CN104299202B - 一种基于中频的离焦模糊图像盲复原方法 - Google Patents

一种基于中频的离焦模糊图像盲复原方法 Download PDF

Info

Publication number
CN104299202B
CN104299202B CN201410583889.0A CN201410583889A CN104299202B CN 104299202 B CN104299202 B CN 104299202B CN 201410583889 A CN201410583889 A CN 201410583889A CN 104299202 B CN104299202 B CN 104299202B
Authority
CN
China
Prior art keywords
mrow
msub
rho
mover
frequency domain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201410583889.0A
Other languages
English (en)
Other versions
CN104299202A (zh
Inventor
罗涵
罗一涵
付承毓
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Optics and Electronics of CAS
Original Assignee
Institute of Optics and Electronics of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Optics and Electronics of CAS filed Critical Institute of Optics and Electronics of CAS
Priority to CN201410583889.0A priority Critical patent/CN104299202B/zh
Publication of CN104299202A publication Critical patent/CN104299202A/zh
Application granted granted Critical
Publication of CN104299202B publication Critical patent/CN104299202B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

本发明提供一种基于中频的离焦模糊图像盲复原方法,该盲复原方法步骤为:计算离焦模糊图像的频谱;计算离焦模糊图像频谱的椭圆轨迹均值函数;对椭圆轨迹均值函数进行“变跨度平滑滤波”得到一个基准函数;用椭圆轨迹均值函数计算离焦模糊图像频谱的中频域;在中频域中用椭圆轨迹均值函数及其基准函数估计第一暗环的位置;用估计的第一暗环位置计算离焦半径并生成离焦光学传输函数;用基于中频的维纳滤波器复原图像。本发明与现有技术相比的有益效果在于:能够从离焦模糊图像中自动辨识出离焦半径等参数,实现离焦模糊图像的有效复原,并且具有抑噪能力强、交互参数少、复原速度快的优点。

Description

一种基于中频的离焦模糊图像盲复原方法
技术领域
本发明属于图像盲复原技术领域,具体涉及一种基于中频的离焦模糊图像盲复原方法。
背景技术
图像复原是近年来的一个热点技术,已经广泛地用于天文、军事、医学、遥感、电视等领域。它的目的是从降质的观测图像中恢复出原来的清晰场景。数学上降质模型可以描述为原始图像与点扩展函数(point spread function,PSF)在有加性噪声的情况下的卷积,如下式:
其中x,y是平面的二维坐标,g(x,y)是降质图像的灰度,f(x,y)原始清晰图像的灰度,h(x,y)是降质PSF的灰度,z(x,y)是加性噪声,代表卷积运算。通过傅立叶变换,该模型可在频域表示为:
G(u,v)=F(u,v)·H(u,v)+Z(u,v) (2)
其中u,v表示离散频率,G(u,v)、F(u,v)、H(u,v)和Z(u,v)分别是g(x,y)、f(x,y)、h(x,y)和z(x,y)的傅立叶变换,H(u,v)也称为光学传输函数(optical transfer function,OTF)。图像复原也就是从g(x,y)中把f(x,y)恢复出来。然而,在实际情况中,h(x,y)和z(x,y)往往是未知的,以致恢复f(x,y)非常困难,这种情况即被称为图像盲复原。
在各种成像系统中,离焦模糊是一种常见的降质因素。只要成像系统的镜头尚未对所拍对象聚焦,就会产生离焦模糊。一般来说,在镜头聚焦不良的情况下,一个点源的影像可以近似为一个圆盘,系统的点扩展函数可以用数学模型表示为:
其中,r为离焦半径。对该点扩展函数进行离散傅里叶变换,则得到:
其中,J1(·)为一阶第一类Bessel函数,K为归一化常数,表示距离量,M为图像的行数,N为图像的列数,且u=0,1,…,M-1和v=0,1,…,N-1。根据一阶第一类Bessel函数的性质,J1(·)的零点在以原点为圆心的同心圆周上,因而理论上离焦模糊图像的频谱存在许多同心暗环,其中第一暗环的轨迹方程为:
2πrρ1=3.85 (5)
式中,ρ1表示第一暗环的距离量。在噪声很小时,离焦模糊图像的频谱中往往可以直接看到这些同心暗环。但是当噪声较大时,暗环将会被噪声淹没,退化成一个圆斑。
目前离焦模糊图像盲复原方法大致有三类,一是通过在变换域寻找零点位置确定参数,二是通过直线或直线边缘区域的模糊图像在空间域直接计算参数,三是根据复原结果的评价(如峰度)来对参数进行搜索。例如,刘克等人首先利用梯度图像估计离焦半径的初值,然后利用最小二乘图像复原技术和斐波拉契最优搜索方法确定精确的离焦半径;L.Dalong等人提出一种基于最小峰度的模糊辨识技术,根据最小峰度的复原图像来确定模糊参数;P.Marziliano等人基于模糊边缘的平滑效应,提出一种在空间域中衡量边缘扩散从而辨识模糊参数的方法;E.Ong等人改进为计算与边缘垂直的梯度方向及反方向上的边缘扩散;C.Yunchung通过获取边缘梯度幅度信息,以其标准差来表示模糊边缘宽度,结合加权的边缘梯度幅值,使其结果更加稳定,等等。另外还有一类并非专门针对离焦模糊的一般图像盲复原方法,比如迭代盲反卷积、非负性支持域约束递归逆滤波法、RL算法、极大似然估计算法、EM算法、模拟退火法、ARMA模型参数估计法、各向异性扩散方程法等等,也可适用于离焦模糊图像的复原,但效果和速度上不如专门针对离焦模糊图像的复原方法优越。
这些现有方法虽然能够在某些场合下取得一定的成效,但存在一些制约其广泛应用的通病。首先,这些方法大多属于模糊检测,所得结果不够准确,尤其在强噪情况下可靠性较差,复原效果不佳。其次,这些方法常涉及到迭代运算,计算量很大,导致复原效率很低,复原一幅图像往往要耗时几秒至几十分钟不等。另外,这些方法几乎都需要交互式地调节繁多的参数,使得人们难以操作和使用。以上种种因素,都限制了现有离焦模糊图像盲复原方法的推广和应用。
发明内容
本发明要解决的技术问题为:克服现有方法对离焦模糊图像的模糊参数辨识精度低、复原效果不佳、复原速度慢的问题,利用图像中频域的原理和方法,提供一种离焦模糊图像的快速盲复原方法。
本发明采用的技术方案为:一种基于中频的离焦模糊图像的中频盲复原法,实现步骤如下:
步骤(1)、计算离焦模糊图像的频谱,方法为:计算离焦模糊图像的离散傅里叶变换并进行中心化和对数化。
步骤(2)、计算离焦模糊图像频谱的椭圆轨迹均值函数,方法为:从离焦模糊图像频谱中心开始,每隔一定距离就在频谱中生成一个椭圆轨迹,该椭圆的双轴之比等于图像的高宽比,然后计算该椭圆轨迹下所有频谱值的均值,从而构造一个以上述距离为自变量的椭圆轨迹均值函数。
步骤(3)、对椭圆轨迹均值函数进行“变跨度平滑滤波”得到一个基准函数,方法为:用指定的跨度对椭圆轨迹均值函数进行移动窗平均平滑滤波,但在边界附近如果窗口超出边界则相应地减小跨度,使窗口刚好包含边界,平滑后即得到上述基准函数。
步骤(4)、用椭圆轨迹均值函数计算离焦模糊图像频谱的中频域,方法为:先对椭圆轨迹均值函数进行“移动右平均”平滑,然后用直线连接该平滑曲线的两个端点并计算到该直线最大距离的点,即得到中频域和高频域之间的分界点;再在中低频域上对椭圆轨迹均值函数的自然指数函数进行“移动左平均”平滑,然后用直线连接该平滑曲线的两个端点并计算到该直线最大距离的点,即得到低频域和中频域之间的分界点。
步骤(5)、在中频域中用椭圆轨迹均值函数及其基准函数估计第一暗环的位置,方法为:在中频域中计算基准函数与椭圆轨迹均值函数的差值函数,并以该差值函数第一个凸包的全局最尖锐处作为第一暗环的估计位置。
步骤(6)、用估计的第一暗环位置计算离焦半径并生成离焦光学传输函数,方法为:用第一暗环的轨迹方程求解离焦半径,再代入离焦光学传输函数。
步骤(7)、用基于中频的维纳滤波器复原图像,方法为:将上述中频域和高频域之间的分界点代入基于中频的维纳滤波器,得到复原图像的离散傅里叶变换,再进行离散傅里叶逆变换,即可得到复原图像。
本发明与现有技术相比的有益效果在于:能够从离焦模糊图像中自动辨识出离焦半径等参数,实现离焦模糊图像的有效复原,并且具有抑噪能力强、交互参数少、复原速度快的优点。图1是本发明的一个典型的实施例,(a)是一幅噪声很大的真实离焦模糊图像,在光线较暗且尚未完成对焦时拍下,原图中完全无法辨认任何信息。经本发明复原后,里面的文字已经清晰可辨,复原时间仅为毫秒级,复原结果如图(b)所示。
附图说明
图1是本发明的一个典型的实施例,其中(a)是一幅噪声很大的真实离焦模糊图像,(b)是本发明的复原结果。
图2是该实施例中离焦模糊图像的频谱示意图。
图3是该实施例中离焦模糊图像频谱的椭圆轨迹均值函数曲线、基准函数曲线、中频域和高频域之间的分界线和低频域和中频域之间的分界线示意图。
图4是该实施例中基准函数与椭圆轨迹均值函数的差值函数曲线和第一暗环估计位置示意图。
具体实施方式
以下是本发明的具体实施办法。但以下的实施例仅限于解释本发明,本发明的保护范围应包括权利要求的全部内容,而且通过以下实施例对该领域的技术人员即可以实现本发明权利要求的全部内容。
本发明包含七个步骤,其具体实现方式如下:
(1)计算离焦模糊图像的频谱,方法为:计算离焦模糊图像的离散傅里叶变换并进行中心化和对数化。其中,离散傅里叶变换及其中心化用常规的计算公式即可实现,此处不再赘述,对数化可由以下公式实现:
Gln(u,v)=ln[|G(u,v)|+ε] (6)
式中,Gln(u,v)是对数化后的频谱,G(u,v)是中心化后的离散傅里叶变换,ε是一个很小的正数,用来防止出现负无穷值。下文中如无特别说明,“频谱”都是指对数化后的频谱Gln(u,v)。本实施例的离焦模糊图像如图1(a)所示,其频谱如图2所示。
(2)计算离焦模糊图像频谱的椭圆轨迹均值函数,方法为:从离焦模糊图像频谱中心开始,每隔一定距离就在频谱中生成一个椭圆轨迹,该椭圆的双轴之比等于图像的高宽比,然后计算该椭圆轨迹下所有频谱值的均值,从而构造一个以上述距离为自变量的椭圆轨迹均值函数,其计算公式为:
C(ρ)=E[Gln(u,v)],(u,v)∈{(u,v)|(u/M)2+(v/N)2=ρ2} (7)
式中,ρ是距离量,C(ρ)是椭圆轨迹均值函数,E[·]表示求均值。即指定一个ρ时,用轨迹(u/M)2+(v/N)2=ρ2上所有Gln(u,v)的均值,作为C(ρ)的函数值。因频谱为中心对称,故ρ的取值范围为0≤ρ≤0.5。本实施例的椭圆轨迹均值函数曲线如图3所示。
(3)对椭圆轨迹均值函数进行“变跨度平滑滤波”得到一个基准函数,方法为:用指定的跨度对椭圆轨迹均值函数进行移动窗平均平滑滤波,但在边界附近如果窗口超出边界则相应地减小跨度,使窗口刚好包含边界,平滑后即得到上述基准函数。设ρ的量化间隔为Δρ,则基准函数的计算公式为:
其中,表示基准函数,sρ是移动窗的跨度(奇数),i是量化间隔的计数变量,表示向下取整。移动窗平均平滑在边界附近通常是采用左右扩展的方法来进行处理,但这样会一定程度上偏离原频谱。因此,本发明采用“变跨度”的方法来使边界附近的和C(ρ)保持基本一致,也就是让跨度sρ随ρ变化:在中间部分用指定的跨度进行处理,而在边界附近用不大于ρ到边界距离的跨度进行处理。又因为ρ的取值范围为0≤ρ≤0.5,故取
其中,ξ是跨度与总宽度的比例,通常用ξ=0.1~0.2,min(·)表示取最小值。本实施例的基准函数函数曲线如图3所示。
(4)用椭圆轨迹均值函数计算离焦模糊图像频谱的中频域,方法为:先对椭圆轨迹均值函数进行“移动右平均”平滑,然后用直线连接该平滑曲线的两个端点并计算到该直线最大距离的点,即得到中频域和高频域之间的分界点;再在中低频域上对椭圆轨迹均值函数的自然指数函数进行“移动左平均”平滑,然后用直线连接该平滑曲线的两个端点并计算到该直线最大距离的点,即得到低频域和中频域之间的分界点。
根据中频域的特性,模糊图像的频谱在中频域中存有点扩散函数的信息,而低频域和高频域都会受到不同程度的污染。因此如果能定位中频域,则更能准确的找出第一暗环的位置。假设中频域和高频域之间的分界点为ρMH,低频域和中频域之间的分界点为ρLM,则0≤ρ<ρLM为低频域,ρLM≤ρ≤ρMH为中频域,ρMH<ρ≤0.5为高频域。因为位于频域以右的高频域是用转折特性来界定,所以可以直接对C(ρ)进行“移动右平均”平滑,即:
式中,是C(ρ)的移动右平均平滑结果,sr是移动右平均的跨度。从而,用直线连接的端点并计算到该直线最大距离的点,即得到中频域和高频域之间的分界点,计算公式为:
式中,argmax表示取指定区域中使表达式最大的变量值。另一方面,由于0<ρLM<ρMH,故计算ρLM时只需考虑中低频域0≤ρ≤ρMH。因为位于频域以左的低频域是用图像能量来界定,所以需要对exp[C(ρ)]进行“移动左平均”平滑,即:
式中,是exp[C(ρ)]的移动左平均平滑结果,sl是移动左平均的跨度。类似的,用直线连接exp[C(ρ)]的端点并计算到该直线最大距离的点,即得到低频域和中频域之间的分界点,计算公式为:
本实施例的中频域和高频域之间的分界线以及低频域和中频域之间的分界线都示于如图3之中。
(5)在中频域中用椭圆轨迹均值函数及其基准函数估计第一暗环的位置,方法为:在中频域中计算基准函数与椭圆轨迹均值函数的差值函数,并以该差值函数第一个凸包的全局最尖锐处作为第一暗环的估计位置。
理论上,第一暗环的零点会使基准函数与椭圆轨迹均值函数的差值函数产生一个凸包,但受图像能量和噪声影响,实际中该凸包不一定是最大,而且第一暗环也不一定位于凸包的峰值处。但是第一暗环几乎都位于第一个凸包中,因此需要用最大值的一定容差来找出第一个凸包,并且以变化率最大的原则来确定第一暗环,即凸包中的全局最尖锐处。但是噪声的存在可能会导致个别局部尖锐点,因此还需要首先对差值函数进行平滑处理,从而差值函数的计算公式为:
式中,D(ρ)表示上述差值函数,smooth[·]是平滑算子。该差值函数定义在中频域中,这是因为只有中频域才较好地保存了点扩散函数的信息,并且本发明的中频域计算方法会自动地将第一个凸包包含在内。本实施例的差值函数曲线如图4所示。
然后,以该差值函数最大值的一定比例为阈值,找出差值函数的第一个凸包的区域,即找出D(ρ)在ρLM≤ρ≤ρMH中第一个满足D(ρ)≥λ·max[D(ρ)]的连续区域(用Ω1表示),其中λ为上述用来确定阈值的比例,max[·]表示取最大值。再用Ω1中各点的夹角来量化尖锐的程度,其计算公式为:
式中,A(ρ)表示D(ρ)曲线在ρ处的夹角。于是,A(ρ)最小的位置就是Ω1中的最尖锐处及第一暗环的估计位置即:
式中,argmin表示取指定区域中使表达式最小的变量值。本实施例的第一暗环估计位置如图4所示。
(6)用估计的第一暗环位置计算离焦半径并生成离焦光学传输函数,方法为:用第一暗环的轨迹方程求解离焦半径,再代入离焦光学传输函数。用第一暗环的轨迹方程可推出离焦半径的计算公式为:
式中,表示估计的离焦半径。本实施例中的计算结果为再将代入离焦光学传输函数,即可生成估计的离焦光学传输函数
(7)用基于中频的维纳滤波器复原图像,方法为:将上述中频域和高频域之间的分界点代入基于中频的维纳滤波器,得到复原图像的离散傅里叶变换,再进行离散傅里叶逆变换,即可得到复原图像。本发明针对离焦模糊图像的复原,推导出基于中频的维纳滤波器的计算公式为:
式中,是复原图像的离散傅里叶变换,η是噪声抑制参数,在v=0截面上的曲线的一个平滑版本,即:
其中平滑算子smooth[·]的目的是使基本单调,消除其零点以便取值。另外,噪声抑制参数η用于调和噪声与图像细节的矛盾:η接近1时噪声和细节都较为清晰,η减小时噪声和细节同时有所减弱,从中选取一个平衡值以实现图像的最佳复原。最后,计算的离散傅里叶逆变换并标准化(必要时可调整对比度),即得复原图像。本实施例的复原图像如图1(b)所示。
本发明未详细阐述部分属于本领域技术人员的公知技术。

Claims (1)

1.一种基于中频的离焦模糊图像盲复原方法,其特征在于实现步骤如下:
(1)计算离焦模糊图像的频谱,方法为:计算离焦模糊图像的离散傅里叶变换并进行中心化和对数化,其中,对数化可由以下公式实现:
Gln(u,v)=ln[|G(u,v)|+ε] (6)
式中,Gln(u,v)是对数化后的频谱,G(u,v)是中心化后的离散傅里叶变换,ε是一个很小的正数,用来防止出现负无穷值,“频谱”都是指对数化后的频谱Gln(u,v);
(2)计算离焦模糊图像频谱的椭圆轨迹均值函数,方法为:从离焦模糊图像频谱中心开始,每隔一定距离就在频谱中生成一个椭圆轨迹,该椭圆的双轴之比等于图像的高宽比,然后计算该椭圆轨迹下所有频谱值的均值,从而构造一个以上述距离为自变量的椭圆轨迹均值函数,其计算公式为:
C(ρ)=E[Gln(u,v)],(u,v)∈{(u,v)|(u/M)2+(v/N)2=ρ2} (7)
式中,ρ是距离量,C(ρ)是椭圆轨迹均值函数,E[·]表示求均值,即指定一个ρ时,用轨迹(u/M)2+(v/N)2=ρ2上所有Gln(u,v)的均值,作为C(ρ)的函数值,因频谱为中心对称,故ρ的取值范围为0≤ρ≤0.5;
(3)对椭圆轨迹均值函数进行“变跨度平滑滤波”得到一个基准函数,方法为:用指定的跨度对椭圆轨迹均值函数进行移动窗平均平滑滤波,但在边界附近如果窗口超出边界则相应地减小跨度,使窗口刚好包含边界,平滑后即得到上述基准函数,设ρ的量化间隔为Δρ,则基准函数的计算公式为:
其中,表示基准函数,sρ是移动窗的跨度,i是量化间隔的计数变量,表示向下取整,采用“变跨度”的方法来使边界附近的和C(ρ)保持基本一致,也就是让跨度sρ随ρ变化:在中间部分用指定的跨度进行处理,而在边界附近用不大于ρ到边界距离的跨度进行处理,又因为ρ的取值范围为0≤ρ≤0.5,故取
其中,ξ是跨度与总宽度的比例,ξ=0.1~0.2,min(·)表示取最小值;
(4)用椭圆轨迹均值函数计算离焦模糊图像频谱的中频域,方法为:先对椭圆轨迹均值函数进行“移动右平均”平滑,然后用直线连接该平滑曲线的两个端点并计算到该直线最大距离的点,即得到中频域和高频域之间的分界点;再在中低频域上对椭圆轨迹均值函数的自然指数函数进行“移动左平均”平滑,然后用直线连接该平滑曲线的两个端点并计算到该直线最大距离的点,即得到低频域和中频域之间的分界点;
根据中频域的特性,模糊图像的频谱在中频域中存有点扩散函数的信息,而低频域和高频域都会受到不同程度的污染,因此如果能定位中频域,则更能准确的找出第一暗环的位置,假设中频域和高频域之间的分界点为ρMH,低频域和中频域之间的分界点为ρLM,则0≤ρ<ρLM为低频域,ρLM≤ρ≤ρMH为中频域,ρMH<ρ≤0.5为高频域,因为位于频域以右的高频域是用转折特性来界定,所以直接对C(ρ)进行“移动右平均”平滑,即:
<mrow> <msub> <mover> <mi>C</mi> <mo>~</mo> </mover> <mi>r</mi> </msub> <mrow> <mo>(</mo> <mi>&amp;rho;</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfrac> <mn>1</mn> <msub> <mi>s</mi> <mi>r</mi> </msub> </mfrac> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>i</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow> <msub> <mi>s</mi> <mi>r</mi> </msub> <mo>-</mo> <mn>1</mn> </mrow> </munderover> <mi>C</mi> <mrow> <mo>(</mo> <mi>&amp;rho;</mi> <mo>+</mo> <mi>i</mi> <mo>&amp;CenterDot;</mo> <mi>&amp;Delta;</mi> <mi>&amp;rho;</mi> <mo>)</mo> </mrow> <mo>,</mo> <mn>0</mn> <mo>&amp;le;</mo> <mi>&amp;rho;</mi> <mo>&amp;le;</mo> <mn>0.5</mn> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>10</mn> <mo>)</mo> </mrow> </mrow>
式中,是C(ρ)的移动右平均平滑结果,sr是移动右平均的跨度,从而,用直线连接的端点并计算到该直线最大距离的点,即得到中频域和高频域之间的分界点,计算公式为:
<mrow> <msub> <mi>&amp;rho;</mi> <mrow> <mi>M</mi> <mi>H</mi> </mrow> </msub> <mo>=</mo> <mi>arg</mi> <munder> <mrow> <mi>m</mi> <mi>a</mi> <mi>x</mi> </mrow> <mrow> <mn>0</mn> <mo>&lt;</mo> <mi>&amp;rho;</mi> <mo>&lt;</mo> <mn>0.5</mn> </mrow> </munder> <mo>|</mo> <mo>&amp;lsqb;</mo> <msub> <mover> <mi>C</mi> <mo>~</mo> </mover> <mi>r</mi> </msub> <mrow> <mo>(</mo> <mn>0</mn> <mo>)</mo> </mrow> <mo>-</mo> <msub> <mover> <mi>C</mi> <mo>~</mo> </mover> <mi>r</mi> </msub> <mrow> <mo>(</mo> <mn>0.5</mn> <mo>)</mo> </mrow> <mo>&amp;rsqb;</mo> <mi>&amp;rho;</mi> <mo>+</mo> <mn>0.5</mn> <msub> <mover> <mi>C</mi> <mo>~</mo> </mover> <mi>r</mi> </msub> <mrow> <mo>(</mo> <mi>&amp;rho;</mi> <mo>)</mo> </mrow> <mo>-</mo> <mn>0.5</mn> <msub> <mover> <mi>C</mi> <mo>~</mo> </mover> <mi>r</mi> </msub> <mrow> <mo>(</mo> <mn>0</mn> <mo>)</mo> </mrow> <mo>|</mo> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>11</mn> <mo>)</mo> </mrow> </mrow>
式中,argmax表示取指定区域中使表达式最大的变量值,另一方面,由于0<ρLM<ρMH,故计算ρLM时只需考虑中低频域0≤ρ≤ρMH,因为位于频域以左的低频域是用图像能量来界定,所以需要对exp[C(ρ)]进行“移动左平均”平滑,即:
<mrow> <msub> <mover> <mi>C</mi> <mo>~</mo> </mover> <mi>l</mi> </msub> <mrow> <mo>(</mo> <mi>&amp;rho;</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfrac> <mn>1</mn> <msub> <mi>s</mi> <mi>l</mi> </msub> </mfrac> <munderover> <mi>&amp;Sigma;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow> <msub> <mi>s</mi> <mi>l</mi> </msub> <mo>-</mo> <mn>1</mn> </mrow> </munderover> <mi>exp</mi> <mo>&amp;lsqb;</mo> <mi>C</mi> <mrow> <mo>(</mo> <mi>&amp;rho;</mi> <mo>-</mo> <mi>i</mi> <mo>&amp;CenterDot;</mo> <mi>&amp;Delta;</mi> <mi>&amp;rho;</mi> <mo>)</mo> </mrow> <mo>&amp;rsqb;</mo> <mo>,</mo> <mn>0</mn> <mo>&amp;le;</mo> <mi>&amp;rho;</mi> <mo>&amp;le;</mo> <msub> <mi>&amp;rho;</mi> <mrow> <mi>M</mi> <mi>H</mi> </mrow> </msub> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>12</mn> <mo>)</mo> </mrow> </mrow>
式中,是exp[C(ρ)]的移动左平均平滑结果,sl是移动左平均的跨度,用直线连接exp[C(ρ)]的端点并计算到该直线最大距离的点,即得到低频域和中频域之间的分界点,计算公式为:
<mrow> <msub> <mi>&amp;rho;</mi> <mrow> <mi>L</mi> <mi>M</mi> </mrow> </msub> <mo>=</mo> <mi>arg</mi> <munder> <mrow> <mi>m</mi> <mi>a</mi> <mi>x</mi> </mrow> <mrow> <mn>0</mn> <mo>&lt;</mo> <mi>&amp;rho;</mi> <mo>&lt;</mo> <msub> <mi>&amp;rho;</mi> <mrow> <mi>M</mi> <mi>H</mi> </mrow> </msub> </mrow> </munder> <mo>|</mo> <mo>&amp;lsqb;</mo> <msub> <mover> <mi>C</mi> <mo>~</mo> </mover> <mi>l</mi> </msub> <mrow> <mo>(</mo> <mn>0</mn> <mo>)</mo> </mrow> <mo>-</mo> <msub> <mover> <mi>C</mi> <mo>~</mo> </mover> <mi>l</mi> </msub> <mrow> <mo>(</mo> <msub> <mi>&amp;rho;</mi> <mrow> <mi>M</mi> <mi>H</mi> </mrow> </msub> <mo>)</mo> </mrow> <mo>&amp;rsqb;</mo> <mi>&amp;rho;</mi> <mo>+</mo> <msub> <mi>&amp;rho;</mi> <mrow> <mi>M</mi> <mi>H</mi> </mrow> </msub> <msub> <mover> <mi>C</mi> <mo>~</mo> </mover> <mi>l</mi> </msub> <mrow> <mo>(</mo> <mi>&amp;rho;</mi> <mo>)</mo> </mrow> <mo>-</mo> <msub> <mi>&amp;rho;</mi> <mrow> <mi>M</mi> <mi>H</mi> </mrow> </msub> <msub> <mover> <mi>C</mi> <mo>~</mo> </mover> <mi>l</mi> </msub> <mrow> <mo>(</mo> <mn>0</mn> <mo>)</mo> </mrow> <mo>|</mo> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>13</mn> <mo>)</mo> </mrow> </mrow>
(5)在中频域中用椭圆轨迹均值函数及其基准函数估计第一暗环的位置,方法为:在中频域中计算基准函数与椭圆轨迹均值函数的差值函数,并以该差值函数第一个凸包的全局最尖锐处作为第一暗环的估计位置;
差值函数的计算公式为:
<mrow> <mi>D</mi> <mrow> <mo>(</mo> <mi>&amp;rho;</mi> <mo>)</mo> </mrow> <mo>=</mo> <mi>s</mi> <mi>m</mi> <mi>o</mi> <mi>o</mi> <mi>t</mi> <mi>h</mi> <mo>&amp;lsqb;</mo> <msub> <mover> <mi>C</mi> <mo>~</mo> </mover> <mi>r</mi> </msub> <mrow> <mo>(</mo> <mi>&amp;rho;</mi> <mo>)</mo> </mrow> <mo>-</mo> <msub> <mi>C</mi> <mi>r</mi> </msub> <mrow> <mo>(</mo> <mi>&amp;rho;</mi> <mo>)</mo> </mrow> <mo>&amp;rsqb;</mo> <mo>,</mo> <msub> <mi>&amp;rho;</mi> <mrow> <mi>L</mi> <mi>M</mi> </mrow> </msub> <mo>&amp;le;</mo> <mi>&amp;rho;</mi> <mo>&amp;le;</mo> <msub> <mi>&amp;rho;</mi> <mrow> <mi>M</mi> <mi>H</mi> </mrow> </msub> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>14</mn> <mo>)</mo> </mrow> </mrow>
式中,D(ρ)表示上述差值函数,smooth[·]是平滑算子,该差值函数定义在中频域中;
然后,以该差值函数最大值的一定比例为阈值,找出差值函数的第一个凸包的区域,即找出D(ρ)在ρLM≤ρ≤ρMH中第一个满足D(ρ)≥λ·max[D(ρ)]的连续区域,用Ω1表示,其中λ为上述用来确定阈值的比例,max[·]表示取最大值,再用Ω1中各点的夹角来量化尖锐的程度,其计算公式为:
<mrow> <mi>A</mi> <mrow> <mo>(</mo> <mi>&amp;rho;</mi> <mo>)</mo> </mrow> <mo>=</mo> <mi>&amp;pi;</mi> <mo>-</mo> <mi>arctan</mi> <mo>{</mo> <mfrac> <mrow> <mi>&amp;Delta;</mi> <mi>&amp;rho;</mi> <mo>&amp;CenterDot;</mo> <mo>&amp;lsqb;</mo> <mn>2</mn> <mi>D</mi> <mrow> <mo>(</mo> <mi>&amp;rho;</mi> <mo>)</mo> </mrow> <mo>-</mo> <mi>D</mi> <mrow> <mo>(</mo> <mi>&amp;rho;</mi> <mo>-</mo> <mi>&amp;Delta;</mi> <mi>&amp;rho;</mi> <mo>)</mo> </mrow> <mo>-</mo> <mi>D</mi> <mrow> <mo>(</mo> <mi>&amp;rho;</mi> <mo>+</mo> <mi>&amp;Delta;</mi> <mi>&amp;rho;</mi> <mo>)</mo> </mrow> <mo>&amp;rsqb;</mo> </mrow> <mrow> <msup> <mi>&amp;Delta;&amp;rho;</mi> <mn>2</mn> </msup> <mo>+</mo> <mo>&amp;lsqb;</mo> <mi>D</mi> <mrow> <mo>(</mo> <mi>&amp;rho;</mi> <mo>)</mo> </mrow> <mo>-</mo> <mi>D</mi> <mrow> <mo>(</mo> <mi>&amp;rho;</mi> <mo>-</mo> <mi>&amp;Delta;</mi> <mi>&amp;rho;</mi> <mo>)</mo> </mrow> <mo>&amp;rsqb;</mo> <mo>&amp;lsqb;</mo> <mi>D</mi> <mrow> <mo>(</mo> <mi>&amp;rho;</mi> <mo>+</mo> <mi>&amp;Delta;</mi> <mi>&amp;rho;</mi> <mo>)</mo> </mrow> <mo>-</mo> <mi>D</mi> <mrow> <mo>(</mo> <mi>&amp;rho;</mi> <mo>)</mo> </mrow> <mo>&amp;rsqb;</mo> </mrow> </mfrac> <mo>}</mo> <mo>,</mo> <mi>&amp;rho;</mi> <mo>&amp;Element;</mo> <msub> <mi>&amp;Omega;</mi> <mn>1</mn> </msub> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>15</mn> <mo>)</mo> </mrow> </mrow>
式中,A(ρ)表示D(ρ)曲线在ρ处的夹角,于是,A(ρ)最小的位置就是Ω1中的最尖锐处及第一暗环的估计位置即:
<mrow> <msub> <mover> <mi>&amp;rho;</mi> <mo>^</mo> </mover> <mn>1</mn> </msub> <mo>=</mo> <mi>arg</mi> <munder> <mrow> <mi>m</mi> <mi>i</mi> <mi>n</mi> </mrow> <mrow> <mi>&amp;rho;</mi> <mo>&amp;Element;</mo> <msub> <mi>&amp;Omega;</mi> <mn>1</mn> </msub> </mrow> </munder> <mo>&amp;lsqb;</mo> <mi>A</mi> <mrow> <mo>(</mo> <mi>&amp;rho;</mi> <mo>)</mo> </mrow> <mo>&amp;rsqb;</mo> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>16</mn> <mo>)</mo> </mrow> </mrow>
式中,argmin表示取指定区域中使表达式最小的变量值;
(6)用估计的第一暗环位置计算离焦半径并生成离焦光学传输函数,方法为:用第一暗环的轨迹方程求解离焦半径,再代入离焦光学传输函数,用第一暗环的轨迹方程可推出离焦半径的计算公式为:
<mrow> <mover> <mi>r</mi> <mo>^</mo> </mover> <mo>=</mo> <mfrac> <mn>3.85</mn> <mrow> <mn>2</mn> <mi>&amp;pi;</mi> <msub> <mover> <mi>&amp;rho;</mi> <mo>^</mo> </mover> <mn>1</mn> </msub> </mrow> </mfrac> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>17</mn> <mo>)</mo> </mrow> </mrow>
式中,表示估计的离焦半径,再将代入离焦光学传输函数,即可生成估计的离焦光学传输函数
<mrow> <mover> <mi>H</mi> <mo>^</mo> </mover> <mrow> <mo>(</mo> <mi>u</mi> <mo>,</mo> <mi>v</mi> <mo>)</mo> </mrow> <mo>=</mo> <mi>K</mi> <mfrac> <mrow> <msub> <mi>J</mi> <mn>1</mn> </msub> <mrow> <mo>(</mo> <mn>2</mn> <mi>&amp;pi;</mi> <mover> <mi>r</mi> <mo>^</mo> </mover> <msqrt> <mrow> <msup> <mrow> <mo>(</mo> <mi>u</mi> <mo>/</mo> <mi>M</mi> <mo>)</mo> </mrow> <mn>2</mn> </msup> <mo>+</mo> <msup> <mrow> <mo>(</mo> <mi>v</mi> <mo>/</mo> <mi>N</mi> <mo>)</mo> </mrow> <mn>2</mn> </msup> </mrow> </msqrt> <mo>)</mo> </mrow> </mrow> <mrow> <mn>2</mn> <mi>&amp;pi;</mi> <mover> <mi>r</mi> <mo>^</mo> </mover> <msqrt> <mrow> <msup> <mrow> <mo>(</mo> <mi>u</mi> <mo>/</mo> <mi>M</mi> <mo>)</mo> </mrow> <mn>2</mn> </msup> <mo>+</mo> <msup> <mrow> <mo>(</mo> <mi>v</mi> <mo>/</mo> <mi>N</mi> <mo>)</mo> </mrow> <mn>2</mn> </msup> </mrow> </msqrt> </mrow> </mfrac> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>18</mn> <mo>)</mo> </mrow> </mrow>
(7)用基于中频的维纳滤波器复原图像,方法为:将上述中频域和高频域之间的分界点代入基于中频的维纳滤波器,得到复原图像的离散傅里叶变换,再进行离散傅里叶逆变换,即可得到复原图像,针对离焦模糊图像的复原,推导出基于中频的维纳滤波器的计算公式为:
<mrow> <mover> <mi>F</mi> <mo>^</mo> </mover> <mrow> <mo>(</mo> <mi>u</mi> <mo>,</mo> <mi>v</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfrac> <mrow> <msup> <mover> <mi>H</mi> <mo>^</mo> </mover> <mo>*</mo> </msup> <mrow> <mo>(</mo> <mi>u</mi> <mo>,</mo> <mi>v</mi> <mo>)</mo> </mrow> <mi>G</mi> <mrow> <mo>(</mo> <mi>u</mi> <mo>,</mo> <mi>v</mi> <mo>)</mo> </mrow> </mrow> <mrow> <mo>|</mo> <mover> <mi>H</mi> <mo>^</mo> </mover> <mrow> <mo>(</mo> <mi>u</mi> <mo>,</mo> <mi>v</mi> <mo>)</mo> </mrow> <msup> <mo>|</mo> <mn>2</mn> </msup> <mo>+</mo> <mo>|</mo> <mover> <mi>H</mi> <mo>~</mo> </mover> <mrow> <mo>(</mo> <msub> <mi>&amp;rho;</mi> <mrow> <mi>M</mi> <mi>H</mi> </mrow> </msub> <mo>)</mo> </mrow> <msup> <mo>|</mo> <mrow> <mn>2</mn> <mi>&amp;eta;</mi> </mrow> </msup> <mo>&amp;CenterDot;</mo> <msup> <mrow> <mo>&amp;lsqb;</mo> <mi>m</mi> <mi>a</mi> <mi>x</mi> <mo>|</mo> <mover> <mi>H</mi> <mo>~</mo> </mover> <mrow> <mo>(</mo> <mi>&amp;rho;</mi> <mo>)</mo> </mrow> <mo>|</mo> <mo>&amp;rsqb;</mo> </mrow> <mrow> <mn>2</mn> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <mi>&amp;eta;</mi> <mo>)</mo> </mrow> </mrow> </msup> <mo>-</mo> <msup> <mrow> <mo>&amp;lsqb;</mo> <mi>m</mi> <mi>i</mi> <mi>n</mi> <mo>|</mo> <mover> <mi>H</mi> <mo>~</mo> </mover> <mrow> <mo>(</mo> <mi>&amp;rho;</mi> <mo>)</mo> </mrow> <mo>|</mo> <mo>&amp;rsqb;</mo> </mrow> <mn>2</mn> </msup> </mrow> </mfrac> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>19</mn> <mo>)</mo> </mrow> </mrow>
式中,是复原图像的离散傅里叶变换,η是噪声抑制参数,在v=0截面上的曲线的一个平滑版本,即:
<mrow> <mover> <mi>H</mi> <mo>~</mo> </mover> <mrow> <mo>(</mo> <mi>&amp;rho;</mi> <mo>)</mo> </mrow> <mo>=</mo> <mi>s</mi> <mi>m</mi> <mi>o</mi> <mi>o</mi> <mi>t</mi> <mi>h</mi> <mo>&amp;lsqb;</mo> <mover> <mi>H</mi> <mo>^</mo> </mover> <mrow> <mo>(</mo> <mi>&amp;rho;</mi> <mi>M</mi> <mo>,</mo> <mn>0</mn> <mo>)</mo> </mrow> <mo>&amp;rsqb;</mo> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>20</mn> <mo>)</mo> </mrow> </mrow>
其中平滑算子smooth[·]的目的是使基本单调,消除其零点以便取值,最后,计算的离散傅里叶逆变换并标准化,即得复原图像。
CN201410583889.0A 2014-10-25 2014-10-25 一种基于中频的离焦模糊图像盲复原方法 Active CN104299202B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410583889.0A CN104299202B (zh) 2014-10-25 2014-10-25 一种基于中频的离焦模糊图像盲复原方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410583889.0A CN104299202B (zh) 2014-10-25 2014-10-25 一种基于中频的离焦模糊图像盲复原方法

Publications (2)

Publication Number Publication Date
CN104299202A CN104299202A (zh) 2015-01-21
CN104299202B true CN104299202B (zh) 2018-04-03

Family

ID=52318923

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410583889.0A Active CN104299202B (zh) 2014-10-25 2014-10-25 一种基于中频的离焦模糊图像盲复原方法

Country Status (1)

Country Link
CN (1) CN104299202B (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106097302B (zh) * 2016-05-30 2019-07-23 西安交通大学 基于单张图片的物体三维形貌非接触测量方法
CN106228526B (zh) * 2016-08-29 2019-01-04 中国科学院光电技术研究所 一种基于中频的衍射极限模糊图像盲复原方法
CN106529523B (zh) * 2016-11-14 2019-04-02 中国计量大学 一种高速传送带上铝塑泡罩图像复原和序列号识别方法
CN109579738B (zh) * 2019-01-04 2020-08-28 北京理工大学 一种二值条纹离焦投影系统低通滤波特性测量方法
CN110807745B (zh) * 2019-10-25 2022-09-16 北京小米智能科技有限公司 图像处理方法及装置、电子设备
CN110930388B (zh) * 2019-11-20 2023-06-06 中国科学院半导体研究所 离焦量检测方法
CN111815537B (zh) * 2020-07-16 2022-04-29 西北工业大学 一种新型图像盲解去模糊方法
CN114723642B (zh) * 2022-06-07 2022-08-19 深圳市资福医疗技术有限公司 图像校正方法、装置及胶囊内窥镜

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1947604A1 (en) * 2005-10-14 2008-07-23 Consejo Superior de Investigaciones Cientificas (CSIC) Blind deconvolution and super-resolution method for sequences and sets of images and applications thereof
CN101877121A (zh) * 2009-10-30 2010-11-03 中国科学院光电技术研究所 基于中频的图像盲复原方法
CN102629371A (zh) * 2012-02-22 2012-08-08 中国科学院光电技术研究所 基于实时盲图像复原技术的视频像质改善系统
CN103760671A (zh) * 2014-01-17 2014-04-30 中国科学院西安光学精密机械研究所 基于滤波器稳定的波前编码最优相位掩膜板参数获取方法
CN103971341A (zh) * 2014-05-16 2014-08-06 北京理工大学 基于频域参数估计的离焦虹膜图像复原方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140105515A1 (en) * 2012-04-04 2014-04-17 The Regents Of The University Of California Stabilizing and Deblurring Atmospheric Turbulence

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1947604A1 (en) * 2005-10-14 2008-07-23 Consejo Superior de Investigaciones Cientificas (CSIC) Blind deconvolution and super-resolution method for sequences and sets of images and applications thereof
CN101877121A (zh) * 2009-10-30 2010-11-03 中国科学院光电技术研究所 基于中频的图像盲复原方法
CN102629371A (zh) * 2012-02-22 2012-08-08 中国科学院光电技术研究所 基于实时盲图像复原技术的视频像质改善系统
CN103760671A (zh) * 2014-01-17 2014-04-30 中国科学院西安光学精密机械研究所 基于滤波器稳定的波前编码最优相位掩膜板参数获取方法
CN103971341A (zh) * 2014-05-16 2014-08-06 北京理工大学 基于频域参数估计的离焦虹膜图像复原方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
成像跟踪系统中实时图像复原研究;罗一涵;《中国科学院研究生院博士论文集》;20111231;第26-45页 *

Also Published As

Publication number Publication date
CN104299202A (zh) 2015-01-21

Similar Documents

Publication Publication Date Title
CN104299202B (zh) 一种基于中频的离焦模糊图像盲复原方法
CN104637064B (zh) 一种基于边缘强度权重的离焦模糊图像清晰度检测方法
US20180063511A1 (en) Apparatus and method for detecting object automatically and estimating depth information of image captured by imaging device having multiple color-filter aperture
CN109345474A (zh) 基于梯度域和深度学习的图像运动模糊盲去除方法
CN102708550B (zh) 一种基于自然图像统计特性的盲去模糊方法
CN103686194A (zh) 基于非局部均值的视频去噪方法和装置
CN107169947B (zh) 一种基于特征点定位和边缘检测的图像融合实验方法
CN105354817A (zh) 一种噪声图像自动聚焦方法
Rajagopalan et al. A variational approach to recovering depth from defocused images
CN102867297A (zh) 一种低照度图像采集的数字化处理方法
TWI482468B (zh) 物體偵測裝置、方法及其電腦可讀取紀錄媒體
CN107133929A (zh) 基于背景估计和能量最小化的低质量文档图像二值化方法
CN103971341A (zh) 基于频域参数估计的离焦虹膜图像复原方法
CN106341596A (zh) 一种聚焦方法和装置
CN104966274B (zh) 一种采用图像检测与区域提取的局部模糊复原方法
CN106327522A (zh) 基于多方向形态学滤波复杂云背景下红外小目标检测方法
CN101852970A (zh) 一种用于成像视场扫描状态下的相机自动对焦方法
CN110796616A (zh) 基于分数阶微分算子的l0范数约束和自适应加权梯度的湍流退化图像恢复方法
Jang et al. Removal of non-gaussian jitter noise for shape from focus through improved maximum correntropy criterion kalman filter
Pei et al. Joint edge detector based on Laplacian pyramid
CN102156965A (zh) 一种存在运动物体的场景运动模糊图像恢复方法
CN107301667A (zh) 基于棋盘格图像对单透镜计算成像的psf估计方法
CN109410227B (zh) 一种基于gvf模型的土地利用图斑轮廓提取算法
CN108961155B (zh) 一种高保真的鱼眼镜头畸变校正方法
Khan et al. Efficient blind image deconvolution using spectral non-Gaussianity

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant