为t/h;式(21)为锅炉的物料平衡约束,即在忽略排污率的情况下,锅炉产汽量等于给水量;式(22)为锅炉运行负荷约束,为锅炉m的蒸发能力上限,单位为t/h;式(23)为掺烧/全烧煤气锅炉的煤气流量约束,分别为锅炉m的煤气i流量上限和下限,单位为t/h;式(24)为掺烧/全烧煤气锅炉的混合煤气热值约束,分别为锅炉m的混合煤气热值上限和下限,单位为GJ/kNm3
式(25)~(29)为汽轮机的工艺约束;式(25)为汽轮机的能量平衡约束,s为入口进汽序号,s′为出口抽汽/凝汽序号,模型考虑了多级抽汽的情况,ηn为汽轮机n的效率;式(26)为汽轮机的物流平衡约束,即入口进汽量最终都将以抽汽或凝汽的方式排出;式(27)为入口蒸汽流量约束,分别为汽轮机n入口蒸汽流量上限和下限,单位为t/h;式(28)为出口蒸汽流量约束,分别为汽轮机n出口蒸汽s′的抽汽/凝汽流量上限和下限,单位为t/h;式(29)为汽轮机的额定功率约束,为汽轮机n的额定功率,单位为MW;
式(30)~(31)为减温减压阀的工艺约束;式(30)为减温减压阀的物料平衡约束,入口蒸汽流量等于出口蒸汽流量s为入口蒸汽序号,s′为出口降温降压后的蒸汽序号;式(31)为其能力约束,为减温减压阀l的能力上限,单位为t/h;
式(32)~(35)为所有变量的非负约束;式(36)为蒸汽放散量和外购量不能同时大于0的约束。
5.如权利要求1所述的方法,其特征在于,所述步骤4中:
Min J 3 = buy ele - pro ele = Σ t p t buy · B t ele - Σ t p t sal · S t ele - - - ( 37 )
s . t . ∀ t , F t ele + Σ n ∈ TUR z n , t + B t ele - S t ele = D t ele - - - ( 38 )
B t ele , S t ele ≥ 0 - - - ( 39 )
B t ele · S t ele = 0 - - - ( 40 )
式(37)中,为在周期t内电力的外购价格,单位为CNY/(MW·h),为在周期t内的外购电量,单位为MW·h/h;为在周期t内电力的外售价格,单位为CNY/(MW·h);为在周期t内的外售电量,单位为MW·h/h;
式(38)为电力供需平衡约束,预测产生量汽轮机产生的电量zn,t与外购电量之和,减去外售电量等于电力的预测需求量
式(39)为电力子系统中变量的非负约束,式(40)为外购电量和外售电量不能同时大于0的约束。
6.如权利要求1所述的方法,其特征在于,所述步骤5中,所建立的钢铁企业多能源介质多周期集成优化调度模型具有如下的形式:
MinJ=J1+J2+J3
s.t.(2)~(12)
(19)~(36)。
(38)~(40)
7.如权利要求1所述的方法,其特征在于,所述步骤6中调用智能进化算法进行求解,计算中采用惩罚函数法处理数学模型中的多个约束条件,所述步骤6之后还包括:人工判断是否接受计算求得的解,是则输出所述解,否则执行所述步骤6重新计算求解。
CN201410536017.9A 2014-10-11 2014-10-11 一种钢铁企业多能源介质集成调度优化方法 Active CN104318321B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410536017.9A CN104318321B (zh) 2014-10-11 2014-10-11 一种钢铁企业多能源介质集成调度优化方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410536017.9A CN104318321B (zh) 2014-10-11 2014-10-11 一种钢铁企业多能源介质集成调度优化方法

Publications (2)

Publication Number Publication Date
CN104318321A true CN104318321A (zh) 2015-01-28
CN104318321B CN104318321B (zh) 2017-12-22

Family

ID=52373549

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410536017.9A Active CN104318321B (zh) 2014-10-11 2014-10-11 一种钢铁企业多能源介质集成调度优化方法

Country Status (1)

Country Link
CN (1) CN104318321B (zh)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104915728A (zh) * 2015-05-22 2015-09-16 中冶南方工程技术有限公司 一种确定钢铁企业蒸汽系统优化调度可行解的方法
CN104966156A (zh) * 2015-06-12 2015-10-07 中冶南方工程技术有限公司 一种钢铁企业能源综合调度问题的双层寻优方法
CN104991531A (zh) * 2015-05-22 2015-10-21 中冶南方工程技术有限公司 一种确定钢铁企业副产煤气系统优化调度可行解的方法
CN105069533A (zh) * 2015-08-19 2015-11-18 浙江大学 一种基于随机预测模型的钢铁企业多能源优化调度方法
CN106773704A (zh) * 2017-01-04 2017-05-31 中国科学院过程工程研究所 多系统联合优化调度方法及装置
CN108490904A (zh) * 2018-05-10 2018-09-04 东北大学 一种基于设备多工况运行的能源系统优化调度方法
CN108958189A (zh) * 2018-07-05 2018-12-07 国核电力规划设计研究院有限公司 综合能源调度系统
CN112330040A (zh) * 2020-11-13 2021-02-05 沈阳化工大学 一种应用于钢铁企业煤汽电能源的优化方法
CN113361122A (zh) * 2021-06-21 2021-09-07 河海大学 一种兼顾多能耦合和工序优化的钢铁企业外购电可调潜力评估方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103034773A (zh) * 2011-10-10 2013-04-10 上海宝信软件股份有限公司 加热炉调度的优化算法
CN103439926A (zh) * 2013-07-26 2013-12-11 同济大学 一种钢铁企业煤气优化调度装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103034773A (zh) * 2011-10-10 2013-04-10 上海宝信软件股份有限公司 加热炉调度的优化算法
CN103439926A (zh) * 2013-07-26 2013-12-11 同济大学 一种钢铁企业煤气优化调度装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
刘向斌: "钢铁企业电力合理生产与优化研究", 《中国优秀硕士学位论文全文数据库工程科技Ⅰ辑》 *

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104991531A (zh) * 2015-05-22 2015-10-21 中冶南方工程技术有限公司 一种确定钢铁企业副产煤气系统优化调度可行解的方法
CN104915728A (zh) * 2015-05-22 2015-09-16 中冶南方工程技术有限公司 一种确定钢铁企业蒸汽系统优化调度可行解的方法
CN104966156A (zh) * 2015-06-12 2015-10-07 中冶南方工程技术有限公司 一种钢铁企业能源综合调度问题的双层寻优方法
CN105069533A (zh) * 2015-08-19 2015-11-18 浙江大学 一种基于随机预测模型的钢铁企业多能源优化调度方法
CN105069533B (zh) * 2015-08-19 2018-08-07 浙江大学 一种基于随机预测模型的钢铁企业多能源优化调度方法
CN106773704B (zh) * 2017-01-04 2020-02-07 中国科学院过程工程研究所 多系统联合优化调度方法及装置
CN106773704A (zh) * 2017-01-04 2017-05-31 中国科学院过程工程研究所 多系统联合优化调度方法及装置
CN108490904A (zh) * 2018-05-10 2018-09-04 东北大学 一种基于设备多工况运行的能源系统优化调度方法
CN108490904B (zh) * 2018-05-10 2020-02-04 东北大学 一种基于设备多工况运行的能源系统优化调度方法
CN108958189B (zh) * 2018-07-05 2019-10-15 国核电力规划设计研究院有限公司 综合能源调度系统
CN108958189A (zh) * 2018-07-05 2018-12-07 国核电力规划设计研究院有限公司 综合能源调度系统
CN112330040A (zh) * 2020-11-13 2021-02-05 沈阳化工大学 一种应用于钢铁企业煤汽电能源的优化方法
CN113361122A (zh) * 2021-06-21 2021-09-07 河海大学 一种兼顾多能耦合和工序优化的钢铁企业外购电可调潜力评估方法
CN113361122B (zh) * 2021-06-21 2022-09-30 河海大学 一种兼顾多能耦合和工序优化的钢铁企业外购电可调潜力评估方法

Also Published As

Publication number Publication date
CN104318321B (zh) 2017-12-22

Similar Documents

Publication Publication Date Title
CN104318321A (zh) 一种钢铁企业多能源介质集成调度优化方法
Khaloie et al. Day-ahead and intraday dispatch of an integrated biomass-concentrated solar system: A multi-objective risk-controlling approach
CN104239981B (zh) 一种基于多目标优化算法的能源动态平衡与优化调度方法
CN115018230B (zh) 考虑减排成本的综合能源系统低碳鲁棒经济优化运行方法
CN103699941B (zh) 一种电力系统调度运行年方案的制定方法
CN104268712B (zh) 基于改进的混合多种群进化算法的能源平衡与调度方法
CN108537409A (zh) 一种考虑多能源耦合特性的工业园区配电网协同规划方法
Xiao et al. Can natural gas-fired power generation break through the dilemma in China? A system dynamics analysis
Fan et al. A two-stage optimal scheduling model of integrated energy system based on CVaR theory implementing integrated demand response
CN110163443A (zh) 考虑电-气综合需求响应的天然气调压站微能网优化调度方法
CN104573875B (zh) 一种低碳化的电源电网优化规划的方法
Fan et al. A Bi-level optimization model of integrated energy system considering wind power uncertainty
CN101917024A (zh) 安全约束调度中通用性成本空间的生成方法
CN109741103A (zh) 一种短期多目标双层优化调度方法
CN107358345A (zh) 计及需求侧管理的分布式冷热电联供系统优化运行方法
Liu et al. Multi-energy synergistic optimization in steelmaking process based on energy hub concept
CN113435095A (zh) 一种用于综合能源系统的优化调度的方法及系统
CN110163767A (zh) 一种含多利益主体的区域综合能源系统分散式规划方法
CN111415045A (zh) 一种乡村生物质综合能源系统两阶段运行优化方法
CN114936720A (zh) 一种源-荷-储协调的综合能源系统低碳经济调度方法
CN110244568B (zh) 工业企业微网的能源枢纽模型及其多能互补优化控制方法
Zhang et al. Modeling and optimization of integrated energy system for renewable power penetration considering carbon and pollutant reduction systems
Zhang et al. Low-carbon economic dispatch of integrated energy system based on liquid carbon dioxide energy storage
CN104915728A (zh) 一种确定钢铁企业蒸汽系统优化调度可行解的方法
Zaccone et al. Energy modelling and decision support algorithm for the exploitation of biomass resources in industrial districts

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant