CN104265652A - 一种用于大流量低扬程泵站的协同优化设计方法 - Google Patents

一种用于大流量低扬程泵站的协同优化设计方法 Download PDF

Info

Publication number
CN104265652A
CN104265652A CN201410361355.3A CN201410361355A CN104265652A CN 104265652 A CN104265652 A CN 104265652A CN 201410361355 A CN201410361355 A CN 201410361355A CN 104265652 A CN104265652 A CN 104265652A
Authority
CN
China
Prior art keywords
pump
design
unit
water inlet
hydraulic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201410361355.3A
Other languages
English (en)
Other versions
CN104265652B (zh
Inventor
陆林广
陆伟刚
徐磊
王海
李亚楠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yangzhou University
Original Assignee
Yangzhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yangzhou University filed Critical Yangzhou University
Priority to CN201410361355.3A priority Critical patent/CN104265652B/zh
Publication of CN104265652A publication Critical patent/CN104265652A/zh
Application granted granted Critical
Publication of CN104265652B publication Critical patent/CN104265652B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Hydraulic Turbines (AREA)

Abstract

本发明公开了一种用于大流量低扬程泵站的协同优化设计方法,包含以下步骤:第一,建立泵装置优化水力设计的目标函数、确定边界条件和约束条件;第二,确定泵装置优化水力设计的初步方案;第三,进行泵装置的优化水力设计;第四,进行泵房及泵机组的结构设计和安全度评价;第五,进行互相关变量调整;第六,进行泵装置水力设计与泵房及泵机组结构设计的协同优化。本发明有效解决了大流量低扬程泵站泵房及泵机组结构设计与泵装置水力设计之间复杂的协同问题,获得了泵站整体设计的最优解,在满足大型低扬程泵站安全、稳定运行的条件下,最大限度地提高其水力性能。

Description

一种用于大流量低扬程泵站的协同优化设计方法
技术领域
本发明属于水利工程泵站技术领域,具体涉及一种大流量低扬程泵站的协同优化设计方法,主要用于解决大流量低扬程泵站泵房及泵机组结构设计与泵装置水力设计之间复杂的协同问题,以获得泵站整体设计的最优解。
背景技术
大流量低扬程泵站适合应用于广阔的平原地区,由于其抽水流量大,可在平原地区的抗旱排涝、水资源调配和水环境改善等工程中发挥关键作用。这种泵站的抽水系统较为复杂,由水泵、进水流道、出水流道、机组支撑体、泵房基础等多个子系统构成,涉及水力设计和结构设计两个方面。泵装置水力性能与泵房及泵机组结构安全度一般情况下并不一致,有时是矛盾的。现有设计方法是对各子系统分别进行设计,这样做的后果由于泵房及泵机组结构设计与泵装置水力设计缺乏协同、配合不佳,常导致泵站水力性能差,甚至会导致机组振动、设备损坏,影响泵站的正常运行。经检索,尚未见到大流量低扬程泵站的协同优化设计方法的文献报道及专利申请,仅有一些学者对泵装置优化水力设计进行了研究。
发明内容
本发明的目的就是针对上述现有方法的缺陷,提供了一种大流量低扬程泵站的协同优化设计方法,对泵站的水力设计和结构设计两个方面的设计进行协调结合和协同优化,以满足泵站安全、稳定、高效运行的总体目标,最终实现泵站整体设计的最优化。
本发明的目的是通过以下技术方案实现的:
在进行泵站协同优化设计之前完成如下基础工作:
(1)建立低扬程泵装置水力设计和泵房及泵机组结构设计参数化数学模型,列出对泵站协同优化设计具有重要影响的水力设计变量、结构设计变量和互相关设计变量等3种类型的变量,并对其影响泵站水力设计、结构设计的规律进行研究,按影响程度的大小将所述3种变量分别分为主要变量、次要变量和一般变量等3个层次;
(2)对已有泵装置水力设计研究及应用成果进行分类归纳整理,建立泵装置水力设计数据库;
(3)建立泵装置的分层次优化水力设计方法;
(4)建立泵房及泵机组的分层次结构设计方法和安全度评价方法;
(5)建立泵装置与泵房及泵机组分层次协同优化设计方法。
在上述工作的基础上进行大流量低扬程泵站的协同优化设计,其设计步骤如下:
(1)建立泵装置优化水力设计的目标函数、确定边界条件和约束条件;
①建立泵装置进水流道和出水流道优化水力设计的目标函数,进水流道为流道出口流速均匀度,出水流道为水头损失系数;②根据泵装置中进水流道和出水流道的水流流动状态,确定进水流道和出水流道三维湍流流动数值计算的边界条件;③确定泵装置进水流道和出水流道优化水力设计的约束条件。
(2)根据泵站基本设计参数、泵装置型式和相关设计准则,参考泵装置水力设计数据库中的相近方案,确定泵装置优化水力设计的初步方案。
(3)进行泵装置优化水力设计;
①基于CFD方法对泵装置初步方案水力性能进行三维湍流流动数值计算;②计算泵装置水力设计目标函数,并对泵装置优化水力计算结果进行判断;③若泵装置水力性能未达最优,则根据水力设计变量影响泵装置水力性能的规律,确定流道控制尺寸取值范围,在此范围内针对水力设计变量分层次地进行进水流道和出水流道的优化水力设计,直至泵装置水力性能达到最优;若泵装置水力性能已达最优,则进入第(4)步。
(4)进行泵房及泵机组结构设计和安全度评价;
①在第(3)步工作的基础上,进行泵房及泵机组的布置;②进行泵房稳定分析;③进行泵房主要构件及机组支撑体内力计算;④对泵房及泵机组进行抗振安全度验算,并检验其是否满足《泵站设计规范》的要求;⑤若抗振安全度满足要求,则转入第(7)步;若抗振安全度不满足要求,则进入第(5)步。
(5)进行水力设计与结构设计的互相关变量调整;
在对泵房及泵机组抗振安全度指标进行分析的基础上,根据互相关变量对泵装置水力性能和泵房及泵机组抗振安全度的影响规律,分层次地对互相关变量进行适当调整。
(6)进行泵装置水力设计与泵房及泵机组结构设计协同优化;
返回第(3)步,并反复进行第(3)、(4)、(5)步的工作,直到泵机组抗振安全度满足要求,同时又使泵装置水力性能达到可能的最优化。
(7)生成并输出低扬程泵站协同优化设计成果。
本发明的优点在于:通过泵装置优化水力设计、泵房及泵机组结构设计和泵站协同优化设计的配合应用,充分调动了泵站设计的所有可用资源,有效解决了大流量低扬程泵站泵房及泵机组结构设计与泵装置水力设计之间复杂的协同问题,获得了泵站整体设计的最优解,在满足大型低扬程泵站安全、稳定运行的条件下,最大限度地提高其水力性能。
附图说明
图1是立式泵站泵房剖面示意图。
图2a是本发明的立式泵站肘形进水流道三维形体数学模型变量纵剖面说明图。
图2b是本发明的立式泵站肘形进水流道三维形体数学模型变量平面说明图。
图3a是本发明的立式泵站虹吸式出水流道三维形体数学模型变量纵剖面说明图。
图3b是本发明的立式泵站虹吸式出水流道三维形体数学模型变量平面说明图。
图4是本发明的泵站协同优化设计流程图。
图中:1 水泵,2 进水流道,3 出水流道,4 机组支撑体,5 泵房底板、6 水泵顶盖、7 电缆通道。
具体实施方式
大流量低扬程泵站有立式、贯流式等多种型式,以下以应用最为广泛的立式泵站为例对本发明所述设计方法的具体实施方式进行描述。
1.在进行泵站协同优化设计之前需完成如下基础工作:
(1)建立泵站水力设计与结构设计参数化数学模型,列出对泵装置水力性能具有影响的泵装置水力设计变量、对泵房及泵机组结构安全度具有影响的结构设计变量、对泵装置水力性能和泵房及泵机组结构安全度都有较大影响的互相关变量,并对这3种类型变量影响泵站水力设计、结构设计的规律进行研究,按影响程度的大小将它们分别分为主要变量、次要变量和一般变量等3个层次。具体内容如下:
①水泵1与进水流道2、出水流道3组成泵装置;建立泵装置进、出水流道三维形体参数化设计数学模型,列出泵装置水力设计变量,如图2的立式泵站肘形进水流道、图3的立式泵站虹吸式出水流道所示,水力设计变量包括:进水流道长度Li、进水流道宽度Bij、进水流道高度Hiw、进水流道喉管高度Hik、进水流道进口高度Hij、进水流道顶板倾角αi、进水流道底板倾角βi、进水流道圆锥段收缩角γi、进水流道圆锥段高度Hiz、进水流道圆锥段进口直径Diz、进水流道立面直线段长度Liz1、进水流道平面直线段长度Liz2、进水流道方变圆段长度Lir、进水流道中隔墩长度Lgd、进水流道中隔墩厚度Bgd、出水流道长度Lo、出水流道宽度Boc、出水流道上升段高度How2、出水流道下降段高度How3、出水流道驼峰断面高度HT、出水流道上升段角度αo、出水流道下降段角度βo、出水流道平面扩散角γo、出水流道出口高度Hoc、出水流道圆变方段长度Lor;研明各水力设计变量对泵装置流道水力性能影响的基本规律,按影响程度的大小将他们分为主要变量、次要变量和一般变量等3个层次,主要变量包括Li、Bij、Hiw、Lo、Boc、How2、How3、αo和βo等,次要变量包括Hik、Hiz、Liz1、Hij、Lir、Hoc、HT和γo等,一般变量包括αi、βi、Liz2、Diz、γi、Lgd、Bgd和Lor等;
②建立泵房及泵机组结构设计参数化数学模型,列出泵房及泵机组结构设计变量,如图1的立式泵站泵房剖面示意图所示,结构设计变量包括:水泵1叶轮中心线高程,进水流道2的长度、宽度、高度,进水流道2的中隔墩长度,出水流道3的长度、宽度、高度,机组支撑体4的三维形体尺寸,泵房底板5的长度、宽度、高度,水泵顶盖6的高程,电缆通道7的高程等;研明各结构设计变量影响泵房及机组结构安全性能的基本规律,按影响程度的大小将他们分为主要变量、次要变量和一般变量等3个层次,主要变量包括水泵1叶轮中心线高程,进水流道2的高度,出水流道3的长度,次要变量包括进水流道2的长度、宽度,出水流道3的宽度,机组支撑体4的三维形体尺寸,泵房底板5的长度、宽度等,一般变量包括进水流道2的中隔墩长度,出水流道3的高度,泵房底板5的高度,水泵顶盖6的高程,电缆通道7的高程等;
③列出对泵装置水力性能和泵房及泵机组结构安全度都有影响的互相关变量,如图1、图2和图3所示,互相关变量包括:水泵1叶轮中心线高程,进水流道2的长度、高度,进水流道2的中隔墩长度,出水流道3的长度、宽度,水泵顶盖6的高程和电缆通道7的高程等;
④研明各互相关变量影响泵装置水力性能和泵房及泵机组结构安全度指标的基本规律,按影响程度的大小将它们分为主要变量、次要变量和一般变量等3个层次,主要变量包括水泵1叶轮中心线高程,进水流道2的高度,出水流道3的长度等,次要变量包括出水流道3的宽度,水泵顶盖6的高程等,一般变量包括进水流道2的长度,进水流道2的中隔墩长度,电缆通道7的高程等。
(2)对已有泵装置水力设计研究及应用成果的水力设计变量取值及其与泵装置水力性能之间的关系进行分析总结归纳整理,建立泵装置水力设计数据库。
2.本发明关于大流量低扬程泵站协同优化设计方法的流程如图4所示,下面结合该图对本发明作进一步详细描述。具体包括如下步骤:
(1)建立泵装置优化水力设计的目标函数;
①根据泵装置水力性能优化的要求,确定进水流道优化水力设计的目标函数为流道出口速度均匀度,其表达式为
流道出口流速均匀度 V u = min [ Σ i = 1 m | u ti | / m u ‾ a ]
式中:uti分别为进水流道出口断面各单元的横向速度和平均轴向流速,m为该断面的单元数;
②根据泵装置水力性能优化的要求,出水流道优化水力设计的目标函数为流道水头损失系数ξoc为最小,其表达式为
流道水头损失系数 ξ oc = min [ gΔh oc v oco 2 ]
式中:g为重力加速度,Δhoc为出水流道水头损失,voco为出水流道出口断面平均流速。
(2)确定泵装置三维湍流流动数值计算的边界条件;
①基于泵装置中进水流道的水流流动特征,确定进水流道数值计算的边界条件:进口边界设置于距进水流道进口断面前2倍进水流道长度的进水池中,此处流速均匀分布,为速度进口边界;出口边界设置于距进水流道出口断面2倍出口断面直径处,因水泵正常运行时进水流道出口水流无旋,故为自由出流边界;前池底壁、流道边壁和导流帽边壁等为固壁边界;进水池表面及其两侧均可按对称边界处理;
②基于泵装置中出水流道的水流流动特征,确定出水流道数值计算的边界条件:进口边界设置于距出水流道进口断面前2倍进口断面直径处,需采用速度进口边界,同时由于水泵正常运行时出水流道进口水流有旋,故此处还需设置一定环量;出口边界设置于出水流道出口断面后2倍出水流道长度的出水池中,为自由出流边界;流道边壁、出水池底壁和导流帽边壁等均为固壁边界;出水池表面及其两侧均可按对称边界处理。
(3)确定泵装置优化水力设计的约束条件;
将泵装置优化水力设计的约束条件分为不可变约束与可变约束两种类型;不可变约束条件为泵站规划参数,包括泵站上、下游水位和泵站设计流量等;可变动约束条件为工程设计参数,包括:水泵叶轮中心高程、水泵顶盖高程、进水流道高度、出水流道长度和出水流道宽度等,这些参数对泵装置水力设计和泵房及泵机组结构设计等均有较大影响,在必要时需作适当变动。
(4)根据泵站基本设计参数、泵装置型式和相关设计准则,参考泵装置水力设计数据库中的相近方案,确定泵装置水力设计的初步方案。
(5)进行泵装置优化水力设计;
①根据确定的泵装置三维湍流流动水力计算边界条件和约束条件,基于CFD方法对初拟的泵装置方案水力性能进行三维湍流流动数值计算;
②计算进水流道出口流速均匀度和出水流道水头损失系数,并对计算结果进行分析;
③若泵装置水力性能未达到最优,则分层次调整水力设计变量返回本步骤的第①步;若泵装置水力性能达到最优,则进入第(6)步。
(6)进行泵房及泵机组结构设计和抗振安全度评价;
①在第(5)步工作的基础上,进行泵房及泵机组布置,并进行水工设计及结构设计,确定泵站结构设计变量的取值;
②对泵房的防渗长度、抗滑稳定、抗浮稳定、抗倾稳定和地基应力不均匀系数等进行验算;
③基于有限元内力法对泵房底板、进出水流道、机墩和排架等主要构件及机组支撑体进行内力计算,用于下一步的抗振安全度验算,同时也用于配筋计算;
④对泵房及泵机组振动频率、振动幅度和动力系数等抗振安全度指标进行验算;
⑤检验抗振安全度是否满足《泵站设计规范》的要求,若满足要求,则整个优化计算过程结束,转入第(9)步;若不满足要求,则进入第(7)步。
(7)进行水力设计与结构设计的互相关变量调整;
对泵房及泵机组抗振安全度进行分析,根据互相关变量对泵装置水力性能和泵房及泵机组抗振安全度的影响规律,分层次地对互相关变量进行适当调整。
(8)泵装置水力设计与泵房及泵机组结构设计协同优化;
将调整后的互相关变量作为约束条件,返回第(5)步,反复进行第(5)、(6)、(7)步的工作,直到泵机组抗振安全度满足要求,同时又使泵装置水力性能达到可能的最优化。
(9)泵站水力设计与结构设计成果生成和输出;
根据泵站协同优化设计结果,生成并输出泵装置优化水力设计、泵房及泵机组结构设计的有关技术图纸和数据资料。

Claims (7)

1.一种用于大流量低扬程泵站的协同优化设计方法,包括建立低扬程泵装置水力设计和泵房及泵机组结构设计参数化数学模型,列出对泵站协同优化设计具有重要影响的水力设计变量、结构设计变量和互相关设计变量,并对其影响泵站水力性能、结构设计安全度的规律进行研究,按影响程度的大小将它们分别分为主要变量、次要变量和一般变量等3个层次;建立泵装置水力设计数据库和建立泵装置的分层次优化水力设计方法、泵房及泵机组的分层次结构设计方法和安全度评价方法、泵装置与泵房及泵机组分层次协同优化设计方法,其特征是,还包含以下步骤:
(1)建立泵装置优化水力设计的目标函数、确定边界条件和约束条件:
①建立泵装置进水流道和出水流道优化水力设计的目标函数,进水流道为流道出口流速均匀度,出水流道为水头损失系数;
②根据泵装置中进水流道和出水流道的水流流动状态,确定进水流道和出水流道三维湍流流动数值计算的边界条件;
③确定泵装置进水流道和出水流道优化水力设计的约束条件;
(2)确定泵装置优化水力设计的初步方案:根据泵站基本设计参数、泵装置型式和相关设计准则,参考泵装置水力设计数据库中的相近方案,确定泵装置优化水力设计的初步方案;
(3)进行泵装置的优化水力设计:
(4)进行泵房及泵机组的结构设计和安全度评价:
(5)进行互相关变量调整:在对泵房及泵机组抗振安全度指标进行分析的基础上,根据互相关变量对泵装置水力性能和泵房及泵机组抗振安全度的影响规律,分层次地对互相关变量进行适当调整;
(6)进行泵装置水力设计与泵房及泵机组结构设计的协同优化:将步骤(5)调整后的互相关变量作为约束条件,返回第(3)步,反复进行第(3)、(4)、(5)步的工作,直到泵机组抗振安全度满足要求,同时又使泵装置水力性能达到可能的最优化;
(7)生成并输出低扬程泵站协同优化设计成果:根据泵站协同优化设计结果,生成并输出泵装置优化水力设计、泵房及泵机组结构设计的有关技术图纸和数据资料。
2.根据权利要求1所述的用于大流量低扬程泵站的协同优化设计方法,其特征在于,步骤(1)进水流道优化水力设计的目标函数为流道出口速度均匀度,其表达式为
V u = min [ Σ i = 1 m | u ti | / m u ‾ a ]
式中:uti分别为进水流道出口断面各单元的横向速度和平均轴向流速,m为该断面的单元数。
3.根据权利要求1所述的用于大流量低扬程泵站的协同优化设计方法,其特征在于,步骤(1)中所述出水流道水头损失系数的表达式为
ξ oc = min [ gΔh oc v oco 2 ]
式中:g为重力加速度,Δhoc为出水流道水头损失,voco为出水流道出口断面平均流速。
4.根据权利要求1所述的用于大流量低扬程泵站的协同优化设计方法,其特征在于,步骤(1)中所述确定进水流道和出水流道三维湍流流动数值计算的边界条件为:
①基于泵装置中进水流道的水流流动特征,确定进水流道数值计算的边界条件:进口边界设置于距进水流道进口断面前2倍进水流道长度的进水池中,此处流速均匀分布,为速度进口边界;出口边界设置于距进水流道出口断面2倍出口断面直径处,因水泵正常运行时进水流道出口水流无旋,故为自由出流边界;前池底壁、流道边壁和导流帽边壁等为固壁边界;进水池表面及其两侧均可按对称边界处理;
②基于泵装置中出水流道的水流流动特征,确定出水流道数值计算的边界条件:进口边界设置于距出水流道进口断面前2倍进口断面直径处,需采用速度进口边界,同时由于水泵正常运行时出水流道进口水流有旋,故此处还需设置一定环量;出口边界设置于出水流道出口断面后2倍出水流道长度的出水池中,为自由出流边界;流道边壁、出水池底壁和导流帽边壁等均为固壁边界;出水池表面及其两侧均可按对称边界处理。
5.根据权利要求1所述的用于大流量低扬程泵站的协同优化设计方法,其特征在于,步骤(1)中所述泵装置优化水力设计的约束条件分为不可变约束与可变约束两种类型;不可变约束条件为泵站规划参数,包括泵站上、下游水位和泵站设计流量;可变动约束条件为工程设计参数,包括:水泵叶轮中心高程、水泵顶盖高程、进水流道高度、出水流道长度和出水流道宽度。
6.根据权利要求1所述的用于大流量低扬程泵站的协同优化设计方法,其特征在于,步骤(3)中所述进行泵装置的优化水力设计为:
①根据确定的泵装置三维湍流流动水力计算边界条件和约束条件,基于CFD方法对泵装置初步方案水力性能进行三维湍流流动数值计算;
②计算泵装置水力设计目标函数,即计算进水流道出口流速均匀度和出水流道水头损失系数,并对泵装置优化水力计算结果进行判断;
③若泵装置水力性能未达最优,则根据水力设计变量影响泵装置水力性能的规律,确定流道控制尺寸取值范围,在此范围内针对水力设计变量分层次地进行进水流道和出水流道的优化水力设计,直至泵装置水力性能达到最优;若泵装置水力性能已达最优,则进入步骤(4)。
7.根据权利要求1所述的用于大流量低扬程泵站的协同优化设计方法,其特征在于,步骤(4)中所述进行泵房及泵机组的结构设计和安全度评价为:
①在第(3)步工作的基础上,进行泵房及泵机组的布置,并进行水工设计及结构设计,确定泵站结构设计变量的取值;
②进行泵房稳定分析,对泵房的防渗长度、抗滑稳定、抗浮稳定、抗倾稳定和地基应力不均匀系数等进行验算;
③进行泵房主要构件及机组支撑体内力计算;基于有限元内力法对泵房底板、进出水流道、机墩和排架等主要构件及机组支撑体进行内力计算,用于下一步的抗振安全度验算,同时也用于配筋计算;
④对泵房及机组进行抗振安全度验算,并检验其是否满足《泵站设计规范》的要求,若抗振安全度满足要求,则转入第(7)步;若抗振安全度不满足要求,则进入第(5)步。
CN201410361355.3A 2014-07-25 2014-07-25 一种用于大流量低扬程泵站的协同优化设计方法 Active CN104265652B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410361355.3A CN104265652B (zh) 2014-07-25 2014-07-25 一种用于大流量低扬程泵站的协同优化设计方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410361355.3A CN104265652B (zh) 2014-07-25 2014-07-25 一种用于大流量低扬程泵站的协同优化设计方法

Publications (2)

Publication Number Publication Date
CN104265652A true CN104265652A (zh) 2015-01-07
CN104265652B CN104265652B (zh) 2015-05-20

Family

ID=52157208

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410361355.3A Active CN104265652B (zh) 2014-07-25 2014-07-25 一种用于大流量低扬程泵站的协同优化设计方法

Country Status (1)

Country Link
CN (1) CN104265652B (zh)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104895797A (zh) * 2015-04-20 2015-09-09 扬州大学 大型低扬程泵装置型式的量化比选方法
CN105183940A (zh) * 2015-07-23 2015-12-23 扬州大学 大型低扬程泵站水力设计资料管理系统
CN105608287A (zh) * 2016-01-12 2016-05-25 扬州大学 高性能大流量泵站出水流道三维形体过流面设计方法
CN105718665A (zh) * 2016-01-21 2016-06-29 扬州大学 一种泵装置出水流道的自动优化方法及其应用
CN106934104A (zh) * 2017-02-17 2017-07-07 江苏大学 一种泵站用的虹吸式出水流道的设计方法
CN107014449A (zh) * 2017-04-21 2017-08-04 中国农业大学 修正泵站流量测量结果的方法
CN108445934A (zh) * 2018-02-08 2018-08-24 衡阳泰豪通信车辆有限公司 一种实现多站实时协同控制的方法
CN109460605A (zh) * 2018-11-08 2019-03-12 河海大学 一种预测大型低扬程水泵流量的方法
CN109657327A (zh) * 2018-12-13 2019-04-19 扬州大学 泵装置出水流道综合性能的评价方法
CN112949165A (zh) * 2021-01-28 2021-06-11 哈尔滨工程大学 一种基于神经网络模型与nsga-ii遗传算法的射流泵多目标优化方法
CN114645401A (zh) * 2022-04-21 2022-06-21 珠海格力电器股份有限公司 一种无外桶洗衣机
CN115659689A (zh) * 2022-11-08 2023-01-31 扬州大学 反映实际边界条件的泵装置内流及性能数值迭代计算方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080184703A1 (en) * 2007-01-25 2008-08-07 Sauer-Danfoss Inc. Method for regulating a hydrostatic drive system
CN101871448B (zh) * 2010-05-14 2013-01-02 同济大学 一种泵站水泵特性曲线确定方法及系统
CN102902202A (zh) * 2012-09-25 2013-01-30 扬州大学 一种复杂并联梯级泵站系统运行优化方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080184703A1 (en) * 2007-01-25 2008-08-07 Sauer-Danfoss Inc. Method for regulating a hydrostatic drive system
CN101871448B (zh) * 2010-05-14 2013-01-02 同济大学 一种泵站水泵特性曲线确定方法及系统
CN102902202A (zh) * 2012-09-25 2013-01-30 扬州大学 一种复杂并联梯级泵站系统运行优化方法

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104895797B (zh) * 2015-04-20 2016-04-27 扬州大学 大型低扬程泵装置型式的量化比选方法
CN104895797A (zh) * 2015-04-20 2015-09-09 扬州大学 大型低扬程泵装置型式的量化比选方法
CN105183940A (zh) * 2015-07-23 2015-12-23 扬州大学 大型低扬程泵站水力设计资料管理系统
CN105608287A (zh) * 2016-01-12 2016-05-25 扬州大学 高性能大流量泵站出水流道三维形体过流面设计方法
CN105608287B (zh) * 2016-01-12 2017-05-10 扬州大学 高性能大流量泵站出水流道三维形体过流面设计方法
CN105718665B (zh) * 2016-01-21 2017-11-24 扬州大学 一种泵装置出水流道的自动优化方法及其应用
CN105718665A (zh) * 2016-01-21 2016-06-29 扬州大学 一种泵装置出水流道的自动优化方法及其应用
CN106934104B (zh) * 2017-02-17 2020-08-28 江苏大学 一种泵站用的虹吸式出水流道的设计方法
CN106934104A (zh) * 2017-02-17 2017-07-07 江苏大学 一种泵站用的虹吸式出水流道的设计方法
CN107014449A (zh) * 2017-04-21 2017-08-04 中国农业大学 修正泵站流量测量结果的方法
CN107014449B (zh) * 2017-04-21 2019-05-31 中国农业大学 修正泵站流量测量结果的方法
CN108445934B (zh) * 2018-02-08 2020-04-28 衡阳泰豪通信车辆有限公司 一种实现多站实时协同控制的方法
CN108445934A (zh) * 2018-02-08 2018-08-24 衡阳泰豪通信车辆有限公司 一种实现多站实时协同控制的方法
CN109460605A (zh) * 2018-11-08 2019-03-12 河海大学 一种预测大型低扬程水泵流量的方法
CN109657327A (zh) * 2018-12-13 2019-04-19 扬州大学 泵装置出水流道综合性能的评价方法
CN109657327B (zh) * 2018-12-13 2019-10-29 扬州大学 泵装置出水流道综合性能的评价方法
CN112949165A (zh) * 2021-01-28 2021-06-11 哈尔滨工程大学 一种基于神经网络模型与nsga-ii遗传算法的射流泵多目标优化方法
CN114645401A (zh) * 2022-04-21 2022-06-21 珠海格力电器股份有限公司 一种无外桶洗衣机
CN114645401B (zh) * 2022-04-21 2023-02-17 珠海格力电器股份有限公司 一种无外桶洗衣机
CN115659689A (zh) * 2022-11-08 2023-01-31 扬州大学 反映实际边界条件的泵装置内流及性能数值迭代计算方法
CN115659689B (zh) * 2022-11-08 2024-02-23 扬州大学 反映实际边界条件的泵装置内流及性能数值迭代计算方法

Also Published As

Publication number Publication date
CN104265652B (zh) 2015-05-20

Similar Documents

Publication Publication Date Title
CN104265652B (zh) 一种用于大流量低扬程泵站的协同优化设计方法
CN106759833B (zh) 一种改善城市雨水泵站进水流态的组合式整流装置
CN106502220B (zh) 梯级泵站输水系统优化运行‑控制耦合协调方法及系统
CN111046574B (zh) 一种平原湖区湖河闸泵系统防洪排涝演算方法
CN105574288B (zh) 高性能大流量泵站进水流道三维形体过流面设计方法
Josiah et al. An experimental investigation of head loss through trash racks in conveyance systems
Li et al. Physical and numerical modeling of the hydraulic characteristics of type-A piano key weirs
Ran et al. Three-dimensional numerical simulation of flow in trapezoidal cutthroat flumes based on FLOW-3D
Xu et al. Flow pattern and anti-silt measures of straight-edge forebay in large pump stations.
Lee et al. Study on inlet discharge coefficient through the different shapes of storm drains for urban inundation analysis
CN113343595A (zh) 一种明渠输水系统事故的反演模型及事故流量、位置确定方法
CN105740501B (zh) 一种基于定常数值计算的泵装置水力稳定性分析方法
Burlachenko et al. Damping of increased turbulence beyond a deep and relatively short spillway basin
CN105608287B (zh) 高性能大流量泵站出水流道三维形体过流面设计方法
CN103093056B (zh) 一种水电站水轮机设计的优化系统及方法
CN113779671A (zh) 一种基于时空步长自适应技术的明渠调水工程水动力实时计算方法
CN106383970B (zh) 一种基于泵装置的轴流泵必需汽蚀余量的预测方法
CN106958235B (zh) 一种导流坎–消力墩–梁柱结构消力坎联合消能工的水力设计方法
Huang et al. Numerical models and theoretical analysis of supercritical bend flow
CN111680460B (zh) 水力自动翻板闸门流量系数的确定方法
CN106383935A (zh) 一种水库坝址天然日均水沙过程还原方法
CN111090711B (zh) 河流水文地貌变化关键因素贡献度分析方法及系统
Rey et al. Impact of Control Structures on Hydraulic Retention Time in Wastewater Stabilization Ponds:(204)
Li et al. Flow patterns and rectification measures in the forebay of pumping station
CN116150985B (zh) 一种河道口门区水流特性模型分析方法及系统

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant