CN104275175A - 一种ZnO/石墨烯光催化剂的制备方法 - Google Patents
一种ZnO/石墨烯光催化剂的制备方法 Download PDFInfo
- Publication number
- CN104275175A CN104275175A CN201410563803.8A CN201410563803A CN104275175A CN 104275175 A CN104275175 A CN 104275175A CN 201410563803 A CN201410563803 A CN 201410563803A CN 104275175 A CN104275175 A CN 104275175A
- Authority
- CN
- China
- Prior art keywords
- zno
- graphene
- preparation
- photo
- catalyst
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Catalysts (AREA)
Abstract
一种ZnO/石墨烯光催化剂的制备方法,包括以下步骤:(1)配置生长液;(2)配置晶种液;(3)制备ZnO/石墨烯:a.向晶种液中加入适量的氧化石墨烯,加热至80~90℃保温30min,洗涤过滤,置于120℃条件下烘干1~2h,备用;b.将烘干的样品置于生长液中,加热至80~90℃保温1h,冲洗干燥后得到ZnO/氧化石墨烯;c.将制备好的ZnO/氧化石墨烯置于气氛还原炉中,在载气的保护下,加热至1000~1100℃还原1h,最终得到ZnO/石墨烯光催化剂。本发明步骤简单,成本低,获得的ZnO/石墨烯光催化剂的催化活性和稳定性均有很大提升,有望应用于工业污染物的光催化处理。
Description
技术领域
本发明涉及一种光催化剂的制备方法,特别是一种ZnO/石墨烯光催化剂的制备方法。
背景技术
采用光催化降解水和空气中的有机污染物的研究已成为环境科学领域的一个热点。半导体光催化剂无毒,能在比较温和的温度和PH下降解较宽范围内的污染物。到目前为止,TiO2被认为是最好的半导体光催化剂之一。但是有研究表明,ZnO具有较高的光敏特性、较宽的禁带宽度(3.37eV)及较大的激子能(60meV),在降解一些污染物方面表现出了特殊的价值,比如漂白纸浆厂的污水、苯酚和2-苯基苯酚等;而且,ZnO具有与TiO2相同的光降解机理。
但是由于其本身禁带宽的原因,产生的电子-空穴对易快速复合,会导致光催化性能下降,因此,研究者们采用了许多方法来抑制电子-空穴对的复合并拓宽光响应区域,包括结构形貌的控制、贵金属的负载、离子掺杂、复合其他半导体产生协同效应。特别许多工作致力于研究其与碳材料(如碳纳米管、C60 等)的结合来抑制光生载流子的复合。
在各种碳材料中,石墨烯由于其独特的电学性质及优异性能成为当前的研究热点。石墨烯(Graphene)是一种由单层碳原子紧密堆积而成的二维碳原子晶体,其碳-碳键通过SP2杂化形成,在石墨烯平面内,每个碳原子与相邻的三个碳原子以σ键相连,使整个片层具有高的结构强度。同时,每个碳原子都有一个未成键的π电子,因此在垂直方向上可以形成π轨道。由于π轨道的存在,使得电子在石墨烯晶体中可以自由运动,使石墨烯具有优异的电子传输性能,室温下平面上的电子迁移率为15000 cm2V-1s-1,与这数值对应的电阻率为10-6 Ω·cm,稍小于银的电阻率1.59×10-6 Ω·cm,因此石墨烯具有优异的导电性。同时,石墨烯的比表面积(2630m2/g)很大,拉伸模量(1.01TPa)和极限强度(116GPa)与单壁纳米管相当。石墨烯能够作为ZnO 光催化剂的支撑材料,起到了电子传递通道的作用,抑制了电子-空穴对的快速复合,在促进目标分子吸附的同时拓宽了催化剂的光吸收范围,从而有效地提高了ZnO材料的光催化活性。
尽管已有不少研究报道了ZnO/石墨烯光催化剂的制备方法,但仍存在许多问题。如一些制备方法步骤繁琐,使用原料较多,成本较高,还原后的石墨烯由于范德瓦尔斯力容易重新团聚,不利于光催化活性的提高等。
发明内容
本发明的目的是克服现有技术的上述不足而提供一种步骤简单、成本低廉的ZnO/石墨烯光催化剂的制备方法。
本发明的技术方案是:一种ZnO/石墨烯光催化剂的制备方法,包括以下步骤:
(1)配置生长液:向0.05~0.1mol/L的Zn(NO3)2·6H2O溶液中缓慢加入氨水,至白色沉淀完全溶解;
(2)配置晶种液:向0.001~0.005mol/L的Zn(NO3)2·6H2O溶液中缓慢加入氨水,至白色沉淀完全溶解;
(3)制备ZnO/石墨烯:
a. 向晶种液中加入适量的氧化石墨烯,加热至80~90℃保温30min,洗涤过滤,置于120℃条件下烘干1~2h,备用;
b. 将烘干的样品置于生长液中,加热至80~90℃保温1h,冲洗干燥后得到ZnO/氧化石墨烯;
c. 将制备好的ZnO/氧化石墨烯置于气氛还原炉中,在载气的保护下,加热至1000~1100℃还原1h,最终得到ZnO/石墨烯光催化剂。
进一步,步骤(1)和步骤(2)中,均以Zn(NO3)2·6H2O为前驱体,氨水为沉淀剂。
进一步,步骤(1)中,所述氨水的浓度为25~28% w/w。
进一步,步骤(2)中,所述氨水的浓度为25~28% w/w。
进一步,所述ZnO/石墨烯光催化剂中,石墨烯的质量百分比为60~65%,ZnO的质量百分比35~40%。
进一步,所述载气为氮气或氦气。
本发明的作用机理是:采用水热法制备石墨烯/ZnO复合材料,反应方程式如下:
NH3·H2O+Zn2+→Zn(OH)2↓+NH4 +
Zn(OH)2→ZnO+ H2O
本发明与现有技术相比具有如下特点:
(1)石墨烯的引入增强了对有机分子的吸附作用,拓宽了光吸收范围,促进了光生载流子的有效分离和传输,获得的ZnO/石墨烯光催化剂的催化活性和稳定性均有很大提升;
(2)该方法步骤简单,使用原料少,成本低,有望应用于工业污染物的光催化处理。
具体实施方式
以下结合具体实施方式对本发明作进一步详细描述。
一种ZnO/石墨烯光催化剂的制备方法,包括以下步骤:
(1)配置生长液:向0.1mol/L的Zn(NO3)2·6H2O溶液中缓慢加入氨水,至白色沉淀完全溶解;
(2)配置晶种液:向0.001mol/L的Zn(NO3)2·6H2O溶液中缓慢加入氨水,至白色沉淀完全溶解;
(3)制备ZnO/石墨烯:
a. 向晶种液中加入适量的氧化石墨烯,加热至80℃保温30min,洗涤过滤,置于120℃条件下烘干1h,备用;其中氧化石墨烯是采用改进的Hummers'法将石墨粉氧化获得;
b. 将烘干的样品置于生长液中,加热至80℃保温1h,冲洗干燥后得到ZnO/氧化石墨烯;
c. 将制备好的ZnO/氧化石墨烯置于气氛还原炉中,在氮气的保护下,加热至1000℃还原1h,最终得到ZnO/石墨烯光催化剂,其中所得石墨烯的质量百分比为60%, ZnO的质量百分比为40%。
将所制得的ZnO/石墨烯光催化剂进行光催化性能测试如下:
以功率为100 W的高压汞灯为紫外光光源(其主要紫外光波长为365 nm),亚甲基蓝溶液为目标降解物。将40ml 0.01g/L的亚甲基蓝溶液与30mg催化剂(单纯ZnO或ZnO/RGO复合材料)置于50ml的透明石英容器中,将容器置于距离高压汞灯约30cm的位置,使其表面接受照射功率约为30uW/cm-2,催化剂在溶液中分散均匀,开灯开始反应,离心后使用722型可见光分光光度计在亚甲基蓝溶液最大吸收波长660 nm下测量每个所取样本的吸光度。
经测试得到:ZnO、ZnO/氧化石墨烯及ZnO/石墨烯对亚甲基蓝在10min的时候,光催化效率分别为37%,56%,87%。
ZnO、ZnO/氧化石墨烯及ZnO/石墨烯对亚甲基蓝在2h的时候,亚甲基蓝的分解率均在99%以上。经过4次循环使用2h后,ZnO对亚甲基蓝的降解率降到60%以下,而ZnO/氧化石墨烯、ZnO/石墨烯对亚甲基蓝在2h的时候,亚甲基蓝的分解率变化不大。
通过光催化性能的测试表明:ZnO对亚甲基蓝有很好的光催化作用,引入石墨烯对ZnO的光催化活性以及稳定性都有很大的提升。
以上仅为本发明的优选实施例,并不用于限制本发明,显然,本领域的技术人员可以对本发明进行各种改动、变型而不脱离本发明的精神和范围。倘若对本发明的这些修改和变型属于本发明权利要求及其等同技术的范围之内,均属于本发明的保护范围。
Claims (6)
1. 一种ZnO/石墨烯光催化剂的制备方法,其特征在于:包括以下步骤:
(1)配置生长液:向0.05~0.1mol/L的Zn(NO3)2·6H2O溶液中缓慢加入氨水,至白色沉淀完全溶解;
(2)配置晶种液:向0.001~0.005mol/L的Zn(NO3)2·6H2O溶液中缓慢加入氨水,至白色沉淀完全溶解;
(3)制备ZnO/石墨烯:
a. 向晶种液中加入适量的氧化石墨烯,加热至80~90℃保温30min,洗涤过滤,置于120℃条件下烘干1~2h,备用;
b. 将烘干的样品置于生长液中,加热至80~90℃保温1h,冲洗干燥后得到ZnO/氧化石墨烯;
c. 将制备好的ZnO/氧化石墨烯置于气氛还原炉中,在载气的保护下,加热至1000~1100℃还原1h,最终得到ZnO/石墨烯光催化剂。
2.根据权利要求1所述ZnO/石墨烯光催化剂的制备方法,其特征在于:步骤(1)和步骤(2)中,均以Zn(NO3)2·6H2O为前驱体,氨水为沉淀剂。
3.根据权利要求1或2所述ZnO/石墨烯光催化剂的制备方法,其特征在于:步骤(1)中,所述氨水的浓度为25~28%w/w。
4.根据权利要求1或2所述ZnO/石墨烯光催化剂的制备方法,其特征在于:步骤(2)中,所述氨水的浓度为25~28% w/w。
5.根据权利要求1或2所述ZnO/石墨烯光催化剂的制备方法,其特征在于:所述ZnO/石墨烯光催化剂中,石墨烯的质量百分比为60~65%,ZnO的质量百分比35~40%。
6.根据权利要求1或2所述ZnO/石墨烯光催化剂的制备方法,其特征在于:所述载气为氮气或氦气。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410563803.8A CN104275175A (zh) | 2014-10-22 | 2014-10-22 | 一种ZnO/石墨烯光催化剂的制备方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410563803.8A CN104275175A (zh) | 2014-10-22 | 2014-10-22 | 一种ZnO/石墨烯光催化剂的制备方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN104275175A true CN104275175A (zh) | 2015-01-14 |
Family
ID=52250807
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201410563803.8A Pending CN104275175A (zh) | 2014-10-22 | 2014-10-22 | 一种ZnO/石墨烯光催化剂的制备方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN104275175A (zh) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105709689A (zh) * | 2016-03-04 | 2016-06-29 | 唐山建华科技发展有限责任公司 | 碳基功能材料及其制备方法 |
CN106311208A (zh) * | 2016-07-22 | 2017-01-11 | 国家粮食局科学研究院 | 一种光催化降解真菌毒素的杂化材料graphene/ZnO及其制备方法和应用 |
CN106582717A (zh) * | 2016-12-16 | 2017-04-26 | 昆明理工大学 | 一种GO‑CdS‑ZnO‑多孔硅复合光催化剂的制备方法 |
CN112844358A (zh) * | 2020-12-30 | 2021-05-28 | 常州恒利宝纳米新材料科技有限公司 | 一种石墨烯氧化锌纳米复合材料的制备方法 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20130113770A (ko) * | 2012-04-06 | 2013-10-16 | 한국과학기술원 | 향상된 광활성을 갖는 하이브리드 광촉매 나노입자 및 그 제조방법 |
CN103706349A (zh) * | 2014-01-21 | 2014-04-09 | 中国计量学院 | 一种纳米ZnO微球/石墨烯光催化剂及其制备方法 |
-
2014
- 2014-10-22 CN CN201410563803.8A patent/CN104275175A/zh active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20130113770A (ko) * | 2012-04-06 | 2013-10-16 | 한국과학기술원 | 향상된 광활성을 갖는 하이브리드 광촉매 나노입자 및 그 제조방법 |
CN103706349A (zh) * | 2014-01-21 | 2014-04-09 | 中国计量学院 | 一种纳米ZnO微球/石墨烯光催化剂及其制备方法 |
Non-Patent Citations (1)
Title |
---|
刘艳云: "氧化锌/氧化石墨烯的合成与性能研究", 《中国优秀硕士学位论文全文数据库工程科技Ⅰ辑》 * |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105709689A (zh) * | 2016-03-04 | 2016-06-29 | 唐山建华科技发展有限责任公司 | 碳基功能材料及其制备方法 |
CN106311208A (zh) * | 2016-07-22 | 2017-01-11 | 国家粮食局科学研究院 | 一种光催化降解真菌毒素的杂化材料graphene/ZnO及其制备方法和应用 |
CN106311208B (zh) * | 2016-07-22 | 2019-07-12 | 国家粮食和物资储备局科学研究院 | 一种光催化降解真菌毒素的杂化材料graphene/ZnO及其制备方法和应用 |
CN106582717A (zh) * | 2016-12-16 | 2017-04-26 | 昆明理工大学 | 一种GO‑CdS‑ZnO‑多孔硅复合光催化剂的制备方法 |
CN106582717B (zh) * | 2016-12-16 | 2019-04-12 | 昆明理工大学 | 一种GO-CdS-ZnO-多孔硅复合光催化剂的制备方法 |
CN112844358A (zh) * | 2020-12-30 | 2021-05-28 | 常州恒利宝纳米新材料科技有限公司 | 一种石墨烯氧化锌纳米复合材料的制备方法 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Shao et al. | Significantly enhanced photocatalytic in-situ H2O2 production and consumption activities for efficient sterilization by ZnIn2S4/g-C3N4 heterojunction | |
Miao et al. | Nitrogen-doped carbon dots decorated on g-C3N4/Ag3PO4 photocatalyst with improved visible light photocatalytic activity and mechanism insight | |
Sun et al. | Selective wet-chemical etching to create TiO2@ MOF frame heterostructure for efficient photocatalytic hydrogen evolution | |
Xue et al. | Novel reduced graphene oxide-supported Cd0. 5Zn0. 5S/g-C3N4 Z-scheme heterojunction photocatalyst for enhanced hydrogen evolution | |
Xiao et al. | Construction of RGO/CdIn2S4/g-C3N4 ternary hybrid with enhanced photocatalytic activity for the degradation of tetracycline hydrochloride | |
Huang et al. | Self-sacrifice transformation for fabrication of type-I and type-II heterojunctions in hierarchical BixOyIz/g-C3N4 for efficient visible-light photocatalysis | |
Luo et al. | Facile preparation of well-dispersed ZnO/cyclized polyacrylonitrile nanocomposites with highly enhanced visible-light photocatalytic activity | |
Miao et al. | g-C3N4/AgBr nanocomposite decorated with carbon dots as a highly efficient visible-light-driven photocatalyst | |
Tian et al. | Fabrication of modified g-C3N4 nanorod/Ag3PO4 nanocomposites for solar-driven photocatalytic oxygen evolution from water splitting | |
Peng et al. | Synthesis and characterization of g-C3N4/Cu2O composite catalyst with enhanced photocatalytic activity under visible light irradiation | |
Ranganathan et al. | Study of photoelectrochemical water splitting using composite films based on TiO2 nanoparticles and nitrogen or boron doped hollow carbon spheres as photoanodes | |
Cai et al. | Enhanced visible light photocatalytic performance of g-C3N4/CuS pn heterojunctions for degradation of organic dyes | |
Wu et al. | High visible-light photocatalytic performance of stable lead-free Cs2AgBiBr6 double perovskite nanocrystals | |
An et al. | One-pot synthesis of In2S3 nanosheets/graphene composites with enhanced visible-light photocatalytic activity | |
He et al. | Facile approach to synthesize g-PAN/g-C3N4 composites with enhanced photocatalytic H2 evolution activity | |
Li et al. | Noble metal-free modified ultrathin carbon nitride with promoted molecular oxygen activation for photocatalytic formaldehyde oxidization and DFT study | |
Hao et al. | Synthesis of TiO2@ g-C3N4 core-shell nanorod arrays with Z-scheme enhanced photocatalytic activity under visible light | |
Lian et al. | Enhanced photoelectrochemical performance of Ti-doped hematite thin films prepared by the sol–gel method | |
Ghosh et al. | Fabrication of stable, efficient and recyclable p-CuO/n-ZnO thin film heterojunction for visible light driven photocatalytic degradation of organic dyes | |
Zhang et al. | Fabrication of rGO and g-C3N4 co-modified TiO2 nanotube arrays photoelectrodes with enhanced photocatalytic performance | |
Jin et al. | Boosting visible light photocatalytic performance of g-C3N4 nanosheets by combining with LaFeO3 nanoparticles | |
Hu et al. | Role of reactive oxygen species in the photocatalytic degradation of methyl orange and tetracycline by Ag3PO4 polyhedron modified with g-C3N4 | |
Hezam et al. | Electronically semitransparent ZnO nanorods with superior electron transport ability for DSSCs and solar photocatalysis | |
Ma et al. | Synthesis, Characterization, and Photocatalytic Activity of N‐Doped ZnO/ZnS Composites | |
Shi et al. | Hierarchical Z-scheme Bi2S3/CdS heterojunction: Controllable morphology and excellent photocatalytic antibacterial |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C41 | Transfer of patent application or patent right or utility model | ||
TA01 | Transfer of patent application right |
Effective date of registration: 20160330 Address after: 410000 Hunan province Changsha Furong District Road No. 98 Building 2 male incubator building 508 room Applicant after: HUNAN YUANSU MIMA GRAPHENE High-technology Co., Ltd. Address before: 410000 No. 418 Bayi Road, Furong district, Hunan, Changsha Applicant before: HUNAN YUANSU MIMA GRAPHENE RESEARCH INSTITUTE (LIMITED PARTNERSHIP) |
|
RJ01 | Rejection of invention patent application after publication | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20150114 |