CN104316801B - 基于时间序列相似性匹配的电力系统故障诊断方法 - Google Patents

基于时间序列相似性匹配的电力系统故障诊断方法 Download PDF

Info

Publication number
CN104316801B
CN104316801B CN201410601841.8A CN201410601841A CN104316801B CN 104316801 B CN104316801 B CN 104316801B CN 201410601841 A CN201410601841 A CN 201410601841A CN 104316801 B CN104316801 B CN 104316801B
Authority
CN
China
Prior art keywords
time series
time
fault
sequence
alarm
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201410601841.8A
Other languages
English (en)
Other versions
CN104316801A (zh
Inventor
张小易
陈泾生
吴奕
朱海兵
钟锦源
袁宇波
霍雪松
徐春雷
崔玉
李斌
熊浩
陈娜
曾飞
张明
陈磊
彭志强
杨明
李虎成
樊海锋
夏杰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang University ZJU
State Grid Corp of China SGCC
State Grid Jiangsu Electric Power Co Ltd
Nanjing Power Supply Co of Jiangsu Electric Power Co
Electric Power Research Institute of State Grid Jiangsu Electric Power Co Ltd
Original Assignee
Zhejiang University ZJU
State Grid Corp of China SGCC
State Grid Jiangsu Electric Power Co Ltd
Nanjing Power Supply Co of Jiangsu Electric Power Co
Electric Power Research Institute of State Grid Jiangsu Electric Power Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang University ZJU, State Grid Corp of China SGCC, State Grid Jiangsu Electric Power Co Ltd, Nanjing Power Supply Co of Jiangsu Electric Power Co, Electric Power Research Institute of State Grid Jiangsu Electric Power Co Ltd filed Critical Zhejiang University ZJU
Priority to CN201410601841.8A priority Critical patent/CN104316801B/zh
Publication of CN104316801A publication Critical patent/CN104316801A/zh
Application granted granted Critical
Publication of CN104316801B publication Critical patent/CN104316801B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Alarm Systems (AREA)

Abstract

本发明公开了基于时间序列相似性匹配的电力系统故障诊断方法;搜索系统中的无源区域,确定故障区域,得到可疑故障元件集;基于保护设备配置模型形成警报假说时间序列集;计算子时间序列假说与SCADA系统收到的警报信息时间序列的距离,得出时间序列假说置信度和元件故障置信度,识别故障元件;故障区域识别一般在事故平息后进行,此时调度中心已经接收了相关的完整警报信息,利用警报信息中的静态时间序列匹配方式进行故障诊断,进而对保护和断路器的动作行为进行评价。本发明利用了警报信息序列的时序特征,对于复杂故障、相继故障等情形仍能迅速识别警报漏报/误报等情况,正确诊断出故障元件与故障类型,并对继电保护装置进行评价。

Description

基于时间序列相似性匹配的电力系统故障诊断方法
技术领域
本发明属于电力系统安全处理技术领域,涉及一种基于时间序列相似性匹配的电力系统故障诊断方法。
背景技术
电力系统故障诊断是指利用电力系统故障过程中产生的遥测、遥信和事件顺序信息(Sequence Of Event,SOE)等,判断故障元件及故障类型、识别不正确动作的保护和断路器,辅助调度或运行人员处理故障,以缩短事故处理时间,防止事故扩大,加速系统恢复。经过30多年的努力,国内外在电力系统故障诊断领域提出了多种方法,主要有专家系统、解析模型、人工神经元网络、Petri网、粗糙集理论等。
虽然在电力系统故障诊断方面已经取得了不少理论成果,但尚没有得到推广应用的故障诊断软件系统。一个主要的原因就是目前尚无法系统而充分的利用系统故障后的各种警报信息,尤其是其时序特性,这已经成为电力系统故障诊断研究领域有待解决的一个重要理论问题。
时间序列在科学、工程、经济、社会等各个领域中广泛存在,每时每刻都会有大量的时间序列产生。数据挖掘技术是上个世纪九十年代中后期兴起的一门跨学科的综合研究领域,旨在从海量数据中提取出潜在的、有价值的知识甚至规律;而作为一种常见而重要的数据类型,时间序列的数据挖掘和分析是目前数据挖掘中最具有研究意义的问题之一。
随着以现代信息技术为基础的电力系统调度自动化系统的发展,调度中心采集到的故障警报信息越来越多。基于全球定位系统(GPS)的全网对时的SOE信息包含了统一时标基准的警报时序信息,形成了较为准确的时间序列。如果能有效利用其蕴涵的信息,将能提高故障诊断的准确性和效率。
针对电力系统的实际情况,本发明引入时间序列的数据挖掘概念,利用相似性的相关理论和方法为电力系统故障诊断的智能决策提供帮助。
经验证,该故障诊断模型能够准确诊断包括连锁故障、相继故障在内的复杂故障,并具有良好的时间性能和容错性能。
发明内容
本发明提供了一种基于时间序列相似性匹配的电力系统故障诊断方法,其特征在于,包括以下几个步骤:
为了实现上述目标,本发明采用如下技术方案:
步骤一,通过搜索系统中的无源区域,确定故障区域,进而得到可疑故障元件集;
步骤二,基于时间序列和关联时间序列组建立电力系统中的时间序列模型,并根据电力系统中的保护配置模型形成警报假说时间序列集以及时间序列的相似性匹配方法;利用电力系统警报信息相似度的距离衡量警报假说时间序列与电力系统中警报时间序列间的相似程度;
步骤三,将时间序列距离转换成元件故障的置信度,根据元件故障的置信度识别故障元件和故障类型。
本发明所达到的有益效果:
本发明的故障诊断系统通过搜索系统中的无源区域,确定故障区域,进而得到可疑故障元件集;之后,基于保护配置通用模型生成一系列警报假说时间序列,得到警报假说时间序列集;接下来计算子时间序列假说与电网监视控制和数据采集(SCADA)系统收到的警报信息时间序列之间的距离,进而得出时间序列假说置信度和元件故障置信度,识别出故障元件;故障区域识别一般在事故平息后进行,此时调度中心已经接收了相关的完整警报信息,其可以形成一个静态时间序列,利用静态时间序列匹配的方式进行故障诊断;然后,根据故障诊断结果,对保护和断路器的动作行为进行评价;本发明较好利用了警报信息序列的时序特征,对于复杂故障、相继故障等情形仍能迅速识别警报漏报/误报等情况,正确诊断出故障元件与故障类型,并对继电保护装置进行评价;故障诊断过程均采用矩阵运算,物理意义清晰,计算速度高,可用于大规模复杂电力系统的在线故障诊断,可带来故障诊断结果的准确率和可靠性提高的有益效果。
附图说明
图1基于时间序列相似性匹配的电力系统故障诊断流程图;
图2保护设备配置模型示意图;
图3实施例电力系统接线示意图;
图4实施例电力系统部分地区接线示意图;
附图中标记的含义:C表示断路器,L表示输电线路,G表示发电机,B表示母线,T表示变压器。
具体实施方式
下面结合附图对本发明作进一步描述。以下实施例仅用于更加清楚地说明本发明的技术方案,而不能以此来限制本发明的保护范围。
如图1所示,基于时间序列相似性匹配的电力系统故障诊断方法,其特征在于,包括以下步骤:
步骤一,通过搜索系统中的无源区域,确定故障区域,进而得到可疑故障元件集;
步骤二,基于时间序列和关联时间序列组建立电力系统中的时间序列模型,并根据电力系统中的保护配置模型形成警报假说时间序列集以及时间序列的相似性匹配方法;利用电力系统警报信息相似度的距离衡量警报假说时间序列与电力系统中警报时间序列间的相似程度;
步骤三,将时间序列距离转换成元件故障的置信度,根据元件故障的置信度识别故障元件和故障类型。
在步骤二中,时间序列、关联时间序列组定义如下:
(1)时间序列的数学描述
时间序列是某个物理量的记录值和时间节点组成的元素的有序集合,可记为:
X=<x1=(v1,t1),x2=(v2,t2),...,xn=(vn,tn)>   (1)
式中:元素xi=(vi,ti)表示时间序列在ti时刻所记录的信息为vi;n为时间序列X的势;记作|X|=n;时间序列中时间节点严格递增,即
在狭义时间序列中,vi一般指某一实数值,在广义时间序列中,vi不仅局限于数值,也可以是多媒体数据、离散符号、自定义模型数据等多种信息。
(2)关联时间序列组
对于时间序列 X 1 = < x 1 &prime; , x 2 &prime; , . . . , x k &prime; , x k + 1 &prime; , . . . , x m 1 &prime; > , X 2 = < x 1 &prime; &prime; , x 2 &prime; &prime; , . . . , x k &prime; &prime; , x k + 1 &prime; &prime; , . . . , x m 2 &prime; &prime; > , . . . , X n = < x 1 ( n ) , x 2 ( n ) , . . . , x k ( n ) , x k + 1 ( n ) , . . . , x m n ( n ) > ( m 1 , m 2 , . . . , m n > k ) 的前k项元素相同(即 x 1 &prime; = x 1 &prime; &prime; = . . . = x 1 ( n ) ; x 2 &prime; = x 2 &prime; &prime; = . . . = x 2 ( n ) ; . . . ; x k &prime; = x k &prime; &prime; = . . . = x k ( n ) ),可定义关联时间序列组:
G=<Xs,Gx,f>   (2)
式中:Xs=x′1,x′2,...,x′k为各时间序列间相同元素组成的序列,为各时间序列间不同元素组成的序列组;f为标识位,f=1表示时间序列集合{Xi,i=1,2,...,n}的元素为并发时间序列,即时间序列Xs发生后Gx中的时间序列会同时发生,f=0则表示互斥时间序列,即Gx中的时间序列有且仅有一个会发生,关联时间序列组即一系列时间序列的集合。
在所述步骤二中,基于时间序列和关联时间序列组建立电力系统中的时间序列模型,并根据电力系统中的保护配置模型形成警报假说时间序列集以及时间序列的相似性匹配方法如下:
当电力设备遥信动作时,保护设备或智能电力仪表会自动记录下动作时间、动作原因,形成基于统一时标基准的动作事件序列(SOE)信息。这些信息构成了较为准确的时间序列。
(1)电力系统中的时间序列模型
设x=(v,t)为时间序列中的元素,定义警报信息v为一个3元组:
v=(A,Δt,S)   (3)
式中:A为警报事件,其既可代表在调度中心收到的设备动作或警报信息,也可表示系统中发生的某一事件(如输电线路发生单相接地故障)。Δt指时间误差长度,用于描述事件发生时间不确定的情况;t和Δt共同组成了一个时间约束,即事件A发生时间为S为模糊项标识位,S=1和0分别表示元素x=(v,t)为必须项和模糊项。
若元素xi=(vi,ti)(i=1,2,...,n)为模糊项,则时间序列X1=<x1,x2,...,xn>虽然比X2=<x1,x2,...,xi-1,xi+1,...,xn>多了元素xi,但X2与X1之间的编辑距离仍为0,称编辑距离为0的两个时间序列为等价时间序列。若元素xi=(vi,ti)(i=1,2,...,n)为必须项,则X2与X1之间的编辑距离为1。
电力系统中发生的部分事件由于不具备信息上传能力,调度中心获取的时间序列并不包含这些事件,这部分警报信息与漏报误报信息应该在诊断过程中加以区分。引入模糊项概念有利于区分这些信息,提高故障诊断准确度。
(2) 电力系统中的保护配置模型
电力系统发生故障后,保护和断路器的警报信息就构成了警报时间序列。根据保护装置整定规范,可以构造一系列警报假说时间序列,如图2所示 (用end表示时间序列结束点)。
从图2可以看出,基于保护设备配置所生成的每一个时间序列分为两种情况,一种情况是时间序列中的每个元素都对应于同一保护装置及其关联的断路器,与其它保护装置无关,以“end”作为结束符。另一种情况是,时间序列中的最后一个元素去触发另一套保护装置,成为另一个系列的时间序列的起始元素,从而就形成一系列更长的时间序列。
对于关联时间序列组G1的任一元素,事件发生时间ti按保护装置整定值设定,时间长度Δti则根据允许的事件时间误差设定。当保护装置动作时,关联时间序列组中的时间序列相继发生,信息汇集后进入调度中心,形成准确的时间序列。
如图3所示,图中C表示断路器,L表示输电线路。设输电线L1在t=0时刻发生瞬时单相接地故障并重合闸成功。
用时间序列描述为(时间单位:ms):X1=<x1,x2,x3,x4,x5,x6,x7>。
式中:x1=(v1,t1)=((L1线发生单相接地故障,0,0),0);
x2=(v2,t2)=((A站L1主保护动作,0,1),49);
x3=(v3,t3)=((B站L1主保护动作,0,1),50);
x4=(v4,t4)=((C1分闸,0,1),100);
x5=(v5,t5)=((C2分闸,0,1),100);
x6=(v6,t6)=((C1重合闸,0,1),1100);
x7=(v7,t7)=((C2重合闸,0,1),1105)。
根据SOE信息,调度中心获取到时间序列X2=<x2,x3,x4,x5,x6,x7>。X1与X2等价。事件vi(i=1,2,...,7)在一个确定的时间点发生,该时间点记为ti,时间长度Δti=0。
输电线L1两端的线路主保护的动作逻辑可用关联时间序列组G2描述。以断路器C2一侧为例:
G2=<Xs,Gx,0>   (4)
式中:Xs=<((C2侧L1线路主保护动作,10,1),0)>,
元素Xs中的事件“C2侧L1线路主保护动作”会触发C2断路器分闸。若C2断路器分闸成功,则1000ms后C2将发生重合闸操作。若C2断路器拒动,或C2动作后由于绝缘被击穿等原因断路器两端仍连通,C2失灵保护都会动作,但调度中心不一定会收到C2分闸警报信息,因此((C2分闸,10,0),50)为模糊项。C2分闸成功与否,会形成两个互斥的时间序列,这两个时间序列在一次故障过程中有且仅有一个会发生。
(3)警报假说时间序列集和时间序列的相似性匹配方法
把并未真实发生的时间序列称为警报假说时间序列。从保护配置模型得到的时间序列集合称为警报假说时间序列集。在从调度中心得到的警报信息时间序列中,挖掘和分析与警报假说时间序列集相似的时间序列,则被称为时间序列匹配。时间序列的相似性匹配分为全序列匹配查询和子序列匹配查询,全序列匹配查询是从预设的查询序列集合中,找出与被查询序列在整体上满足相似性的时间序列,所获得的匹配序列应与被查询序列的势大致相同;子序列匹配查询则是从势远大于查询序列的被查询序列中找出所有与查询序列距离小于给定距离的子序列的位置偏移和长度,电力系统发生故障后警报被集中送到调度中心形成警报序列,而可疑元件的故障假说则一般形成一个势小于警报序列的警报假说序列,这样若能在警报序列中找到与假说序列小于给定距离的子时间序列,则可视该故障假说为真,因此,本发明采用子序列匹配查询;
在步骤二中,提出一种适于衡量电力系统警报信息相似度的距离概念,用来衡量警报假说时间序列与电力系统中警报时间序列间的相似程度如下:
在图2中,假设在t=0时L1线路发生瞬时性单相接地故障,线路两侧主保护被触发。继电保护装置的动作逻辑可用关联时间序列组表示为
G 1 = < < x &prime; 1 > , < x &prime; 2 , x &prime; 4 , x &prime; 6 > < x &prime; 3 , x &prime; 5 , x &prime; 7 > , 1 > - - - ( 5 )
式中:x'1=((L1线发生瞬时性单相接地故障,0,0),0);
x'2=((A站L1主保护动作,10,1),50);
x'3=((B站L1主保护动作,10,1),50);
x'4=((C1分闸,10,1),100);
x'5=((C2分闸,10,1),100);
x'6=((C1重合闸,10,1),1100);
x'7=((C2重合闸,10,1),1100)。
关联时间序列组G1包括时间序列假说X3=<x'1,x'2,x'4,x'6>和X4=<x'1,x'3,x'5,x'7>。线路L1发生单相接地故障会同时触发X3和X4,因此相关的标识位f=1。
对于关联时间序列组G1中的时间序列假说X3和X4,如果在实际警报序列X2=<x2,x3,x4,x5,x6,x7中能够找到匹配的时间子序列,则可以认为X3和X4已真实发生,进而判定t=0时线路L1发生了瞬时性单相接地故障。
在衡量电力系统中两个时间序列的相似性时,既需要计及警报信息不同所造成的差异,也需要考虑时间偏差所带来的影响。本发明提出一种适于衡量电力系统警报信息相似度的距离概念。下面所定义的距离概念既考虑了由于警报信息漏报误报所造成的距离,也考虑了实际警报动作存在的时间误差。
为了后面描述方便,先定义几个符号:
运算符|=:表示时间序列元素x=(vx=(Ax,Δtx,Sx),tx)和y=(vy=(Ay,Δty,Sy),ty)之间的关系;若警报事件Ax=Ay,则x|=y。
运算符|∈和:表示时间序列元素x=(vx=(Ax,Δtx,Sx),tx)与时间序列X=<x1,x2,...,xn>之间的关系;若存在xi(i=1,2,...n),使得x|=xi,则x|∈X,否则
这样,电力系统中两时间序列的距离可定义为:
对于时间序列X=<x1=(vx1,tx1),x2=(vx2,tx2),...,xn=(vxn,txn)>与时间序列Y=<y1=(vy1,ty1),y2=(vy2,ty2),...,ym=(vym,tym)>(n≤m),如果X与Y都没有模糊项,则它们之间的距离可定义为
D(X,Y)=aDedit(X,Ys)+bDtime(X,Ys)   (6)
式中:Ys为X在Y中利用元素匹配得到的子时间序列,即Ys=<y1',y2',...,yp'>,对于任意的yi'|∈Ys,有yi'|∈X且yi'是时间序列Y的元素(i=1,2,...p)。
Dedit(X,Ys)表示时间序列X与Ys的编辑距离,用于识别漏报误报的警报信息。考虑到Ys是Y的子时间序列,这样可给出一般情况下Dedit(X,Ys)的简化计算公式:
D edit ( X , Y s ) = &Sigma; x i | &Element; X , x i | &NotElement; Y s , i = 1,2 , . . . , n 1 - - - ( 7 )
Dtime(X,Ys)表示时间序列X与Ys之间的时间距离,用于衡量时间序列在时标信息方面的差异。
D time ( X , Y s ) = 4 &pi; &Sigma; x i | = y j &prime; , | t xi - t yj &prime; | &GreaterEqual; | &Delta;t xi + &Delta;t yj &prime; 2 | ; i = 1,2 , . . . , n ; j = 1,2 , . . . p arctan ( 2 | t xi - t yj &prime; | &Delta;t xi + &Delta;t yj &prime; ) - 1 - - - ( 8 )
式(8)中:tyj'、Δtyj'分别表示序列Ys中元素yj'的时间和时间偏移量,txi、Δtxi表示序列X中元素xi的时间和时间偏移量,a为编辑距离的权重系数,可根据电力系统中警报信息上传的可靠程度给定,漏报误报信息越少,a可给定的越大;b为时间距离的权重系数,可根据警报信息的时间信息的精确程度给定,时标越准确,b可给定的越大。
编辑距离衡量了电力系统中警报信息漏报误报的严重程度,其值越大,则警报假说时间序列的置信度就越低;如果电力系统中获取的警报信息中漏报误报比例较大,a可取较小的值,以降低编辑距离的权重,提高模型对漏报误报信息的容错性。如果警报信息比较完备,a可取较大的值来排除干扰项,进而避免误判。同理,在系统时序信息不精确时b可取较小的值,以降低时标不准对诊断结果准确性的影响,反之则可取较大的值。
误报和时标不准均会导致两个时间序列之间存在差异。距离函数D(X,Y)通过权重系数a和b把相关差异进行了量化,其值越小,两个时间序列之间的差异越小,二者就越相似。
在所述步骤三中,将距离转换成元件故障的置信度,根据元件故障的置信度识别故障元件和故障类型;具体计算步骤如下:
时间序列元素的置信度:
警报假说时间序列X与警报信息时间序列Y之间的距离越小,则该假说的置信度越高。定义警报假说时间序列X的置信度CX为:
C X = 1 , D ( X , Y ) &le; 1 1 D ( X , Y ) , 1 < D ( X , Y ) &le; 10 0.1 , D ( X , Y ) > 10 - - - ( 9 )
在式(10)中,把警报假说时间序列X与警报信息时间序列Y之间的距离通过反比例函数映射至[0,1]区间,作为假说的置信度。当该距离足够小时,警报假说的置信度为1。
电力系统发生故障时,相关保护装置将动作跳开一些断路器;在多重故障、保护和/或断路器有误动或拒动的复杂情况下,有可能存在两个甚至两个以上警报假说时间序列都有较高的置信度。在警报假说时间序列集中,同一个时间序列元素xi=(vi=(Ai,Δti,Si),ti)可能会在多个警报假说时间序列X1,X2,...,Xn中存在。若时间序列X1,X2,...,Xn为并发时间序列,则元素xi的置信度应为时间序列X1,X2,...,Xn的置信度的平均值;若时间序列X1,X2,...,Xn为互斥时间序列,则元素xi的置信度应取时间序列X1,X2,...,Xn的置信度中的最大值。即:
|X|为时间序列X的势,式(9)和式(10)把时间序列的相似性转换成元件动作的置信度,这样就可以识别出故障元件。
计及警报漏报的故障诊断修正策略:
考虑到在实际电力系统中因为通信通道和设备本身的原因无法完全避免干扰而产生错误信息,故障诊断算法必须对收到的警报信息进行预处理,以改善容错性。对于存在警报漏报的情形,这里给出一种修正策略,以改善故障诊断的准确性。
若警报假说时间序列X的势为n(n≥3),且其与警报信息时间序列Y的编辑距离为则警报假说时间序列中必有元素xi=(vi=(Axi,Δtxi,Sxi),txi)在警报信息时间序列Y中未有对应警报信息,即。此时,可假设由于某种原因发生了元素yi=(vyi=(Axi,Δtxi,Sxi),txi)的漏报,并在警报信息时间序列Y中插入虚拟事件yi构造新的警报信息时间序列Y',之后对包含事件Axi的警报假说时间序列利用式(6)-(10)重新计算元件动作的置信度。在计算过程中,虚拟事件yi的置信度利用式(11)修正:
C x i &prime; = n - d n C x i - - - ( 11 )
为利用警报假说时间序列X与修正后的警报信息时间序列Y'计算得到的元件动作置信度,n为X的势,d为X和Y之间的编辑距离。n越大,漏报的警报数目越小即d越小,则虚拟事件yi=(vyi=(Axi,Δtxi,Sxi),txi)的置信度就越高。
针对故障诊断中存在保护和断路器有可能误动或拒动,警报上传过程中也可能出现上传不及时、畸变或丢失等不确定性因素,本发明用一个较为复杂的实施例说明本发明所提出故障诊断方法的能力。
涉及的某电力系统局部接线图如图4所示。图中C表示断路器,G表示发电机,T表示变压器,L表示线路,B表示母线。为便于描述,首先定义警报信息的编号如表A1所示。
表A1警报信息编号
定义 警报内容
a1 碧山站线路L2943纵联差动保护动作(RCS-931BM)
a2 炼化站线路L2943纵联差动保护动作(RCS-931BM)
a3 碧山站C12断路器分闸
a4 炼化站C14断路器分闸
a5 碧山站C12断路器失灵保护
a6 碧山站C16分闸
a7 碧山站C6分闸
a8 碧山站C7分闸
a9 B4母线差动保护
a10 碧山站C12合闸
a11 炼化站C14合闸
故障发生后,调度中心所收到的警报列于表A2;其中,警报的时标以接收到的第一个警报的时间为基准点。
表A2调度中心收到的警报列表
警报信息构成全序列X=<x1,x2,...,x8>。对于该故障区域,用关联时间序列组表示其保护配置情况,如表A3所示。
表A3保护配置模型
各元件故障与保护之间的联系为
<((母线B4故障,10,0),-20),(a9,10,1),0)>
<((C12故障,10,0),0),(a5,10,1),200)>
利用表A3可生成任一保护动作所触发的时间序列假说集。取a=b=5,以线路L2943故障为例,计算可得每一个时间序列假说与警报信息的距离及置信度,列于表A4。
表A4警报假说时间序列生成及其与全序列之间的距离
诊断结果为:线路L2943故障的置信度为1,故障在t=-20ms时发生(±10ms);C12断路器的故障置信度为0.8,时间为t=0ms(±10ms);B4母线故障的置信度为0.2。这样,故障元件为线路L2943和断路器C12。
实际发生的故障情况为:在t=-14ms时,线路L2943发生故障,炼化站主保护动作并成功跳开C14断路器;碧山站主保护动作并试图跳开C12断路器,但C12断路器拒动,从而导致C12断路器失灵保护动作而跳开B4母线上的断路器C6、C7、C16。
故障诊断结果与实际发生的故障情况相符。时间序列的匹配结果表明,所配置的警报假说时间序列与实际警报信息时间序列之间的编辑距离和时间距离均为0,这说明故障元件为线路L2943且断路器C12拒动,继电保护均正确动作,警报时标信息准确,警报信息完整。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明技术原理的前提下,还可以做出若干改进和变形,这些改进和变形也应视为本发明的保护范围。

Claims (7)

1.基于时间序列相似性匹配的电力系统故障诊断方法,其特征在于,包括以下步骤:
步骤一,通过搜索系统中的无源区域,确定故障区域,进而得到可疑故障元件集;
步骤二,基于时间序列和关联时间序列组建立电力系统中的时间序列模型,并根据电力系统中的保护配置模型形成警报假说时间序列集以及时间序列的子序列匹配方法;利用电力系统警报信息相似度的距离衡量警报假说时间序列与电力系统中警报时间序列间的相似程度;
步骤三,将时间序列距离转换成元件故障的置信度,根据元件故障的置信度识别故障元件和故障类型。
2.根据权利要求1所述的基于时间序列相似性匹配的电力系统故障诊断方法,其特征在于:步骤二中,所述时间序列和关联时间序列组定义如下:
(1)时间序列
时间序列是某个物理量的记录值和时间节点组成的元素的有序集合,记为:
X=<x1=(v1,t1),x2=(v2,t2),...,xn=(vn,tn)>  (1) 
式中:元素xi=(vi,ti)表示时间序列在ti时刻所记录的信息为vi;n为时间序列X的势,记作|X|=n;时间序列中时间节点严格递增,即i,j=1,2,...,n;
(2)关联时间序列组
对于时间序列 …、 (m1,m2,...,mn>k)的前k项元素相同(即 ),可定义关联时间序列组
G=<Xs,Gx,f>  (2) 
式中:时间序列Xs=<x′1,x′2,...,x′k>,时间序列f为标识位,f=1表示时间序列集合{Xi,i=1,2,...,n}的元素为并发时间序列,即时间序列Xs发生后Gx中的时间序列会同时发生,f=0则表示互斥时间序列,即Gx中的时间序列有且仅有一个会发生;关联时间序列组即一系列时间序列的集合。
3.根据权利要求2所述的基于时间序列相似性匹配的电力系统故障诊断方法,其特征在于:步骤二中,建立电力系统中的时间序列模型如下:
设x=(v,t)为时间序列中的元素,定义警报信息v为一个3元组:
v=(A,Δt,S)  (3)
式中:A为警报事件,既可代表在调度中心收到的设备动作或警报信息,也可表示系统中发生的某一事件;Δt指时间误差长度,用于描述事件发生时间不确定的情况;时间t和Δt共同组成了一个时间约束,即事件A发生时间为S为模糊项标识位,S=1和0分别表示元素x=(v,t)为必须项和模糊项;
时间序列X1与X2存在一个不同元素xi=(vi,ti)(i=1,2,...,n),若该元素为模糊项,X1与X2之间的编辑距离为0;若该元素为必须项,则X1与X2之间的编辑距离为1;若时间序列X1与X2存在多个不同元素,对于编辑距离进行累加求和即可。
4.根据权利要求3所述的基于时间序列相似性匹配的电力系统故障诊断方法,其特征在于:步骤二中,根据电力系统中的保护配置模型形成警报假说时间序列集以及时间序列的相似性匹配方法如下:
(1)电力系统中的保护配置模型
电力系统发生故障后,保护和断路器的警报信息就构成了警报时间序列;根据保护装置整定规范,可以构造一系列警报假说时间序列;
基于保护设备配置所生成的每一个时间序列分为两种情况,一种情况是时间序列中的每个元素都对应于同一保护装置及其关联的断路器,与其它保护装置无关;另一种情况是,时间序列中的最后一个元素去触发另一套保护装置,成为另一个系列的时间序列的起始元素,从而就形成一系列更长的时间序列;
对于所述关联时间序列组G的任一元素,事件发生时间ti按保护装置整定值设定,时间长度Δti则根据允许的事件时间误差设定;当保护装置动作时,所述关联时间序列组中的时间序列相继发生,信息汇集后进入调度中心,形成准确的时间序列;
(2)警报假说时间序列集和时间序列的相似性匹配方法
并未真实发生的时间序列称为警报假说时间序列;从保护配置模型得到的时间序列集合称为警报假说时间序列集;在从调度中心得到的警报信息时间序列中,挖掘和分析与警报假说时间序列集相似的时间序列,则被称为时间序列匹配;
时间序列的相似性匹配:从势远大于查询序列的被查询序列中找出所有与查询序列距离小于给定距离的子序列的位置偏移和长度,电力系统发生故障后警报被集中送到调度中心形成警报序列,可疑元件的故障假说则一般形成一个势小于警报序列的警报假说序列,若能在警报序列中找到与假说序列小于给定距离的子时间序列,则视该故障假说为真。
5.根据权利要求4所述的基于时间序列相似性匹配的电力系统故障诊断方法,其特征在于:步骤二中,利用电力系统警报信息相似度的距离衡量警报假说时间序列与电力系统中警报时间序列间的相似程度过程如下:
定义符号如下:
运算符|=表示时间序列元素x=(vx=(Ax,Δtx,Sx),tx)和y=(vy=(Ay,Δty,Sy),ty)之间的关系;若警报事件Ax=Ay,则x|=y;
运算符|∈和:表示时间序列元素x=(vx=(Ax,Δtx,Sx),tx)与时间序列X=<x1,x2,...,xn>之间的关系;若存在xi(i=1,2,...n),使得x|=xi,则x|∈X,否则
电力系统中两时间序列的距离定义为:
对于时间序列X=<x1=(vx1,tx1),x2=(vx2,tx2),...,xn=(vxn,txn)>与时间序列Y=<y1=(vy1,ty1),y2=(vy2,ty2),...,ym=(vym,tym)>(n≤m),如果X与Y都没有模糊项,则它们之 间的距离定义为:
D(X,Y)=aDedit(X,Ys)+bDtime(X,Ys)  (6) 
式中:Ys为X在Y中利用元素匹配得到的子时间序列,即Ys=<y1',y2',...,yp'>,对于任意的yi'|∈Ys,有yi'|∈X且yi'是时间序列Y的元素(i=1,2,...p);
Dedit(X,Ys)表示时间序列X与Ys的编辑距离,用于识别漏报误报的警报信息;考虑到Ys是Y的子时间序列,给出Dedit(X,Ys)的计算公式:
Dtime(X,Ys)表示时间序列X与Ys之间的时间距离,用于衡量时间序列在时标信息方面的差异:
式(8)中:tyj'、Δtyj'分别表示序列Ys中元素yj'的时间和时间偏移量,txi、Δtxi表示序列X中元素xi的时间和时间偏移量,a为编辑距离的权重系数,可根据电力系统中警报信息上传的可靠程度给定;b为时间距离的权重系数,可根据警报信息的时间信息的精确程度给定。
6.根据权利要求5所述的基于时间序列相似性匹配的电力系统故障诊断方法,其特征在于:在所述步骤三中,将距离转换成元件故障的置信度,根据元件故障的置信度识别故障元件和故障类型,具体计算步骤如下:
警报假说时间序列X与警报信息时间序列Y之间的距离越小,则该假说的置信度越高;定义警报假说时间序列X的置信度CX为:
在式(9)中,将警报假说时间序列X与警报信息时间序列Y之间的距离通过反比例函数映射至[0,1]区间,作为假说的置信度;
在警报假说时间序列集中,同一个时间序列元素xi=(vi=(Ai,Δti,Si),ti)可能会在多个警报假说时间序列X1,X2,...,Xn中存在;若时间序列X1,X2,...,Xn为并发时间序列,则元素xi的置信度应为时间序X1,X2,...,Xn的置信度的平均值;若时间序列X1,X2,...,Xn为互斥时间序列;则元素xi的置信度应取时间序列X1,X2,...,Xn的置信度中的最大值;即:
|X|为时间序列X的势,式(9)和式(10)将时间序列的相似性转换成元件动作的置信度,即识别出故障元件。
7.根据权利要求6所述的基于时间序列相似性匹配的电力系统故障诊断方法,其特征在于:对于存在警报漏报的情形,给出一种修正策略:
若警报假说时间序列X的势为n(n≥3),且其与警报信息时间序列Y的编辑距离为则警报假说时间序列中必有元素xi=(vi=(Axi,Δtxi,Sxi),txi)在警报信息时间序列Y中未有对应警报信息,即此时,可假设由于某种原因发生了元素yi=(vyi=(Axi,Δtxi,Sxi),txi)的漏报,并在警报信息时间序列Y中插入虚拟事件yi构造新的警报信息时间序列Y',之后对包含事件Axi的警报假说时间序列利用式(6)-(10)重新计算元件动作的置信度;在计算过程中,虚拟事件yi的置信度利用式(11)修正:
为利用警报假说时间序列X与修正后的警报信息时间序列Y'计算得到的元件动作置信度,n为X的势,d为X和Y之间的编辑距离;n越大,漏报的警报数目越小即d越小,则虚拟事件yi=(vyi=(Axi,Δtxi,Sxi),txi)的置信度就越高。
CN201410601841.8A 2014-10-31 2014-10-31 基于时间序列相似性匹配的电力系统故障诊断方法 Active CN104316801B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410601841.8A CN104316801B (zh) 2014-10-31 2014-10-31 基于时间序列相似性匹配的电力系统故障诊断方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410601841.8A CN104316801B (zh) 2014-10-31 2014-10-31 基于时间序列相似性匹配的电力系统故障诊断方法

Publications (2)

Publication Number Publication Date
CN104316801A CN104316801A (zh) 2015-01-28
CN104316801B true CN104316801B (zh) 2015-09-02

Family

ID=52372054

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410601841.8A Active CN104316801B (zh) 2014-10-31 2014-10-31 基于时间序列相似性匹配的电力系统故障诊断方法

Country Status (1)

Country Link
CN (1) CN104316801B (zh)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106443319B (zh) * 2015-08-07 2019-07-26 江苏省电力公司 一种基于告警信息时序约束的设备故障辨识方法
CN105974304A (zh) * 2016-05-10 2016-09-28 山东科技大学 一种断路器分合闸线圈的故障诊断方法
CN108228428B (zh) * 2018-02-05 2021-09-21 百度在线网络技术(北京)有限公司 用于输出信息的方法和装置
CN109271606B (zh) * 2018-08-23 2023-05-26 南京理工大学 考虑并发的业务过程事件序列间编辑距离的求解方法
CN110108980B (zh) * 2019-04-29 2021-08-17 国网宁夏电力有限公司电力科学研究院 一种电力系统的异常事件的识别方法及装置
CN110632901B (zh) * 2019-08-09 2022-06-07 西安电子科技大学 基于析取型广义互斥约束Petri网控制器简化及设计方法
CN111934293B (zh) * 2020-08-12 2022-08-30 广东电网有限责任公司 电力系统故障分析方法、装置、设备及存储介质
CN112083277A (zh) * 2020-08-21 2020-12-15 国网山东省电力公司诸城市供电公司 一种电力线路传输故障检测方法及系统
CN112327096B (zh) * 2020-10-15 2022-11-04 国家电网公司华北分部 一种基于自适应策略的故障诊断信息融合方法及装置
CN112285484B (zh) * 2020-10-15 2022-10-11 国家电网公司华北分部 基于深度神经网络的电力系统故障诊断信息融合方法及装置
CN113341919B (zh) * 2021-05-31 2022-11-08 中国科学院重庆绿色智能技术研究院 一种基于时序数据长度优化的计算系统故障预测方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5631057B2 (ja) * 2010-05-17 2014-11-26 キヤノン株式会社 インクジェット記録装置および校正方法
CN102497024B (zh) * 2011-12-16 2014-01-29 广东电网公司茂名供电局 基于整数规划的智能告警系统
CN102721901B (zh) * 2012-06-26 2015-08-19 西南交通大学 基于时序贝叶斯知识库tbkb的电网故障诊断方法
CN103197168B (zh) * 2013-02-21 2015-08-12 华东电网有限公司 电力系统中基于事件集因果链实现故障诊断控制的方法
CN103489138B (zh) * 2013-10-16 2016-03-09 国家电网公司 一种输电网故障信息与线路越限信息的相关度分析法
CN103995215B (zh) * 2014-05-08 2016-07-13 国家电网公司 一种基于多层次反馈调整的智能电网故障诊断方法
CN103996077B (zh) * 2014-05-22 2018-01-05 中国南方电网有限责任公司电网技术研究中心 一种基于多维时间序列的电气设备故障预测方法

Also Published As

Publication number Publication date
CN104316801A (zh) 2015-01-28

Similar Documents

Publication Publication Date Title
CN104316801B (zh) 基于时间序列相似性匹配的电力系统故障诊断方法
CN104297637B (zh) 综合利用电气量和时序信息的电力系统故障诊断方法
CN103308824B (zh) 一种基于概率Petri网的电力系统故障诊断方法
CN103336222B (zh) 基于模糊推理脉冲神经膜系统的电力系统故障诊断方法
CN104931857B (zh) 一种基于d-s证据理论的配电网故障定位方法
CN103278746B (zh) 考虑不确定信息的电网故障诊断系统的实现方法
CN107294089B (zh) 一种面向电网事件的智能关联分析和评价方法
CN102638100A (zh) 地区电网设备异常告警信号关联分析与诊断方法
CN103795144B (zh) 基于故障录波数据的电力系统扰动发生时刻的辨识方法
CN104504607A (zh) 一种基于模糊聚类算法的光伏电站故障诊断方法
CN110380514A (zh) 一种智能变电站继电保护二次回路故障诊断方法
CN105606931A (zh) 一种基于量子遗传算法的中压配电网故障诊断方法
CN102915515A (zh) 一种电网连锁性故障识别和风险评估方法
CN109116181A (zh) 一种基于最大概率的故障指示器故障判定方法
CN104880629A (zh) 调度端保护元件动作行为的远程诊断方法
Mansour et al. Bayesian networks for fault diagnosis of a large power station and its transmission lines
CN102930408B (zh) 一种基于信息融合的750kV电网二次设备状态评估方法
CN104600680A (zh) 一种基于数据融合的智能报警方法
CN105245015A (zh) 基于多agent的分层扩展电网故障信息处理系统及方法
CN104764979A (zh) 一种基于概率推理的虚拟信息融合电网报警方法
CN103605910A (zh) 考虑隐性故障的单一保护装置可靠性评估方法
CN105759165A (zh) 基于馈线故障状态诊断的配电自动化主站实用化评测方法
CN104237688A (zh) 考虑多重保护配置下的电网故障诊断解析模型
Xu et al. Fault diagnosis and identification of malfunctioning protection devices in a power system via time series similarity matching
CN104036131A (zh) 一种变压器老化故障率估计方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant