CN104254812A - 针对不同流体类型的改进性能的质量流量控制器和方法 - Google Patents

针对不同流体类型的改进性能的质量流量控制器和方法 Download PDF

Info

Publication number
CN104254812A
CN104254812A CN201480001017.7A CN201480001017A CN104254812A CN 104254812 A CN104254812 A CN 104254812A CN 201480001017 A CN201480001017 A CN 201480001017A CN 104254812 A CN104254812 A CN 104254812A
Authority
CN
China
Prior art keywords
value
flow
gas
valve
control signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201480001017.7A
Other languages
English (en)
Other versions
CN104254812B (zh
Inventor
阿列克谢·V·斯米尔诺夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Publication of CN104254812A publication Critical patent/CN104254812A/zh
Application granted granted Critical
Publication of CN104254812B publication Critical patent/CN104254812B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D7/00Control of flow
    • G05D7/06Control of flow characterised by the use of electric means
    • G05D7/0617Control of flow characterised by the use of electric means specially adapted for fluid materials
    • G05D7/0629Control of flow characterised by the use of electric means specially adapted for fluid materials characterised by the type of regulator means
    • G05D7/0635Control of flow characterised by the use of electric means specially adapted for fluid materials characterised by the type of regulator means by action on throttling means
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D7/00Control of flow
    • G05D7/06Control of flow characterised by the use of electric means
    • G05D7/0617Control of flow characterised by the use of electric means specially adapted for fluid materials
    • G05D7/0629Control of flow characterised by the use of electric means specially adapted for fluid materials characterised by the type of regulator means
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/0318Processes
    • Y10T137/0324With control of flow by a condition or characteristic of a fluid
    • Y10T137/0368By speed of fluid
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/7722Line condition change responsive valves
    • Y10T137/7758Pilot or servo controlled
    • Y10T137/7759Responsive to change in rate of fluid flow
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/7722Line condition change responsive valves
    • Y10T137/7758Pilot or servo controlled
    • Y10T137/7759Responsive to change in rate of fluid flow
    • Y10T137/776Control by pressures across flow line valve

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Flow Control (AREA)

Abstract

描述了用于改进多种流体类型的流量的控制的系统和方法。该方法包括:选择要控制的工艺气体的工艺气体类型;以及获得所选择的工艺气体类型的分子量信息。获得常规特性数据,所述常规特性数据针对多个流量值和压力值对的每对,包括相应的控制信号值,并且通过根据如下等式修正所述常规特性数据中的流量值来生成工作特性数据:Fadj=Fcal*(Mcal/Mpr)k,其中Fadj是调整后的流量值,Fcal是校准流量值,Mpr是所选择的工艺气体类型的分子量,且Mcal是校准气体的分子量。之后使用工作特性数据来在开环控制模式下使所述质量流量控制器的阀门进行工作。

Description

针对不同流体类型的改进性能的质量流量控制器和方法
技术领域
本发明涉及控制系统,特别地但是不作限制地,本发明涉及用于控制流体流量的系统和方法。
背景技术
典型的质量流量控制器(MFC)是闭环装置,该闭环装置用于设定、测量和控制诸如热蚀刻和干法蚀刻等的工业处理以及其它处理中的气体的流量。MFC的重要部分是用于测量流经装置的气体的质量流速的传感器。典型地,MFC的闭环控制系统将来自传感器的输出信号与预定的设定点进行比较,并且调整控制阀门以将气体的质量流速保持在预定的设定点。
若适当地调整,则闭环控制算法能够被用来响应于流体流量状况的变化来调整流体的流量,该流体流量状况的变化引起相对于指定的流体流量设定点的偏移。流体流量状况的变化通常由例如压力、温度等的变化所引起。基于闭环控制算法的反馈环路中的感测装置(例如,来自流量传感器的流量传感器测量)所产生的测量值(例如,反馈信号)来检测并校准由这些变化引起的相对于指定的流体流量设定点的偏移。
然而,当例如迅速的压力变化导致流体流量状况迅速变化时,反馈环路所使用的感测装置可能饱和或产生不可靠的反馈信号。如果流量控制器例如在闭环控制算法中使用这些饱和的和/或不可靠的反馈信号,则流量控制器可能无法根据指定的流体流量设定点来输送流体。流量控制器例如可能会基于不可靠的反馈信号来对流体流量状况的变化过补偿或欠补偿。
闭环系统表现不良好的另一种操作模式是当阀门离需要的位置相对远时。例如,当MFC处于零设定点(零阀门位置)、之后赋予非零设定点时,阀门需要相当长的时间从零位置移动到出现显著流量且闭环算法开始适当工作的位置。这导致MFC的长响应延迟和欠佳性能。
在闭环系统表现不良时,已在MFC中利用了开环系统以改进对工艺气体的控制。在这些系统中,已利用与校准气体(例如,氮)相关地获得的阀门特性数据来控制开环操作模式下的MFC的阀门的位置。但是,相对于校准气体,不同的工艺气体的阀门特性可能会非常不同;因此,如果这些典型的MFC正运行不同于校准气体的处理,则MFC的性能可能显著地下降。
因此,存在对提供新型和革新的特征的方法和/或设备的需求,该新型和革新的特征能够解决本闭环和开环方法的缺陷。
发明内容
以下概述了附图所示的本发明的典型实施方式。在具体实施方式部分中更加全面地说明了这些以及其它实施方式。然而,应当理解,并未意图将本发明局限于该发明内容或具体实施方式所述的形式。本领域技术人员能够意识到存在落在如权利要求书所述的本发明的精神和范围内的多个变形、等同物和替代结构。
本发明的方面能够提供一种利用质量流量控制器来控制工艺气体的质量流量的方法,所述方法包括以下步骤:选择要控制的工艺气体的工艺气体类型;获得所选择的工艺气体类型的分子量信息;接收与期望的质量流速相对应的设定点信号;接收通过压力传感器所生成的工艺气体的压力测量值;响应于流体的压力变化率满足阈值条件,断开反馈控制环路,其中所述反馈控制环路基于测量流速和期望的质量流速之间的差来控制所述质量流量控制器的阀门;利用修正的流量值来确定用于期望的流量值和压力的工艺控制信号值,所述修正的流量值等于Fpr*(Mpr/Mcal)k,其中k的值根据所述质量流量控制器的流量范围介于0.2~0.5之间,Fpr是期望的工艺气体流量值,Mpr是所选择的工艺气体类型的分子量,且Mcal是校准气体的分子量;以及将处于所述工艺控制信号值的工艺控制信号应用于所述阀门,从而以期望的流速提供工艺气体。
另一方面可被描述为一种质量流量控制器,其包括:阀门,其能够进行调整以响应于控制信号来控制流体的流速;压力转换器,用于提供表示所述流体的压力的压力信号;存储器,用于与校准气体相关地存储表征所述质量流量控制器的常规特性数据;质量流量传感器,用于提供所述流体的测量流速;多气体控制组件,用于利用修正的流量值来生成用于期望的流量值和压力的开环工艺控制信号的值,所述修正的流量值等于Fpr*(Mpr/Mcal)k,其中k的值根据所述质量流量控制器的流量范围介于0.2~0.5之间,Fpr是期望的工艺气体流量值,Mpr是所选择的工艺气体类型的分子量,且Mcal是校准气体的分子量;以及多模式控制组件,用于在所述流体的压力变化率满足阈值条件的情况下,断开反馈控制环路,并且利用所述开环工艺控制信号来控制所述阀门。
附图说明
通过参照结合附图考虑时的以下的具体实施方式部分和所附权利要求书,本发明的各种目的和优点以及更完整理解是显而易见的并且更容易被意识到,其中:
图1是示出典型质量流量控制器的框图,该质量流量控制器使用多模式控制方法并且应用基于被控制的工艺气体类型的工艺控制信号。
图2是描述典型常规特性数据的表。
图3是描述可结合图1示出的实施方式进行的典型方法的流程图。
图4是描述质量流量控制器的另一个实施方式的框图。
图5是描述可结合图4示出的实施方式进行的典型方法的流程图。
图6是描述质量流量控制器的再一个实施方式的框图。
图7是描述导致对图6中示出的工作特性数据的调整的典型的一系列事件的图。
图8是描述质量流量控制器的又一个实施方式的框图。
图9是描述在运行时间期间通过图8描述的质量流量控制器进行的处理的流程图。
图10A是描述相对于启动控制信号的瞬态流量状况的图。
图10B是描述相对于另一个启动控制信号的瞬态流量状况的图。
图10C是描述相对于再一个启动控制信号的瞬态流量状况的图。
图11是描述四种不同温度的流量-控制信号曲线的图。
图12是描述控制信号-流量曲线的图。
图13是描述图8所示的质量流量控制器在不同温度时的两个控制信号-流量曲线的图。
图14是描述物理组件的框图,这些物理组件可被用于实现图1、4、6和8中所描述的质量流量控制器。
具体实施方式
现在参照附图,其中在所有的多个适当的附图中相同或类似的元件被赋予相同的附图标记,且特别参照图1,其是根据本发明的示例性实施方式的MFC 100的功能框图。如在此处更详细地讨论的那样,本发明的各方面包括用于各种流体类型(例如,气体类型)的质量流量控制器100的改进特征、以及为了改进MFC 100的性能而对改进的特征的应用。
如已经说明的,在本实施方式中,MFC 100的基部105包括气体流过的旁路110。旁路110指引恒定比例的气体经过主路径115和传感器管120。结果,经过传感器管120的流体的流速表示流经MFC 100的主路径115的流体的流速。
MFC 100所控制的流体在一些实施方式中是气体(例如,氮),但是本领域技术人员受益于本发明应当理解,MFC 100所传送的流体可以是诸如气体或液体等的、例如包括任何阶段的元素和/或化合物的混合物的任何种类的流体。根据本申请,MFC 100可以将处于气态(例如,氮)和/或液态(例如,盐酸)的流体传送至例如半导体设施中的工具。在许多实施方式中,MFC 100被配置为在高压低温下传送流体、或者将流体传送至不同类型的容器或器皿。
传感器管120可以是作为MFC 100的热式质量流量传感器125的一部分的小口径管。通常,质量流量传感器125提供输出信号130,该输出信号130表示经过MFC 100的主路径115的流体的质量流速。本领域普通技术人员将会理解,质量流量传感器125可包括接合于(例如,卷绕)传感器管120的外侧的感测元件。在一个例示实施方式中,感测元件是电阻温度计元件(例如,导电线的线圈),但还可以利用其它类型的传感器(例如,电阻温度检测器(RTD)和热电偶)。此外,其它实施方式可以在没有背离本发明的范围的情况下确定地利用不同数量的传感器和不同的架构来处理来自这些传感器的信号。
本领域普通技术人员还将理解,质量流量传感器125还可包括提供输出的感测元件电路(例如,桥式电路),该输出表示通过传感器管120的流速,因此表示通过MFC 100的主路径115的流速。此外,可以对该输出进行处理,由此得到的输出信号130是通过MFC 100的主路径115的流体的质量流速的数字表示。例如,质量流量传感器可包括放大和模-数转换组件以生成输出信号130。
在可选实施方式中,热式质量流量传感器125可通过层流流量传感器(laminar flow sensor)、科里奥利流量传感器(coriolis flow sensor)、超声波流量传感器或差压传感器来实现。压力测量可通过表压传感器、差分传感器、绝对压力传感器或压阻压力传感器来提供。在变形例中,质量流量传感器125和/或压力测量与其它传感器(例如,温度传感器)的任意组合结合使用,从而精确地测量流体的流量。这些组合例如在闭环模式或在开环模式中的反馈环路中使用,以控制流体流量和/或确定是否将多模式控制算法从一种模式向另一种模式改变。
在本实施方式中,控制组件140通常被配置为生成用以基于设定点信号155来控制控制阀门150的位置的控制信号145。控制阀门140可通过压电阀或电磁阀实现,且控制信号145可为电压(在压力阀的情况下)或电流(在电磁阀的情况下)。此外,本领域普通技术人员将会理解,MFC 100可包括向控制组件140提供压力和温度输入的压力传感器和温度传感器。例如,压力传感器可被设定成感测主路径中在传感器管120的上游侧或旁路110的下游侧的压力。
在本实施方式中,控制组件140以闭环模式和开环模式这两种模式进行工作,以在与多种工作气体相关的多种工作条件下(例如,在整个压力摆动期间)提供改进的控制。更具体地,本实施方式中的控制组件140包括多模式控制组件160和多气体控制组件162。本领域普通技术人员鉴于本发明将会理解,控制组件140的这些以及其它组件可通过包括(例如,存储在有形的非易失性存储器中的)软件、硬件和/或固件或者上述的组合的多种组件来实现,并且这些组件可存储和执行非瞬态处理器可读指令,该可读指令实现此处进一步描述的方法。
通常,多模式控制组件160进行工作,以根据影响质量流量传感器125的输出130的条件,在闭环模式和开环模式之间交替操作质量流量控制器100。在一些示例中,工作条件影响质量流量控制器100至如下程度:质量流量传感器125的输出130无法合理地被依赖,因此多模式控制组件160以开环模式工作。
更具体地,多模式控制组件160被配置成从压力传感器178接收流体压力的指示,并且多模式控制组件160被配置为:当压力发生突然变化使得热式流量传感器125生成不可靠的输出130时,从闭环模式改变为开环模式。
多模式控制组件160例如通过断开闭环控制算法并进行开环控制算法,来从闭环模式改变为开环模式。当扰动减弱时或者在预定的时间段之后,多模式控制组件160被配置为从开环模式变回至闭环模式。在许多实现中,定义用于触发开环控制模式的压力变化阈值条件,以使得多模式控制组件160在流量传感器125的工作范围的上边界处或该上边界附近从闭环模式改变为开环模式。在一些实施方式中,流量控制器100接收并使用来自诸如温度传感器(未示出)等的其它装置或传感器的指示器以确定多模式变化和/或控制流体的流量。
在一些实施方式中,当从开环模式转变为闭环模式时,质量流量控制器100使用指定比例的流体流量设定点155和流量传感器测量值130作为用于闭环控制的反馈信号,从而创建从开环模式返回闭环模式的平滑转变。当以开环模式工作一段时间之后流体流速不为或大致不为流体流量设定点时,该转变技术(还被称为“无扰动”转变)是适当的。在一些实现中,无扰动转变技术被用于从开环模式改变为闭环模式,反之亦然。
此处通过引用包含其所有内容的发明名称为“Multi-mode ControlAlgorithm”的美国专利7640078公开了关于MFC的多模式控制的附加细节,本发明的实施方式对其进行了改进。
如此处进一步讨论的那样,当以控制的开环模式工作时,与流体压力信息相关地使用特性数据以控制控制阀门150的位置。在所描述的实施方式中,多气体控制组件162在开环模式下与气体属性数据166相关地利用常规特性数据164以控制控制阀门150的位置。
多模式控制组件160利用可存在于非易失性存储器中的常规特性数据164来在开环模式期间控制控制阀门140的位置,从而将一个或多个压力读数转变成阀门位置,该阀门位置提供充分接近或等于与设定点155相对应的流体流量水平的流体流速。在图1描述的实施方式中,在质量流量控制器100被用于处理环境之前,执行用以生成常规特性数据164的表征工序作为(例如,通过MFC 100的制造商或供应者执行的)制造工序的一部分。
更具体地,利用以M个不同压力P[1]、P[2]、…、P[M]供应至质量流量控制器100的校准气体(例如,氮)来生成常规特性数据164。针对各压力,为装置赋予N个流量设定点(F[1]、F[2]、…、F[N]),并且记录提供稳定流量的阀门控制信号。如图2所述,可以以具有阀门控制信号成分V[i,j](其中i=1…N且j=1…M)的大小为N*M的矩阵V来表示由此得到的常规特性数据164。矢量P、F和矩阵V被存储于质量流量控制器100的存储器中,且在MFC工作的开环模式期间由控制组件140所使用。
当利用一种校准气体实现阀门表征时,常规特性数据164仅对该具体的校准气体提供质量流量控制器100的合格性能。然而,本领域普通技术人员鉴于本发明将会理解,当工艺气体(即,在实际工作期间受控制的气体)不同于校准气体时,与期望的流量设定点相对应(工作压力处)的常规特性数据164中的阀门控制信号将不会产生提供期望流量的阀门位置。
提供非常精确的质量流量控制器100的多工艺气体特性的方案将在表征工序期间使用实际的工艺气体。但是这种类型的多工艺气体的表征由于以下多种理由是不可行的:工业中使用的多种气体是有毒的和/或易燃的,因此制造者无法安全使用这些气体;高流量装置的表征需要大量的气体,且许多气体非常昂贵;以及与多种气体相关地表征MFC是非常耗时间的工序,结果经济上不可行。
因此,多气体控制组件162与常规特性数据164相关地利用气体属性数据166来生成阀门控制信号145,该阀门控制信号145定位控制阀门150,以使得通过MFC 100的多种工艺气体的任意一种的流量是设定点155所示的期望流速。
更具体地,申请人发现在相同的压力和阀门位置时工艺气体流量Fpr与校准气体流量Fcal的比率可以被近似地表示为:
Fpr/Fcal=(Mcal/Mpr)k  等式1
其中Mcal是校准气体的分子量,Mpr是工艺气体的分子量,且k的值根据MFC流量范围介于0.2-0.5之间。
因此,为了应用该发现的关系,在多个实施方式中,气体属性数据166包括多个气体的分子量数据。如图所示,该数据可利用与接合于外部气体属性数据存储器172的外部处理工具170的通信链路来进行升级。还进行以下考虑:对于多种工艺气体,多个分子量比值(等于(Mcal/Mpr))可被存储于气体属性数据中。不管所存储的代表,此处进一步描述的多个实施方式利用等式1表示的关系来使用利用校准气体所获得的常规特性数据164更精确地控制工艺气体的流量。
参考图1的同时参考图3,该图3是描述结合图1描述的实施方式进行的典型方法的流程图。如图所示,在工作期间,对要控制的工艺气体进行工艺气体选择(由图1中的气体选择输入157示出)(块300)。尽管为了简明未在图1中示出,但是本领域普通技术人员将会理解,质量流量控制器可包括用户界面组件(例如,显示器和按钮、触摸板或触摸屏)以使得操作者能够选择要控制的工艺气体。可选地,质量流量控制器可通过已知的线路或无线网络技术连接于控制网络,以使得能够从其它控制位置(例如,利用外部处理工具170)选择工艺气体。
此外,从所选择的工艺气体类型的气体属性数据166(或远程气体属性数据172)获得分子量信息(块302),并且接收与期望的质量流速相对应的设定点信号155(块304)。例如,分子量信息可包括工艺气体的分子量Mpr(或表示Mpr的其它值或者根据Mpr得到的其它值),或者作为其它示例,分子量信息可包括分子量比值(等于(Mcal/Mpr))、或者表示分子量比值的其它值或根据分子量比值得到的其它值。关于(由设定点信号155表示的)期望的质量流速,其可以是与基于等离子体(例如,薄膜沉积)的处理系统相关的特殊工艺所需的流速。
如上所述,压力变化的速率快可能会导致流量信号130不可靠,结果,多模式控制组件160断开用于控制阀门150的反馈控制环路,并获得压力读数(块306),该压力读数被用于获得阀门位置值以对控制阀门150进行控制。如果正控制的工艺气体恰好与用于生成常规特性数据164的气体类型相同,则可以仅利用测量到的压力值获取常规特性数据164,以获得阀门控制信号145的阀门位置值。但是在质量流量控制器100的实际使用期间所使用的工艺气体通常不同于用于生成常规特性数据164的气体。结果,由于工艺气体具有不同于表征气体的流量属性,因此根据常规特性数据164所获得的阀门位置值将导致提供实质不同于期望质量流速的流速的阀门位置。
结果,图1中描述的典型的质量流量控制器100利用等式1表示的分子量关系来生成工艺气体特有的工艺控制信号值。更具体地,利用等于Fpr*(Mpr/Mcal)k的修正流量值来确定用于期望流量值和压力的工艺控制信号值,其中Fpr是期望的工艺气体流量值,Mpr是所选择的工艺气体类型的分子量,且Mcal是校准气体的分子量(块308)。
再次参照图2中描述的典型的常规特性数据有助于更清楚地理解块308中如何进行确定。应当认识到,图2中示出的典型的常规特性数据将根据质量流量控制器的不同而不同。
在假定期望的流量值是质量流量控制器100的额定流量能力的20%、且块306处获得的压力读数为30单位(例如,磅/平方英寸)的情况下,常规表征气体(例如,氮)的阀门控制信号145的阀门位置值为16.932。但如上所述,当工艺气体不同于常规表征气体时,16.932的阀门位置值将不会提供期望的20%的流速。
与等式1一致,将修正的流量值计算为Fpr*(Mpr/Mcal)k,并且在假定项(Mpr/Mcal)k等于2.0的情况下,修正的流量值为(20%*2.0)或者40%,结果,在30的压力下,工艺阀门位置值为21.015。因此,在本示例中针对假定的工艺气体提供20%流量的工艺阀门位置值(此处也称作工艺控制信号值)为21.015。如果未在常规特性数据164中找到期望的流量值或修正的流量值,则可使用插值。
然后,如图3所示,处于工艺控制信号值的工艺控制信号145被施加于控制阀门150从而以期望的流速提供工艺气体(块310)。在多个实施方式中,在压力变化减小或计时器到期之后,多模式控制组件160返回至闭环工作模式。
接着参照图4,其是另一个MFC 400的典型实施方式的功能框图。如图所示,该实施方式包括多个与参照图1描述的MFC 100相同的组件,但是在本实施方式中,不同于MFC 100,MFC 400将常规特性数据164修正为工作特性数据480,该工作特性数据480被用于在MFC 400正以开环模式工作时对控制阀门150的位置进行控制。
更具体地,MFC 400的控制组件440包括特性数据修正组件474,该特性数据修正组件474用于基于气体选择输入157将常规特性数据164修正为工作特性数据480。控制组件440及其构成组件可通过包括软件(例如,存储于非易失性存储器中)、硬件和/或固件或者其组合的多种不同类型的机构来实现,并且这些组件可储存和执行用于实现此处进一步描述的方法的非瞬态处理器可读指令。
在参照图4时,例如同时参照图5,图5是描述与图4所示的实施方式相关地进行的典型方法的流程图。如图所示,在本实施方式中,当为要控制的工艺气体选择工艺气体类型时(块500),根据气体属性数据166(或者远程气体属性数据172)获得所选择的工艺气体类型的分子量(块502),并且还通过特性数据修正组件474获得常规特性数据164(块504)。
如图所示,在本实施方式中,特性数据修正组件474通过根据如下等式修正常规特性数据中的流量值来生成工作特性数据:
Fadj=Fcal*(Mcal/Mpr)k  等式2
其中Fadj是调整后的流量值,Fcal是校准流量值,Mpr是所选择的工艺气体类型的分子量,且Mcal是校准气体的分子量(块506)。
然后,工作特性数据480由多模式控制组件460所使用,从而使MFC 400在开环控制模式下工作(块508)。
如上所述,工作特性数据480针对多种气体类型提供质量流量控制器100的改进特性,这在MFC如上所述正以开环工作模式进行工作时是非常有利的。但是此外,工作特性数据480还利用其它控制方法提供改进的操作。例如,图6~13描述了受益于工作特性数据480所提供的改进特性的实施方式。
例如,图6是利用工作特性数据所提供的改进特性的又一个MFC 600的典型实施方式的功能框图。如图所示,该实施方式包括多个与参照图1描述的MFC 100以及参照图4描述的MFC 400相同的组件,但是不同于MFC 100、400,在本实施方式中,自适应表征组件676连接至工作特性数据480。
在本实施方式中,通常,自适应表征组件676进行工作以在MFC 600工作期间调整工作特性数据480,从而例如适应等式1的应用中的任意误差和/或工作期间工作压力的变动。因此,工作特性数据480针对多种工艺气体提供初始特性数据,并且自适应表征组件676进一步在开环工作模式期间在MFC 600工作中调整工作特性数据480,以减小工作期间可能产生(例如,由于压力变化和工作特性数据480中的误差所导致)的缺陷(例如,控制错误)。
在多个实现中,为了确定适当的调整,一旦质量流量控制器600(例如,由于产生压力偏差)而以开环模式工作,则自适应表征组件676在闭环模式被再次启动的时刻获得测量到的流量读数。此外,根据闭环模式被再次启动时的流量错误和压力变化的方向,增大或减小相应的特性值。
参照图7,图7是包括用于说明当控制工艺气体(代替氮)时对工作特性数据480进行调整以提供100%的流量的典型系列事件的以下三个曲线的图:用于工艺气体的未调整阀门位置曲线702、用于工艺气体的110%流量曲线704、以及用于工艺气体的期望阀门位置曲线706(以提供100%的流量)。未调整阀门位置曲线702表示当使用(未调整的)工作特性数据480在开环工作模式期间控制阀门150时的阀门150的位置-压力曲线。110%流量曲线704表示提供工艺气体的110%的流速的阀门位置-压力曲线,并且期望阀门位置曲线706表示提供工艺气体的期望的100%的流量的阀门位置-压力曲线。
如该示例所示,在点(V1,P1)处,(例如,由于压力紧挨在(V1,P1)之前下降的流速超过了阈值),多模式控制组件460从闭环工作模式切换到开环工作模式。并且如图所示,当利用未调整的工作特性数据480来控制工艺气体时,压力P2处的阀门150的阀门位置为V2,该阀门位置是控制工艺气体时提供110%流量的阀门位置。与此相对,为了在压力P2处提供工艺气体的100%的流量,阀门位置需要位于位置V3。
结果,在本示例中,当未调整工作特性数据480时,(即,由于阀门的位置打开得更大,当阀门位置应该打开大约54%时,其打开了56%),流速太高。在本示例中,在压力P2处,多模式控制组件660切换回闭环工作模式,并且基于与测量到的流速(对应于实际阀门位置V2)和流量设定点(对应于期望阀门位置V3)之间的差的关系来计算针对工作特性数据460的调整,从而在下一次多模式控制组件660切换至开环工作模式时,阀门150的位置比未调整阀门位置曲线702更接近地追踪期望阀门位置曲线706。
自适应表征组件676可以通过可选地改变工作特性数据480中的现有阀门位置值(例如,通过从自适应表征组件676向工作特性数据480的可选通信)、通过向工作特性数据480添加附加数据来对工作特性数据480施加调整;或者工作特性数据480可以保持相同(例如,与参照图4和5所讨论的那样),并且自适应表征组件676对工作特性数据480施加比例因子。
在工作特性数据480保持相同并且施加了比例因子的实现中,比例系数C可以按照以下进行计算:C=(V3-V1)/(V2-V1),当然也可以考虑使用其它比例因子。此外,使用该量C来对在开环模式中通过工作特性数据480如何控制阀门150进行调整。例如在图7中,C约等于(54%-61%)/(56%-61%)或1.4。量1.4表示阀门150需要移动多少,从而在开环工作模式在压力P2处结束之后阀门140的位置更接近(P2,V3)。在该示例中,在没有调整的情况下,工作特性数据480指示阀门150从约61%(V1处)向着56%(V2处)移动(约5%的差),因此将量1.4乘以5%的差以获得调整后的-7%的差。
结果,在再次进行开环模式的情况下(压力变化相同的情况下),开环工作模式停止时的P2处的阀门150的位置为(61%(V1处)减去7%)或者54%。为了达到调整后的位于P1和P2之间的阀门位置(由此阀门位置更接近地追踪期望阀门位置曲线706),可通过插值来计算P1和P2之间的针对各压力值的比例因子C的值。
可选地,代替如上所述计算新的系数,可以在多模式控制组件660从开环模式转变为闭环模式的各循环期间对系数进行增量调整。可以进行这些增量调整,直到(多模式控制组件660从开环模式切换为闭环模式时的)测量到的流量和流量设定点之间的差落在阈值以下为止。
在增大或改变工作特性数据480的实现中,工作特性数据480可以存储各工艺气体的调整后的特性数据。或者在其它变形例中,多种工艺气体的调整后的特性数据可从MFC 600(例如通过本领域技术人员众所周知的通信链路)被上载到外部处理工具185并且外部进行存储,然后在需要时可取回调整后的特性数据。
校准气体的校准数据的自适应表征的附加详情记载在发明名称为“Adaptive Pressure Insensitive Mass Flow Controller and Method for Multi-GasApplications”的美国专利申请13/324,175中,此处通过引用包含该专利的全部内容。
接着参照图8,图8示出又一个典型的MFC 800的框图。如图所示,该实施方式包括多个与参照图1描述的MFC 100和参照图4描述的MFC 400相同的组件,但是不同于MFC 100和400,在本实施方式中,自适应阀门启动组件882连接至工作特性数据880。
通常,当控制阀门150关闭时,自适应阀门启动组件882进行工作以基于工作特性数据880和MFC 800的运行时间数据向控制阀门150提供可调非零启动控制信号145,从而更迅速地响应设定点信号155。此外,自适应阀门启动组件882的用户输入能够使得用户更改可调非零启动控制信号145以调整MFC 800的响应。此外,自适应阀门启动组件882生成调整数据885,并利用该调整数据885来调整可调非零启动控制信号145,从而补偿影响MFC 800的响应的温度漂移、老化和其它因素的影响。因此,自适应阀门启动组件882可被用于通过设定可调非零启动控制信号145的值(例如,基于用户输入)来建立期望的瞬态响应,然后自适应阀门启动组件882在环境和/或老化影响瞬态响应时,调整可调非零启动控制信号145以维持期望的瞬态响应。
在之前的实现中,当阀门150相对靠近所需位置且阀门150的移动改变流量时,质量流量控制器的闭环控制环路执行得相对良好,从而该控制环路获悉流量响应并因此立即调整阀门位置。但是在这些之前的系统中,当MFC被设定为零位置(零阀门位置)、且MFC被赋予非零设定点时,阀门需要很长时间从零位置移动至出现显著流量且闭环控制环路开始适当工作的位置。结果,存在长响应延迟和通常欠佳的MFC性能。
因此,为了消除响应延迟和欠佳的性能,自适应阀门启动组件882通过在控制阀门150关闭的同时立即将控制信号145从零值(例如,零电流或零电压)移动至可调非零启动控制信号值来提高MFC 800的性能。
接着参照图9,图9示出了描述在运行时间期间可通过MFC 800进行的处理的流程图。尽管是基于参照图8描述的MFC 800所进行的,但是应当认识到,图9描述的处理不限于图8的具体的典型实施方式。如图所示,在工作中,当控制阀门150关闭时,接收具有与期望流速相对应的值的设定点信号155(块902)。在等离子体处理(例如,薄膜沉积)的过程中,流速可以是作为等离子体工艺的一部分所需的特定气体的期望流速。
如图所示,获取工作特性数据880以获得特性化非零启动控制信号的值以及特定流速下的特性化控制信号的值,并且稍后使用这些值来调整可调非零启动控制信号(块904)。之后,将控制信号145作为初始值的可调非零启动控制信号施加于控制阀门150(块906)。结果,与启动控制信号值为零且直到延迟之后才接入控制环路的之前方法相反(在该延迟期间,(利用控制环路)使控制信号缓慢地达到流量开始时的水平),(当流量即将启动或刚启动时)实质上更迅速地接入MFC 800的闭环控制系统。
当首次部署使用MFC 800时(例如,当用户从供应者接收到MFC 800时),特性化非零启动控制信号可被用作可调非零启动控制信号的初始值,但一旦MFC 800处于使用中,则可调非零启动控制信号是基于工作特性数据880和运行时间数据。
例如,在工作特性数据880包括多个压力的数据的实施方式中,在块906处,将控制信号145作为具有通过将(存储于调整数据885中的)差数据与校准后的非零启动控制信号相加所获得的值的可调非零启动控制信号进行施加。这些实施方式中的差数据是基于工作特性数据880和一个或多个在先工序运行期间预先获得的运行时间测量值之间的差。下面参照以下的块910和块912来提供细述用于生成差数据的典型方法的附加信息。
此外,在工作特性数据880仅包括单个压力的特性数据的实施方式中,调整数据885包括可调非零启动控制信号的值,并且在块906处,将控制信号145作为具有根据调整数据885所获得的值的可调非零启动控制信号进行施加。如以下参照块910和块912所述,可调非零启动控制信号的存储值可在每次运行期间进行调整并且在调整数据885中进行更新。
无论工作特性数据880是基于单个压力还是多个压力,如下面进一步的描述,使用块904中所获得的(特定流速下的)控制信号的值,以在随后运行期间调整可调非零启动控制信号。尽管在块904中获得了两个数据,但应当认识到,这两个数据不需要同时获得。
在工作特性数据880包括多个压力水平中的各压力水平的数据的实现中,MFC 800中的压力转换器可被用于获得表示流体的压力的信号,并且可以获取工作特性数据880以选择基于测量到的压力的特性化非零启动控制信号的值。
但至少,具有多个压力的特性数据不需要与图9描述的方法相关,这是因为图9的方法认为阀门/流量特性并不恒定并且可能改变,结果,对可调非零启动控制信号进行调整以解决影响阀门/流量特性的工作条件的变化。
尽管在控制阀门150关闭时向MFC 800施加可调非零启动控制信号通常会改善MFC 800的响应,但认为MFC 800的用户将期望基于使用MFC 800的特定处理应用的特定瞬态响应。结果,在多个实施方式中,自适应阀门启动组件882能够使用户通过向可调非零启动控制信号添加偏移或从可调非零启动控制信号减去偏移来(通过用户输入)定义MFC 800的期望瞬态响应。
例如参照图10A-10C,图10A-10C是描述与三个相应的启动控制信号有关的瞬态流量状况的图。图10A例如示出具有如下值的启动控制信号,该值产生比图10B和10C中的启动控制信号慢的响应。在一些应用中,图10A中的较慢的响应可能是期望的,但在其它应用中,与产生较快的响应时间的图10B和10C中描述的启动控制信号相比,该响应可能是非最优的。结果,如果根据工作特性数据880获得的初始非零启动控制信号产生了图10A描述的响应,则正偏移可被添加至非零启动控制信号以产生图10B中的瞬态响应或更大的偏移可被添加至非零启动控制信号以产生图10C中的瞬态响应。
类似地,如果非零启动控制信号提供了图10C所示的导致产生运行时间处理期间可能不被接受的瞬态过冲的响应,则用户可以向非零启动控制信号添加负偏移以产生图10B中的响应,或者用户可以向非零启动控制信号添加较大的负偏移以产生图10A中的较慢响应。
尽管可调非零启动控制信号通常改善响应、并且可被配置为达到期望瞬态响应,但环境(例如,温度)和其它因素(例如,MFC 800的老化)影响了瞬态响应和启动控制信号之间的关系。换句话说,如果(例如,通过利用施加于启动控制信号的偏移量进行调整)实现了期望瞬态响应,则温度和老化将导致MFC 800针对相同的启动控制信号而具有不同的响应。
例如参照图11,图11示出针对四个不同温度的流量-控制信号曲线。在使用图11的箭头所示的(最大控制信号水平的)30%的启动控制信号、并且阀门/流量特性如图11所示随着温度而漂移的情况下,如果运行时间期间的工艺气体温度不同于校准温度,则MFC 800可以在30摄氏度下产生过冲或在60摄氏度下产生长的响应延迟。另外,还存在由于阀门材料的老化所引起的阀门/流量特性的长期漂移,这还导致性能劣化。
在大多数时间,阀门-流量特性的温度和/或老化相关变化实际是可能以如下曲线为特征的“平行偏移”,其中该曲线在其形状保持大致不变的情况下,沿着“控制信号”轴向左或向右偏移。例如参考图12,图12示出可以表示为工作特性数据880中的数据对的在40摄氏度下所获得的校准控制信号-流量曲线。如图所示,校准数据的该示例集合表示(图12的箭头所示的)最佳启动控制信号为(最大控制信号水平的)30%,并且在控制信号145的值为70%的情况下,流速为(最大流量水平的)60%。然而,在MFC 800处于使用中的情况下,MFC 800的工作特性和/或MFC 800所放置的环境可能会改变MFC 800的特性,以使得为了实现相同的60%的特定流速,测量到的控制信号值需要为(最大控制信号水平的)85%。在假定控制信号值中的15%的偏移是整个控制信号-流量曲线的整体“平行”偏移的一部分的情况下,针对启动控制信号可以期望30%~45%的相似偏移。
结果,作为针对可调非零启动控制信号的调整的一部分,在工作期间,在设定点信号145减小之前,在特定流速下获得控制信号的测量值(块908)。获得测量流速时所处的特定流速是与上文的块904中从工作特性数据880获得校准控制信号的值相关地使用的(参考块904所论述的)相同特定流速。此外,在设定点155减小之前获得测量值,由此该测量值是从上升的控制信号-流量曲线获取到的(正如在校准期间获得特定流速下的校准控制信号那样)。
例如在参考图8的同时参考图13,图13示出针对同一MFC 800的不同温度下的两个控制信号-流量曲线。更具体地,示出了40摄氏度下所获得的图11所示的相同的控制信号-流量校准曲线,并且另外,示出了描述50摄氏度下的MFC 100的运行时间期间的实际工作特性的另一控制信号-流量曲线。如果设定点186例如为60%的流量,则可以在上升曲线上在60%的流量处获取控制信号的测量值、即85%。
如图9所示,将控制信号的测量值(在图12所示的示例中为85%)与存储在质量流量控制器上的特定流速(例如,60%)下的校准控制信号(在图12所示的示例中为70%)的水平进行比较(块910)。此外,基于该比较,将可调非零启动控制信号的值调整为调整值,以使得下一次质量流量控制器在阀门关闭的情况下接收到另一设定点信号时,使用该调整值(块912)。
在多个实施方式中,基于以下算法来调整可调非零启动控制信号的值:ASCS=CSCS+MVCS–CVCS,其中:ASCS是被调整为维持期望响应的可调非零启动控制信号;CSCS是作为根据校准数据所获取的启动控制信号的值的校准启动控制信号;MVCS是按特定流量水平测量到的控制信号的测量值;并且CVCS是作为特定流量值处的校准控制信号的值的控制信号的校准值。
参照图12,例如,CSCS为30%并且特定流量值为60%,由此MVCS为85%且CVCS为70%。结果,针对下一运行的ASCS为45%。应当意识到,所选择的特定流量值可以是存在于特性曲线和运行时间曲线这两者中的任意流量值。
在工作特性数据880包括针对多个压力的数据的实施方式中,将控制信号的测量值(MVCS)和控制信号的特性化值(CVCS)之间的差存储在调整数据885中,以使得在后续运行期间,将所存储的差与存储在(针对当前压力的)工作特性数据880中的特性化非零启动控制信号的值相加,以获得可调非零启动控制信号(ASCS)。并且再次执行以上参考块908~912所述的方法以根据需要针对另外其它后续工艺运行来调整差数据。
并且在工作特性数据880包括针对仅一个压力的特性数据的实施方式中,调整数据185包括可调非零启动控制信号(ASCS)的值,其中在后续工艺运行期间(与如参考块904所述获取特性化非零启动控制信号的初始值相同的方式)获取该值,并且如以上参考块906所述将该值作为可调非零启动控制信号施加于控制阀门150。并且再次执行以上参考块908~912所述的方法以根据需要调整可调非零启动控制信号。
在图9所示的方法的变形例中,在一些预先定义的针对各运行的调整限制、例如阀门电压的1%的情况下,可以使用根据多次运行的估计来缓慢地进行可调非零控制信号的调整。特别是在低设定点处,还可以进行滤波(积分)以避免含噪声的阀门测量的影响。另外,认为可调非零启动控制信号的大的跳跃可能表示装置的问题;因而可以响应于可调非零启动控制信号跳跃超过阈值来触发警报/警告。
尽管参考图9所述的方法响应于温度的变化来调整可调非零启动控制信号,但为了进一步改善自适应阀门启动组件882的能力以在控制阀门150正从关闭位置启动时调整控制信号145的值,可以在运行时间期间收集并使用温度数据以改善图9所示的工艺的各方面。
例如,在将新的可调非零启动控制信号值(或差数据)存储在调整数据885中的情况下,还可以存储来自MFC 800中的温度传感器的温度值,以使得将温度信息与该启动控制信号值或差数据相关地进行存储。如果气体的温度在工艺运行期间大幅改变,则可以使用(与控制信号或差数据相关地)所存储的温度数据来瞬间预测针对后续工艺运行的最佳可调非零启动控制信号值。
(此处描述的工作特性数据的内容之外的)自适应阀门启动系统和方法的附加详情记载在发明名称为“Mass Flow Controller Algorithm with AdaptiveValve Start Position”的美国专利申请13/206,022中,此处通过引用包含该专利。
应当认识到,为了便于描述,在图6和8中单独描述了自适应表征组件676以及自适应阀门启动组件882,但是在具有参照图1和4描述的多模式控制组件160、460其中之一的单个质量流量控制器中这些组件可被一起实现。
接着参照图14,示出对实现参考图1、4、6和8所述的MFC 100、400、600和800可以利用的物理组件进行描述的框图1400。如图所示,显示部1412和非易失性存储器1420连接至总线1422,其中该总线1422还连接至随机存取存储器(“RAM”)1424、处理部(其包括N个处理组件)1426、与电磁或压电型阀门1430进行通信的阀门驱动器组件1428、以及接口组件1432。尽管图14所描述的各组件表示物理组件,但图14并不意图是硬件图;因而图14所示的组件中的许多组件可以由共通结构来实现或者可以分布在附加物理组件中。此外,当然还考虑可以利用其它现有的和尚在开发的物理组件和架构来实现参考图14所述的功能组件。
该显示部1412通常工作以向用户提供内容的呈现,并且在几个实现中,该显示器由LCD或OLED显示器来实现。通常,非易失性存储器1420用于存储(例如,持久地存储)数据以及包括与控制组件140、440、640和840相关联的代码的非瞬态处理器可执行代码。另外,非易失性存储器1420可以包括引导加载程序代码、软件、操作系统代码和文件系统代码。
在多个实现中,非易失性存储器1420由闪速存储器(例如,NAND或ONENANDTM存储器)来实现,但当然还考虑可以利用其它存储器类型。尽管可能可以执行来自非易失性存储器1420的代码,但通常将非易失性存储器1420中的可执行代码载入RAM 1424并且由处理部1426内的N个处理组件中的一个或多个来执行。如图所示,处理组件1426可以接收由控制组件140、440、640和840执行的功能所利用的模拟温度和压力的输入。
与RAM 1424相连接的N个处理组件通常工作以执行存储于非易失性存储器1420中的非瞬态处理器可读指令,从而实现图1、4、6和8描述的功能组件。例如,控制组件140、440、640和840可通过N个处理组件中的一个或多个与从RAM 1424执行的非瞬态处理器可读代码相关地实现,以执行参照图3、5和9描述的方法。
接口组件1432通常表示使得用户能够与MFC 100、400、600和800互动的一个或多个组件。接口组件1432例如可以包括键盘、触摸屏、以及一个或多个模拟或数字控制件,并且可以使用接口组件1432来将来自用户的输入变换为设定点信号155。并且,通信组件1434通常使得MFC 100、400、600和800能够与外部网络和包括外部处理工具170的装置进行通信。本领域普通技术人员应当理解,通信组件1434可以包括使得能够进行各种无线(例如,WiFi)通信和有线(例如,以太网(Ethernet))通信的(例如,集成式或分布式的)组件。
图14所描述的质量流量传感器1436表示本领域普通技术人员为了实现图1所示的质量流量传感器125而已知的各组件的集合。例如,这些组件可以包括感测元件、放大器、模拟-数字转换组件和滤波器。
本领域技术人员应当理解,可以使用各种不同的技术和技法中的任一来表示这里所论述的信息和信号。例如,在以上整个说明中可参考的数据、指令、命令和信息可以由电压、电流、电磁波、磁场或磁性粒子、光学场或光学粒子、或者它们的任意组合来表示。
本领域技术人员还应当理解,与这里公开的各实施方式相关地说明的各种例示性的逻辑块、模块、电路和算法步骤可以由除图14所示以外的其它替代组件来实现。为了明确说明硬件和硬件的该可互换性,以上通常在功能性方面说明了各种例示性的组件、块、模块、电路和步骤。是否将这种功能实现为硬件、固件或软件,这依赖于特定应用程序和施加于整个系统的设计制约。熟练的技工可以以针对各特定应用程序可变的方式来实现所述功能,但这些实现决定不应当被解释为导致偏离本发明的范围。
更具体地,与这里公开的各实施方式相关地说明的各种例示性的逻辑块、组件和电路可以利用以下来实现或进行:通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现场可编程门阵列(FPGA)或其它可编程逻辑装置、离散的门或晶体管逻辑、离散的硬件组件、或者它们的被设计成进行这里所述的功能的任意组合。通用处理器可以是微处理器,但作为代替,该处理器可以是任何传统的处理器、控制器、微控制器或状态机。处理器还可以作为如下计算装置的组合来实现:例如,DSP和微处理器的组合、多个微处理器、与DSP内核相结合的一个或多个微处理器、或者任何其它这种结构。
与这里公开的各实施方式相关地说明的方法或算法的步骤可以以硬件形式、以(例如图14所示的)处理器所执行的软件模块的形式、或者以这两者的组合的形式来直接体现。软件模块可以内置于诸如RAM存储器1424、非易失性存储器1420、ROM存储器、EPROM存储器、EEPROM存储器、寄存器、硬盘、可移除盘、CD-ROM或本领域内已知的任何其它形式的存储介质等的非瞬态处理器可读介质中。典型的存储介质连接至处理器,由此该处理器可以从该存储介质读取信息并将信息写入该存储介质。在替代方案中,存储介质可以与处理器一体化。处理器和存储介质可以内置于ASIC中。
前面针对所公开实施方式的说明是为了使本领域的任何技术人员均能够制作或使用本发明而提供的。针对这些实施方式的各种变形对于本领域技术人员而言是显而易见的,并且在没有背离本发明的精神或范围的情况下,这里定义的通用原则可以适用于其它实施方式。因而,本发明并不意图局限于这里所示的实施方式,而是符合与这里所公开的原理和新特征一致的最宽范围。

Claims (10)

1.一种利用质量流量控制器来控制工艺气体的质量流量的方法,所述方法包括以下步骤:
选择要控制的工艺气体的工艺气体类型;
获得所选择的工艺气体类型的分子量信息;
接收与期望的质量流速相对应的设定点信号;
接收通过压力传感器所生成的工艺气体的压力测量值;
响应于流体的压力变化率满足阈值条件,断开反馈控制环路,其中所述反馈控制环路基于测量流速和期望的质量流速之间的差来控制所述质量流量控制器的阀门;
利用修正的流量值来确定用于期望的流量值和压力的工艺控制信号值,所述修正的流量值等于Fpr*(Mpr/Mcal)k,其中k的值根据所述质量流量控制器的流量范围介于0.2~0.5之间,Fpr是期望的工艺气体流量值,Mpr是所选择的工艺气体类型的分子量,且Mcal是校准气体的分子量;以及
将处于所述工艺控制信号值的工艺控制信号应用于所述阀门,从而以期望的流速提供工艺气体。
2.一种利用质量流量控制器来控制工艺气体的质量流量的方法,所述方法包括以下步骤:
选择要控制的工艺气体的工艺气体类型;
获得所选择的工艺气体类型的分子量信息;
获得常规特性数据,所述常规特性数据针对多个流量值和压力值对中的各流量值和压力值对包括相应的控制信号值;
通过根据如下等式来修正所述常规特性数据中的流量值,来生成工作特性数据:Fadj=Fcal*(Mcal/Mpr)k,其中k的值根据所述质量流量控制器的流量范围介于0.2~0.5之间,Fadj是调整后的流量值,Fcal是校准流量值,Mpr是所选择的工艺气体类型的分子量,且Mcal是校准气体的分子量;以及
使用所述工作特性数据来使所述质量流量控制器的阀门在开环控制模式下工作。
3.根据权利要求2所述的方法,其中,还包括以下步骤:
响应于满足阈值条件的流体的压力变化率,断开反馈控制环路,其中所述反馈控制环路基于测量流速和期望的质量流速之间的差来控制所述质量流量控制器的阀门;
基于所述反馈控制环路已断开时的压力测量值和表征所述质量流量控制器的所述工作特性数据来计算所述阀门的阀门位置;
在流量测量值在经过一段时间之后或满足阈值条件之后仍准确的情况下,重新接合所述反馈控制环路;
在首次重新接合所述反馈控制环路的情况下,确定测量流速和流量设定点之间的差;以及
在所述反馈控制环路再次断开的情况下,基于所述差对所述工作特性数据进行调整,从而提高所述阀门位置的计算精度。
4.根据权利要求2所述的方法,其中,还包括以下步骤:
在所述质量流量控制器的阀门关闭的情况下,接收与期望的流速相对应的设定点信号;
访问存储在所述质量流量控制器上的所述常规特性数据,以获得非零启动控制信号的值并且获得特定流速下的特性化控制信号的值;
将处于所述值的可调非零启动控制信号应用于所述质量流量控制器的阀门;
在所述设定点信号减小之前,在工作期间获得特定流速下的控制信号的测量值;
将所述控制信号的测量值与存储在所述质量流量控制器上的特定流速下的特性化控制信号的水平进行比较;以及
基于所述比较,将所述可调非零启动控制信号的值调整为调整值,以使得下一次所述质量流量控制器在所述阀门关闭的情况下接收到另一设定点信号时,使用所述调整值。
5.一种质量流量控制器,包括:
阀门,其能够进行调整以响应于控制信号来控制流体的流速;
压力转换器,用于提供表示所述流体的压力的压力信号;
存储器,用于与校准气体相关地存储表征所述质量流量控制器的常规特性数据;
质量流量传感器,用于提供所述流体的测量流速;
多气体控制组件,用于利用修正的流量值来生成用于期望的流量值和压力的开环工艺控制信号的值,所述修正的流量值等于Fpr*(Mpr/Mcal)k,其中k的值根据所述质量流量控制器的流量范围介于0.2~0.5之间,Fpr是期望的工艺气体流量值,Mpr是所选择的工艺气体类型的分子量,且Mcal是校准气体的分子量;以及
多模式控制组件,用于在所述流体的压力变化率满足阈值条件的情况下,断开反馈控制环路,并且利用所述开环工艺控制信号来控制所述阀门。
6.根据权利要求5所述的质量流量控制器,其中,控制系统响应于每次重新接合所述反馈控制环路时所获得的设定点信号和相应的测量流量信号之间的任意差来改变所述特性数据。
7.根据权利要求5所述的质量流量控制器,其中,控制系统不改变所述存储器中的所述特性数据,并且响应于每次重新接合所述反馈控制环路时所获得的设定点信号和相应的测量流量信号之间的任意差来对所述特性数据应用比例因子。
8.根据权利要求5所述的质量流量控制器,其中,在计时器到期的情况下,控制系统重新接合所述反馈控制环路。
9.根据权利要求5所述的质量流量控制器,其中,在所述流体的压力变化率降至阈值条件以下的情况下,控制系统重新接合所述反馈控制环路。
10.一种质量流量控制器,包括:
阀门,其能够进行调整以响应于控制信号来控制气体的流速;
压力转换器,用于提供表示所述气体的压力的压力信号;
质量流量传感器,用于提供所述气体的测量流速;
处理器,用于响应于设定点信号、气体类型和所述压力信号来控制所述阀门;以及
非瞬态有形处理器可读存储介质,其连接于所述处理器,利用用于在所述处理器执行时控制所述阀门的处理器可读指令进行编码,所述指令包括用于进行以下操作的指令:
选择要控制的气体的类型;
获得所选择的气体类型的分子量信息;
接收与期望的流速相对应的设定点信号;
接收通过所述压力转换器所生成的压力信号;
响应于流体的压力变化率满足阈值条件,断开反馈控制环路,其中所述反馈控制环路基于测量流速和期望的流速之间的差来控制所述阀门;
利用修正的流量值来确定用于期望的流速和压力的控制信号值,所述修正的流量值等于Fpr*(Mpr/Mcal)k,其中k的值根据所述质量流量控制器的流量范围介于0.2~0.5之间,Fpr是期望的流速,Mpr是所选择的工艺气体类型的分子量,且Mcal是校准气体的分子量;以及
将处于所述控制信号值的控制信号应用于所述阀门,从而提供期望的流速的气体。
CN201480001017.7A 2013-03-01 2014-02-25 针对不同流体类型的改进性能的质量流量控制器和方法 Active CN104254812B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US13/782,714 US9146563B2 (en) 2013-03-01 2013-03-01 Mass flow controller and method for improved performance across fluid types
US13/782,714 2013-03-01
PCT/IB2014/000460 WO2014132124A2 (en) 2013-03-01 2014-02-25 Mass flow controller and method for improved performance across fluid types

Publications (2)

Publication Number Publication Date
CN104254812A true CN104254812A (zh) 2014-12-31
CN104254812B CN104254812B (zh) 2017-10-10

Family

ID=51420321

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201480001017.7A Active CN104254812B (zh) 2013-03-01 2014-02-25 针对不同流体类型的改进性能的质量流量控制器和方法

Country Status (6)

Country Link
US (2) US9146563B2 (zh)
JP (1) JP6249024B2 (zh)
KR (1) KR102106825B1 (zh)
CN (1) CN104254812B (zh)
TW (1) TWI615697B (zh)
WO (1) WO2014132124A2 (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108475077A (zh) * 2015-12-29 2018-08-31 日立金属株式会社 气体不敏感的质量流量控制系统和方法
CN108503504A (zh) * 2017-08-02 2018-09-07 毛艳慧 一种结合电石法和高温氯化法的氯乙烯生产系统及方法
CN109716257A (zh) * 2016-09-12 2019-05-03 株式会社堀场Stec 流量比率控制装置、流量比率控制装置用程序及流量比率控制方法
CN112020690A (zh) * 2018-04-27 2020-12-01 日立金属株式会社 具有改进的精度的热式质量流量传感器
CN113485466A (zh) * 2021-06-30 2021-10-08 深圳市科曼医疗设备有限公司 比例阀控制方法、装置、计算机设备及可读存储介质
CN114415746A (zh) * 2021-11-29 2022-04-29 中国船舶工业集团公司第七0八研究所 新型级联微流体智能控制系统

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6027395B2 (ja) * 2012-10-29 2016-11-16 株式会社堀場エステック 流体制御装置
US9146563B2 (en) * 2013-03-01 2015-09-29 Hitachi Metals, Ltd. Mass flow controller and method for improved performance across fluid types
JP6408550B2 (ja) * 2013-03-12 2018-10-17 イリノイ トゥール ワークス インコーポレイティド 近距離無線通信及び/又はusbインターフェースを有する質量流量制御器
US20160085241A1 (en) * 2014-09-18 2016-03-24 Chin-Tsung Lee Flow detection device and numerical modeling method
JP6600854B2 (ja) * 2016-08-24 2019-11-06 株式会社フジキン 圧力式流量制御装置、その流量算出方法および流量制御方法
US11073845B2 (en) 2019-08-26 2021-07-27 Hitachi Metals, Ltd. Parasitic flow correction method and apparatus
US11041749B1 (en) * 2019-12-19 2021-06-22 Hitachi Metals, Ltd. Multi-gas mass flow controller and method
KR20220047806A (ko) * 2019-12-27 2022-04-19 가부시키가이샤 후지킨 유량 제어 장치 및 유량 제어 방법
JP2021152786A (ja) * 2020-03-24 2021-09-30 株式会社フジキン 流量制御システム、流量制御システムの制御方法、流量制御システムの制御プログラム
US11435764B1 (en) * 2021-03-30 2022-09-06 Hitachi Metals, Ltd. Mass flow controller utilizing nonlinearity component functions
US11940307B2 (en) 2021-06-08 2024-03-26 Mks Instruments, Inc. Methods and apparatus for pressure based mass flow ratio control

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03204705A (ja) * 1990-01-08 1991-09-06 Hitachi Metals Ltd マスフローコントローラの制御回路
US5062446A (en) * 1991-01-07 1991-11-05 Sematech, Inc. Intelligent mass flow controller
JPH10111152A (ja) * 1996-10-04 1998-04-28 Emerson Electric Co 流量計及び質量流量制御装置
CN1514960A (zh) * 2001-04-24 2004-07-21 �����ػ��������豸���޹�˾ 调整和配置质量流量控制器的系统和方法
CN1688948A (zh) * 2002-07-19 2005-10-26 迅捷集团公司 在质量流动控制器中用于压力补偿的方法和装置
US20050288825A1 (en) * 2004-07-08 2005-12-29 Tinsley Kenneth E Method and system for a mass flow controller with reduced pressure sensitivity
CN1839358A (zh) * 2004-06-21 2006-09-27 日立金属株式会社 流量控制装置及其调整方法
US20070174016A1 (en) * 2006-01-26 2007-07-26 Mks Instruments, Inc. Compensation for thermal siphoning in mass flow controllers
WO2008030454A2 (en) * 2006-09-05 2008-03-13 Celerity, Inc. Multi-gas flow device
CN101501597A (zh) * 2006-08-03 2009-08-05 日立金属株式会社 使用了质量流量控制装置的流量控制
CN101517495A (zh) * 2006-07-05 2009-08-26 先进能源工业公司 多模控制算法
CN101636641A (zh) * 2006-12-07 2010-01-27 Mks仪器公司 用于质量流量控制器的控制器增益调度

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5642278A (en) * 1995-01-03 1997-06-24 Hewlett-Packard Co. Method and apparatus for temperature and pressure compensation of pneumatic manifolds
TW538327B (en) * 2001-04-24 2003-06-21 Unit Instr Inc System and method for a mass flow controller
JP4086057B2 (ja) * 2004-06-21 2008-05-14 日立金属株式会社 質量流量制御装置及びこの検定方法
US8160833B2 (en) * 2009-07-14 2012-04-17 Hitachi Metals, Ltd Thermal mass flow sensor with improved response across fluid types
US8195312B2 (en) * 2009-08-27 2012-06-05 Hitachi Metals, Ltd Multi-mode control loop with improved performance for mass flow controller
JP5803552B2 (ja) 2011-10-14 2015-11-04 東京エレクトロン株式会社 処理装置
US9027585B2 (en) * 2011-12-13 2015-05-12 Hitachi Metals, Ltd. Adaptive pressure insensitive mass flow controller and method for multi-gas applications
US9146563B2 (en) * 2013-03-01 2015-09-29 Hitachi Metals, Ltd. Mass flow controller and method for improved performance across fluid types

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03204705A (ja) * 1990-01-08 1991-09-06 Hitachi Metals Ltd マスフローコントローラの制御回路
US5062446A (en) * 1991-01-07 1991-11-05 Sematech, Inc. Intelligent mass flow controller
JPH10111152A (ja) * 1996-10-04 1998-04-28 Emerson Electric Co 流量計及び質量流量制御装置
CN1514960A (zh) * 2001-04-24 2004-07-21 �����ػ��������豸���޹�˾ 调整和配置质量流量控制器的系统和方法
CN1688948A (zh) * 2002-07-19 2005-10-26 迅捷集团公司 在质量流动控制器中用于压力补偿的方法和装置
CN1839358A (zh) * 2004-06-21 2006-09-27 日立金属株式会社 流量控制装置及其调整方法
US20050288825A1 (en) * 2004-07-08 2005-12-29 Tinsley Kenneth E Method and system for a mass flow controller with reduced pressure sensitivity
US20070174016A1 (en) * 2006-01-26 2007-07-26 Mks Instruments, Inc. Compensation for thermal siphoning in mass flow controllers
CN101517495A (zh) * 2006-07-05 2009-08-26 先进能源工业公司 多模控制算法
CN101501597A (zh) * 2006-08-03 2009-08-05 日立金属株式会社 使用了质量流量控制装置的流量控制
WO2008030454A2 (en) * 2006-09-05 2008-03-13 Celerity, Inc. Multi-gas flow device
CN101636641A (zh) * 2006-12-07 2010-01-27 Mks仪器公司 用于质量流量控制器的控制器增益调度

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108475077A (zh) * 2015-12-29 2018-08-31 日立金属株式会社 气体不敏感的质量流量控制系统和方法
CN108475077B (zh) * 2015-12-29 2021-03-05 日立金属株式会社 气体不敏感的质量流量控制系统和方法
CN109716257A (zh) * 2016-09-12 2019-05-03 株式会社堀场Stec 流量比率控制装置、流量比率控制装置用程序及流量比率控制方法
CN108503504A (zh) * 2017-08-02 2018-09-07 毛艳慧 一种结合电石法和高温氯化法的氯乙烯生产系统及方法
CN112020690A (zh) * 2018-04-27 2020-12-01 日立金属株式会社 具有改进的精度的热式质量流量传感器
CN113485466A (zh) * 2021-06-30 2021-10-08 深圳市科曼医疗设备有限公司 比例阀控制方法、装置、计算机设备及可读存储介质
CN113485466B (zh) * 2021-06-30 2023-10-24 深圳市科曼医疗设备有限公司 比例阀控制方法、装置、计算机设备及可读存储介质
CN114415746A (zh) * 2021-11-29 2022-04-29 中国船舶工业集团公司第七0八研究所 新型级联微流体智能控制系统

Also Published As

Publication number Publication date
WO2014132124A3 (en) 2014-11-20
US20140246097A1 (en) 2014-09-04
US9898013B2 (en) 2018-02-20
WO2014132124A8 (en) 2015-01-22
US20150362924A1 (en) 2015-12-17
WO2014132124A2 (en) 2014-09-04
JP2016512350A (ja) 2016-04-25
TW201506567A (zh) 2015-02-16
KR20150133629A (ko) 2015-11-30
US9146563B2 (en) 2015-09-29
CN104254812B (zh) 2017-10-10
TWI615697B (zh) 2018-02-21
JP6249024B2 (ja) 2017-12-20
KR102106825B1 (ko) 2020-05-07

Similar Documents

Publication Publication Date Title
CN104254812A (zh) 针对不同流体类型的改进性能的质量流量控制器和方法
JP6364349B2 (ja) マスフローコントローラ、及びマスフローコントローラを動作させる方法
KR101995610B1 (ko) 멀티-가스 적용을 위한 적응성 압력 불감 질량 유량 제어기 및 방법
EP2089679B1 (en) Controller gain scheduling for mass flow controllers
KR101847409B1 (ko) 일관된 응답을 제공하는 온-툴(on-tool) 및 온-사이트(on-site) 질량 유량계 최적화를 위한 방법 및 시스템
US9804609B2 (en) Mass flow controllers and methods for auto-zeroing flow sensor without shutting off a mass flow controller
JP6691167B2 (ja) 流体の流量を制御するための質量流量制御器及び方法
US20120116596A1 (en) Mass flow controller
US9605992B2 (en) On-tool mass flow controller diagnostic systems and methods
WO2021039665A1 (en) Parasitic flow correction method and apparatus
EP1779073A1 (en) System and method for calibration of a flow device
US11209298B2 (en) Thermal mass flow sensor with improved accuracy
KR101898157B1 (ko) 솔레노이드 밸브 정확도 산출 방법

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant