CN104253175A - Solar cell device and production method thereof - Google Patents

Solar cell device and production method thereof Download PDF

Info

Publication number
CN104253175A
CN104253175A CN201310263555.0A CN201310263555A CN104253175A CN 104253175 A CN104253175 A CN 104253175A CN 201310263555 A CN201310263555 A CN 201310263555A CN 104253175 A CN104253175 A CN 104253175A
Authority
CN
China
Prior art keywords
intermediate layer
solar cell
active layer
cell device
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201310263555.0A
Other languages
Chinese (zh)
Inventor
周明杰
黄辉
冯小明
王平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oceans King Lighting Science and Technology Co Ltd
Shenzhen Oceans King Lighting Science and Technology Co Ltd
Shenzhen Oceans King Lighting Engineering Co Ltd
Original Assignee
Oceans King Lighting Science and Technology Co Ltd
Shenzhen Oceans King Lighting Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oceans King Lighting Science and Technology Co Ltd, Shenzhen Oceans King Lighting Engineering Co Ltd filed Critical Oceans King Lighting Science and Technology Co Ltd
Priority to CN201310263555.0A priority Critical patent/CN104253175A/en
Publication of CN104253175A publication Critical patent/CN104253175A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/12Deposition of organic active material using liquid deposition, e.g. spin coating
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/10Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising heterojunctions between organic semiconductors and inorganic semiconductors
    • H10K30/15Sensitised wide-bandgap semiconductor devices, e.g. dye-sensitised TiO2
    • H10K30/151Sensitised wide-bandgap semiconductor devices, e.g. dye-sensitised TiO2 the wide bandgap semiconductor comprising titanium oxide, e.g. TiO2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Photovoltaic Devices (AREA)

Abstract

A solar cell device comprises an anode, a hole buffer layer, a first active layer, an interlayer, a second active layer, an electronic buffer layer and a cathode which are laminated sequentially. The first active layer and the second active layer are made of mixture of poly 3-hexylthiophene and 6,6-phenyl-C61-butyric acid methyl ester, the interlayer comprises an n-type interlayer and a p-type interlayer laminated on the surface of the n-type interlayer, the n-type interlayer is made of materials including cesium salt and titanium dioxide doped in the cesium salt, the cesium salt is selected from at least one of cesium fluoride, caesium carbonate, cesium chloride cesium azide, the p-type interlayer is made of ferric salt, and the ferric salt is selected from at least one of ferric trichloride, ferric tribromide and ferric sulfide. The solar cell device is high in energy conversion efficiency. Besides, the invention further provides a production method of the solar cell device.

Description

Solar cell device and preparation method thereof
Technical field
The present invention relates to a kind of solar cell device and preparation method thereof.
Background technology
Solar cell device is owing to having cheapness, the advantage such as clean, renewable and being widely used.Solar cell device structure conventional at present comprises the anode, Hole-injecting Buffer Layer for Improvement, the first active layer, electron buffer layer and the negative electrode that stack gradually.After the exciton dissociation of the first active layer produces hole and electronics, hole arrives anode, and electronics arrives negative electrode, thus is collected by electrode, forms effective power conversion.At present, the energy conversion efficiency of traditional solar cell is lower.
Summary of the invention
Based on this, be necessary to provide solar cell device that a kind of energy conversion efficiency is higher and preparation method thereof.
A kind of solar cell device, comprise stack gradually anode, Hole-injecting Buffer Layer for Improvement, the first active layer, intermediate layer, the second active layer, electron buffer layer and negative electrode, the material of described first active layer and the second active layer is poly-3-hexyl thiophene and 6,6-phenyl-C 61the mixture of-methyl butyrate, described intermediate layer comprises N-shaped intermediate layer and is laminated in the p-type intermediate layer of described N-shaped interlayer surfaces, the material in described N-shaped intermediate layer comprises cesium salt and is entrained in the titanium dioxide in described cesium salt, described cesium salt is selected from least one in cesium fluoride, cesium carbonate, cesium chloride and nitrine caesium, the material in described p-type intermediate layer is molysite, and described molysite is selected from least one in ferric trichloride, ferric bromide and iron sulfide.
In a preferred embodiment, the thickness in described N-shaped intermediate layer is 1 μm ~ 15 μm, and the thickness in described p-type intermediate layer is 10nm ~ 50nm.
In a preferred embodiment, the mass ratio 1:2 ~ 1:10 of titanium dioxide and described cesium salt described in described N-shaped intermediate layer.
In a preferred embodiment, the material of described Hole-injecting Buffer Layer for Improvement is the mixture of poly-3,4-dioxyethylene thiophene and polyphenyl sulfonate.
In a preferred embodiment, 3-hexyl thiophene and described 6,6-phenyl-C are gathered described in described first active layer and the second active layer 61the mass ratio of-methyl butyrate is 1:0.5 ~ 1:4.
A preparation method for solar cell device, comprises the following steps:
Hole-injecting Buffer Layer for Improvement is prepared in spin coating on the anode surface;
On described Hole-injecting Buffer Layer for Improvement, spin coating contains poly-3-hexyl thiophene and 6,6-phenyl-C 61the solution of-methyl butyrate, forms the first active layer;
Suspension containing N-shaped intermediate layer material is spin-coated on described first active layer surface and prepares N-shaped intermediate layer, the material in described N-shaped intermediate layer comprises cesium salt and is entrained in the titanium dioxide in described cesium salt, and described cesium salt is selected from least one in cesium fluoride, cesium carbonate, cesium chloride and nitrine caesium;
P-type intermediate layer is prepared on the surface that solution containing molysite is spin-coated on described N-shaped intermediate layer, and described molysite is selected from least one in ferric trichloride, ferric bromide and iron sulfide;
Poly-3-hexyl thiophene and 6,6-phenyl-C is contained in the spin coating of described p-type interlayer surfaces 61the solution of-methyl butyrate, forms the second active layer; And
Electron buffer layer and negative electrode is prepared on the surface of described second active layer successively evaporation.
In a preferred embodiment, the mass ratio 1:2 ~ 1:10 of titanium dioxide and described cesium salt described in described N-shaped intermediate layer.
In a preferred embodiment, the thickness in described N-shaped intermediate layer is 1 μm ~ 15 μm, and the thickness in described p-type intermediate layer is 10nm ~ 50nm.
In a preferred embodiment, described containing in the suspension of N-shaped intermediate layer material, the concentration of described titanium dioxide is 5mg/mL ~ 30mg/mL.
In a preferred embodiment, described containing in the solution of molysite, the concentration of described molysite is 10mg/ml ~ 30mg/ml.
Above-mentioned solar cell device and preparation method thereof, by preparing intermediate layer between the first active layer and the second active layer, improves the first active layer of solar cell device and the efficiency of light absorption of the second active layer, thus improves photoelectric conversion efficiency, the material in N-shaped intermediate layer comprises cesium salt and is entrained in the titanium dioxide in cesium salt, titanium dioxide is N-shaped material, cesium salt is relatively lived ripple and work function is lower, the potential barrier that electric transmission can be made after both doping to arrive N-shaped intermediate layer reduces, thus more electronics is collected by N-shaped intermediate layer, the material in p-type intermediate layer is molysite, there is a large amount of free electrons in molysite, the hole of a greater number can be formed, play the effect of collecting hole, thus the hole collection efficiency of the second active layer can be improved, N-shaped intermediate layer and p-type intermediate layer coordinate the effect played and collect charge carrier, improve collection efficiency, thus raising photoelectric conversion efficiency.
Accompanying drawing explanation
Fig. 1 is the structural representation of the solar cell device of an embodiment;
Fig. 2 is preparation method's flow chart of the solar cell device of an embodiment;
Fig. 3 is the solar cell device of embodiment 1 and the current density of traditional solar cell device and voltage relationship figure.
Embodiment
For the ease of understanding the present invention, below with reference to relevant drawings, the present invention is described more fully.First-selected embodiment of the present invention is given in accompanying drawing.But the present invention can realize in many different forms, is not limited to embodiment described herein.On the contrary, the object of these embodiments is provided to be make to disclosure of the present invention more thoroughly comprehensively.
Refer to Fig. 1, the solar cell device 100 of an embodiment comprises the anode 10, Hole-injecting Buffer Layer for Improvement 20, first active layer 30, intermediate layer 40, second active layer 50, electron buffer layer 60 and the negative electrode 70 that stack gradually.
Anode 10 is indium tin oxide glass (ITO), mixes the tin oxide glass (FTO) of fluorine, mixes the zinc oxide glass (AZO) of aluminium or mixes the zinc oxide glass (IZO) of indium.
Hole-injecting Buffer Layer for Improvement 20 is formed at anode 10 surface.The material of Hole-injecting Buffer Layer for Improvement 20 is the mixture of poly-3,4-dioxyethylene thiophene (PEDOT) and polyphenyl sodium sulfonate (PSS).Wherein the mass ratio of PEDOT and PSS is 2:1 ~ 6:1, is preferably 3:1.The thickness of Hole-injecting Buffer Layer for Improvement 20 is 20nm ~ 80nm, is preferably 60nm.
First active layer 30 is formed at Hole-injecting Buffer Layer for Improvement 20 surface.The material of the first active layer 30 is poly-3-hexyl thiophene (P3HT) and 6,6-phenyl-C 61-methyl butyrate (PC 61bM) mixture.Wherein P3HT:PC 61the quality of BM is 1:0.5 ~ 1:4, is preferably 1:1.5.The thickness of the first active layer 30 is 100nm ~ 300nm, is preferably 90nm.
Intermediate layer 40 is formed at the surface of the first active layer 30.Intermediate layer 40 comprises the N-shaped intermediate layer 42 being formed at the first active layer 30 surface and the p-type intermediate layer 44 being formed at surface, N-shaped intermediate layer 42.
The material in N-shaped intermediate layer 42 comprises cesium salt and is entrained in the titanium dioxide in cesium salt.Cesium salt is selected from cesium fluoride (CsF), cesium carbonate (Cs 2cO 3), cesium chloride (CsCl) and nitrine caesium (CsN 3) at least one.Mass ratio 1:2 ~ the 1:10 of titanium dioxide and cesium salt.Preferably, the particle diameter of titanium dioxide is 50nm ~ 200nm.The thickness in N-shaped intermediate layer 42 is 1 μm ~ 15 μm.
The material in p-type intermediate layer 44 is molysite.Molysite is selected from ferric trichloride (FeCl 3), ferric bromide (FeBr 3) and iron sulfide (Fe 2s 3) at least one.The thickness in p-type intermediate layer is 10nm ~ 50nm.
Second active layer 50 is formed at the surface in p-type intermediate layer 44.The material of the second active layer 50 is poly-3-hexyl thiophene (P3HT) and 6,6-phenyl-C 61-methyl butyrate (PC 61bM) mixture.Wherein P3HT:PC 61the quality of BM is 1:0.5 ~ 1:4, is preferably 1:1.5.The thickness of the second active layer 50 is 100nm ~ 300nm, is preferably 90nm.
Electron buffer layer 60 is formed at the second active layer 50 surface.The material of electron buffer layer 60 is selected from cesium azide (CsN 3), lithium fluoride (LiF), lithium carbonate (Li 2cO 3) and cesium carbonate (Cs 2cO 3) at least one, be preferably LiF.The thickness of electron buffer layer 60 is 0.5nm ~ 10nm, is preferably 0.7nm.
Negative electrode 70 is formed at electron buffer layer 60 surface.The material of negative electrode 70 is selected from least one in aluminium (Al), silver (Ag), gold (Au) and platinum (Pt), is preferably Al.The thickness of negative electrode 70 is 80nm ~ 300nm, is preferably 150nm.
This solar cell device 100, by preparing intermediate layer 40 between the first active layer 30 and the second active layer 50, improves the first active layer 30 of solar cell device 10 and the efficiency of light absorption of the second active layer 50, thus improves photoelectric conversion efficiency, the material in N-shaped intermediate layer 42 comprises cesium salt and is entrained in the titanium dioxide in cesium salt, titanium dioxide is N-shaped material, cesium salt is relatively lived ripple and work function is lower, the potential barrier that electric transmission can be made after both doping to arrive N-shaped intermediate layer 42 reduces, thus more electronics is collected by N-shaped intermediate layer 42, the material in p-type intermediate layer 44 is molysite, there is a large amount of free electrons in molysite, the hole of a greater number can be formed, play the effect of collecting hole, thus the hole collection efficiency of the second active layer 50 can be improved, N-shaped intermediate layer 42 and p-type intermediate layer 44 coordinate the effect played and collect charge carrier, improve collection efficiency, thus raising photoelectric conversion efficiency.
It should be noted that, above-mentioned solar cell device 100 can also arrange other functional layers as required.
Please refer to Fig. 2, the preparation method of the solar cell device 100 of an embodiment, it comprises the following steps:
Step S110, prepare Hole-injecting Buffer Layer for Improvement 20 in the surperficial spin coating of anode 10.
Anode 10 is indium tin oxide glass (ITO), mixes the tin oxide glass (FTO) of fluorine, mixes the zinc oxide glass (AZO) of aluminium or mixes the zinc oxide glass (IZO) of indium.
In present embodiment, antianode 10 pre-treatment comprises removes the oxonium ion process such as the organic pollution on anode 10 surface and antianode 10 carry out.Anode 10 is adopted each Ultrasonic Cleaning 15min of liquid detergent, deionized water, acetone, ethanol, isopropyl acetone, to remove the organic pollution on substrate 10 surface; It is 5min ~ 15min that antianode 10 carries out the oxonium ion processing time such as grade, and power is 10 ~ 50W.
Hole-injecting Buffer Layer for Improvement 20 is by containing the solution preparation of hole padded coaming in the surperficial spin coating of anode 10.The rotating speed of spin coating is 2000rpm ~ 6000rpm, and the time is 10s ~ 30s, and preferably, the rotating speed of spin coating is 3000rpm, and the time is 15s.Hole padded coaming is the mixture of poly-3,4-dioxyethylene thiophene (PEDOT) and polyphenyl sodium sulfonate (PSS).Wherein the mass ratio of PEDOT and PSS is 2:1 ~ 6:1, is preferably 3:1.In solution containing hole padded coaming, the mass percentage of PEDOT is 1% ~ 5%, and be preferably 3%, solvent is water.Heat 15 minutes ~ 60 minutes at 100 DEG C ~ 200 DEG C after spin coating, preferably heat 30 minutes at 200 DEG C.The thickness of Hole-injecting Buffer Layer for Improvement 20 is 20nm ~ 80nm, is preferably 60nm.
Step S120, prepare the first active layer 30 in the surperficial spin coating of Hole-injecting Buffer Layer for Improvement 20.
First active layer 30 is spin-coated on Hole-injecting Buffer Layer for Improvement 20 surface by the first active layer solution and makes.The rotating speed of spin coating is 4000rpm ~ 6000rpm, and the time is 10s ~ 30s, and preferably, spin coating rotating speed is 5000rpm, and the time is 20s.In first active layer solution, the concentration of the first active layer material is 8mg/ml ~ 30mg/ml, is preferably 22mg/ml.The solvent of the first active layer solution is selected from least one in toluene, dimethylbenzene, chlorobenzene and chloroform, is preferably chlorobenzene.First active layer material is poly-3-hexyl thiophene (P3HT) and 6,6-phenyl-C 61-methyl butyrate (PC 61bM) mixture.Wherein P3HT:PC 61the quality of BM is 1:0.5 ~ 1:4, is preferably 1:1.5.Spin coating first active layer 30 carries out in the glove box being full of inert gas, anneals 5 minutes ~ 100 minutes afterwards at 50 DEG C ~ 200 DEG C, preferably anneals 30 minutes at 100 DEG C.The thickness of the first active layer 30 is 100nm ~ 300nm, is preferably 90nm.
Step S130, the suspension containing N-shaped intermediate layer material is spin-coated on the first active layer 30 surface prepares N-shaped intermediate layer 42.
The material in N-shaped intermediate layer 42 comprises cesium salt and is entrained in the titanium dioxide in cesium salt.Cesium salt is selected from cesium fluoride (CsF), cesium carbonate (Cs 2cO 3), cesium chloride (CsCl) and nitrine caesium (CsN 3) at least one.Mass ratio 1:2 ~ the 1:10 of titanium dioxide and cesium salt.The thickness in N-shaped intermediate layer 42 is 1 μm ~ 15 μm.
Preferably, in the suspension containing N-shaped intermediate layer material, the concentration of titanium dioxide is 5mg/mL ~ 30mg/mL.Solvent in suspension is water, ethanol, isopropyl alcohol or n-butanol.
Preferably, the particle diameter of titanium dioxide is 50nm ~ 200nm.
Preferably, the rotating speed of spin coating is 2000rpm ~ 8000rpm, and the time is 10s ~ 30s.Dry at 100 DEG C ~ 200 DEG C after spin coating.
P-type intermediate layer 44 is prepared on step S140, the surface solution containing molysite being spin-coated on N-shaped intermediate layer 42.
The material in p-type intermediate layer 44 is molysite.Molysite is selected from ferric trichloride (FeCl 3), ferric bromide (FeBr 3) and iron sulfide (Fe 2s 3) at least one.The thickness in p-type intermediate layer 44 is 10nm ~ 50nm.
Preferably, containing in the solution of molysite, the concentration of molysite is 10mg/ml ~ 30mg/ml.Solvent in solution is water, ethanol, isopropyl alcohol or n-butanol.
Preferably, the rotating speed of spin coating is 4000rpm ~ 8000rpm, and the time is 10s ~ 30s.Dry at 100 DEG C ~ 200 DEG C after spin coating.
Step S150, prepare the second active layer 50 in the surperficial spin coating in p-type intermediate layer 44.
Second active layer 50 is spin-coated on surface, p-type intermediate layer 44 by the second active layer solution and makes.The rotating speed of spin coating is 4000rpm ~ 6000rpm, and the time is 10s ~ 30s, and preferably, spin coating rotating speed is 5000rpm, and the time is 20s.In second active layer solution, the concentration of the second active layer material is 8mg/ml ~ 30mg/ml, is preferably 22mg/ml.The solvent of the second active layer solution is selected from least one in toluene, dimethylbenzene, chlorobenzene and chloroform, is preferably chlorobenzene.Second active layer material is poly-3-hexyl thiophene (P3HT) and 6,6-phenyl-C 61-methyl butyrate (PC 61bM) mixture.Wherein P3HT:PC 61the quality of BM is 1:0.5 ~ 1:4, is preferably 1:1.5.Spin coating second active layer 50 carries out in the glove box being full of inert gas, anneals 5 minutes ~ 100 minutes afterwards at 50 DEG C ~ 200 DEG C, preferably anneals 30 minutes at 100 DEG C.The thickness of the second active layer 50 is 100nm ~ 300nm, is preferably 90nm.
Step S160, prepare electron buffer layer 60 and negative electrode 70 on the surface of the second active layer 50 successively evaporation.
Electron buffer layer 60 is formed at the second active layer 50 surface.The material of electron buffer layer 60 is selected from cesium azide (CsN 3), lithium fluoride (LiF), lithium carbonate (Li 2cO 3) and cesium carbonate (Cs 2cO 3) at least one, be preferably LiF.The thickness of electron buffer layer 60 is 0.5nm ~ 10nm, is preferably 0.7nm.Evaporation is 3 × 10 at vacuum pressure -3~ 2 × 10 -5carry out under Pa, evaporation rate is 0.1nm/s ~ 1nm/s.
Negative electrode 70 is formed at electron buffer layer 60 surface.The material of negative electrode 70 is selected from least one in aluminium (Al), silver (Ag), gold (Au) and platinum (Pt), is preferably Al.The thickness of negative electrode 70 is 80nm ~ 300nm, is preferably 150nm.Evaporation is 3 × 10 at vacuum pressure -3~ 2 × 10 -5carry out under Pa, evaporation rate is 1nm/s ~ 10nm/s.
Above-mentioned solar cell device preparation method, preparation technology is simple, and the energy conversion efficiency of the solar cell device of preparation is higher.
Below in conjunction with specific embodiment, the preparation method to solar cell device provided by the invention is described in detail.
The embodiment of the present invention and the preparation used by comparative example and tester are: high vacuum coating equipment (scientific instrument development center, Shenyang Co., Ltd, pressure <1 × 10 -32602), be the white light source of simulated solar irradiation with the filter set cooperation of 500W xenon lamp (Osram) and AM1.5 Pa), current-voltage tester (Keithly company of the U.S., model:.
Embodiment 1
Structure prepared by the present embodiment is: ITO/PEDOT:PSS/P3HT:PC 61bM/TiO 2: CsF/FeCl 3/ P3HT:PC 61the solar cell device of BM/LiF/Al.Wherein, "/" presentation layer stack structure, ": " represents doping or mixing, and following examples are identical.
First ITO is carried out photoetching treatment, be cut into required size, use liquid detergent successively, deionized water, acetone, ethanol, each ultrasonic 15min of isopropyl alcohol, remove the organic pollution of glass surface; Clean up and carry out oxygen plasma treatment to conductive substrates afterwards, the processing time is 10min, and power is 20W; Hole-injecting Buffer Layer for Improvement is prepared in spin coating, and the mass fraction of material to be the mass ratio of PEDOT:PSS be 3:1, PEDOT is 3%, and the rotating speed of spin coating is 3000rpm, and the time is 15s, heats 30min after spin coating at 200 DEG C, and thickness is 60nm; Spin coating first active layer, the first active layer is P3HT and PC of 22mg/ml by concentration 61the solution spin coating of BM forms, and solvent is chlorobenzene, P3HT and PC 61the mass ratio of BM is 1:1.5, and the rotating speed of spin coating is 5000rpm, and the time is 20s, and anneal 30 minutes at 100 DEG C after spin coating, THICKNESS CONTROL is at 90nm.Spin coating N-shaped intermediate layer, suspension comprises TiO 2, CsF and solvent, solvent is water, TiO 2concentration be 10mg/ml, TiO 2be 1:3 with the weight ratio of CsF, the rotating speed of spin coating is 4000rpm, and the time is 20s, and 150 DEG C of oven dry, thickness is 8 μm.Then spin coating p-type intermediate layer, the solute in solution is FeCl 3, solvent is water, FeCl 3concentration be 20mg/ml, the rotating speed of spin coating is 6000rpm, and the time is 20s, and 150 DEG C of oven dry, thickness is 30nm.Then spin coating second active layer, the second active layer is P3HT and PC of 22mg/ml by concentration 61the solution spin coating of BM forms, and solvent is chlorobenzene, P3HT and PC 61the mass ratio of BM is 1:1.5, and the rotating speed of spin coating is 5000rpm, and the time is 20s, and anneal 30 minutes at 100 DEG C after spin coating, THICKNESS CONTROL is at 90nm.Then evaporation prepares electron buffer layer, and material is LiF, and thickness is 0.7nm, and evaporation is 5 × 10 at vacuum pressure -4carry out under Pa, evaporation rate is 0.2nm/s; Evaporation negative electrode, material is Al, and thickness is 150nm, and evaporation is 5 × 10 at vacuum pressure -4carry out under Pa, evaporation rate is 4nm/s.Finally obtain desired polymer solar cell device.
Refer to Fig. 3, the structure being depicted as preparation in embodiment 1 is ITO/PEDOT:PSS/P3HT:PC 61bM/TiO 2: CsF/FeCl 3/ P3HT:PC 61solar cell device (curve 1) and traditional structure of BM/LiF/Al are current density and the voltage relationship of ITO/PEDOT:PSS/P3HT:PCBM/LiF/Al solar cell device (curve 2), and the structure that table 1 is depicted as preparation in embodiment 1 is ITO/PEDOT:PSS/P3HT:PC 61bM/TiO 2: CsF/FeCl 3/ P3HT:PC 61the solar cell device of BM/LiF/Al and traditional structure are the current density of ITO/PEDOT:PSS/P3HT:PCBM/LiF/Al solar cell device, voltage, energy conversion efficiency (η) and fill factor, curve factor data.In traditional solar cell device, each layer thickness is identical with each layer thickness in solar cell device prepared by embodiment 1.
Table 1
? Current density (mA/cm 2 Voltage (V) η(%) Fill factor, curve factor
Curve 1 7.82 0.69 2.05 0.38
Curve 2 5.95 0.67 1.49 0.37
Can see from table 1 and Fig. 3, conventional solar cell device current density is 5.95mA/cm 2, and solar cell device current density prepared by embodiment 1 has brought up to 7.82mA/cm 2, this illustrates, photoelectric conversion efficiency can be improved in intermediate layer of the present invention.The energy conversion efficiency of traditional solar cell device is 1.49%, and the energy conversion efficiency of solar cell device prepared by embodiment 1 is 2.05%.
Below the current density of each embodiment and voltage curve, current density, voltage, energy conversion efficiency and fill factor, curve factor all similar with embodiment 1, each solar cell device also has similar energy conversion efficiency, repeats no more below.
Embodiment 2
Structure prepared by the present embodiment is IZO/PEDOT:PSS/P3HT:PC 61bM/TiO 2: Cs 2cO 3/ FeBr 3/ P3HT:PC 61bM/Cs 2cO 3the solar cell device of/Au.
First IZO is carried out photoetching treatment, be cut into required size, use liquid detergent successively, deionized water, acetone, ethanol, each ultrasonic 15min of isopropyl alcohol, remove the organic pollution of glass surface; Clean up and carry out oxygen plasma treatment to conductive substrates afterwards, the processing time is 15min, and power is 10W; Hole-injecting Buffer Layer for Improvement is prepared in spin coating, and the mass fraction of material to be the mass ratio of PEDOT:PSS be 2:1, PEDOT is 5%, and the rotating speed of spin coating is 6000rpm, and the time is 30s, heats 60min after spin coating at 100 DEG C, and thickness is 20nm; Spin coating first active layer, the first active layer is P3HT and PC of 8mg/ml by concentration 61the solution spin coating of BM forms, and solvent is toluene, P3HT and PC 61the mass ratio of BM is 1:0.5, and the rotating speed of spin coating is 4000rpm, and the time is 10s, and anneal 100 minutes at 50 DEG C after spin coating, THICKNESS CONTROL is at 300nm.Spin coating N-shaped intermediate layer, suspension comprises TiO 2, Cs 2cO 3and solvent, solvent is ethanol, TiO 2concentration be 30mg/ml, TiO 2with Cs 2cO 3weight ratio be 1:2, the rotating speed of spin coating is 8000rpm, and the time is 30s, and 100 DEG C of oven dry, thickness is 1 μm.Then spin coating p-type intermediate layer, the solute in solution is FeBr 3, solvent is ethanol, FeBr 3concentration be 10mg/ml, the rotating speed of spin coating is 4000rpm, and the time is 10s, and 200 DEG C of oven dry, thickness is 50nm.Then spin coating second active layer, the second active layer is P3HT and PC of 16mg/ml by concentration 61the solution spin coating of BM forms, and solvent is dimethylbenzene, P3HT and PC 61the mass ratio of BM is 1:4, and the rotating speed of spin coating is 6000rpm, and the time is 30s, and anneal 5 minutes at 200 DEG C after spin coating, THICKNESS CONTROL is at 100nm.Then evaporation prepares electron buffer layer, and material is Cs 2cO 3, thickness is 5nm, and evaporation is 3 × 10 at vacuum pressure -3carry out under Pa, evaporation rate is 0.1nm/s; Evaporation negative electrode, material is Au, and thickness is 300nm, and evaporation is 3 × 10 at vacuum pressure -3carry out under Pa, evaporation rate is 1nm/s.Finally obtain desired polymer solar cell device.
Embodiment 3
Structure prepared by the present embodiment is FTO/PEDOT:PSS/P3HT:PC 61bM/TiO 2: CsCl/Fe 2s 3/ P3HT:PC 61bM/CsN 3the solar cell device of/Ag.
First FTO is carried out photoetching treatment, be cut into required size, use liquid detergent successively, deionized water, acetone, ethanol, each ultrasonic 15min of isopropyl alcohol, remove the organic pollution of glass surface; Clean up and carry out oxygen plasma treatment to conductive substrates afterwards, the processing time is 5min, and power is 50W; Hole-injecting Buffer Layer for Improvement is prepared in spin coating, and the mass fraction of material to be the mass ratio of PEDOT:PSS be 6:1, PEDOT is 1%, and the rotating speed of spin coating is 2000rpm, and the time is 10s, heats 15min after spin coating at 200 DEG C, and thickness is 80nm; Spin coating first active layer, the first active layer is P3HT and PC of 30mg/ml by concentration 61the solution spin coating of BM forms, and solvent is dimethylbenzene, P3HT and PC 61the mass ratio of BM is 1:1.5, and the rotating speed of spin coating is 6000rpm, and the time is 30s, and anneal 5 minutes at 200 DEG C after spin coating, THICKNESS CONTROL is at 80nm.Spin coating N-shaped intermediate layer, suspension comprises TiO 2, CsCl and solvent, solvent is isopropyl alcohol, TiO 2concentration be 5mg/ml, TiO 2be 1:10 with the weight ratio of CsCl, the rotating speed of spin coating is 2000rpm, and the time is 10s, and 200 DEG C of oven dry, thickness is 15 μm.Then spin coating p-type intermediate layer, the solute in solution is Fe 2s 3, solvent is n-butanol, Fe 2s 3concentration be 30mg/ml, the rotating speed of spin coating is 8000rpm, and the time is 30s, and 100 DEG C of oven dry, thickness is 10nm.Then spin coating second active layer, the second active layer is P3HT and PC of 15mg/ml by concentration 61the solution spin coating of BM forms, and solvent is chloroform, P3HT and PC 61the mass ratio of BM is 1:2.5, and the rotating speed of spin coating is 4000rpm, and the time is 10s, and anneal 15 minutes at 150 DEG C after spin coating, THICKNESS CONTROL is at 120nm.Then evaporation prepares electron buffer layer, and material is CsN 3, thickness is 10nm, and evaporation is 2 × 10 at vacuum pressure -5carry out under Pa, evaporation rate is 1nm/s; Evaporation negative electrode, material is Ag, and thickness is 80nm, and evaporation is 2 × 10 at vacuum pressure -5carry out under Pa, evaporation rate is 10nm/s.Finally obtain desired polymer solar cell device.
Embodiment 4
Structure prepared by the present embodiment is ITO/PEDOT:PSS/P3HT:PC 61bM/TiO 2: CsN 3/ FeCl 3/ P3HT:PC 61bM/Li 2cO 3the solar cell device of/Pt.
First ITO is carried out photoetching treatment, be cut into required size, use liquid detergent successively, deionized water, acetone, ethanol, each ultrasonic 15min of isopropyl alcohol, remove the organic pollution of glass surface; Clean up and carry out oxygen plasma treatment to conductive substrates afterwards, the processing time is 10min, and power is 25W; Hole-injecting Buffer Layer for Improvement is prepared in spin coating, and the mass fraction of material to be the mass ratio of PEDOT:PSS be 3:1, PEDOT is 3.5%, and the rotating speed of spin coating is 5000rpm, and the time is 20s, heats 20min after spin coating at 150 DEG C, and thickness is 60nm; Spin coating first active layer, the first active layer is P3HT and PC of 10mg/ml by concentration 61the solution spin coating of BM forms, and solvent is chloroform, P3HT and PC 61the mass ratio of BM is 1:3, and the rotating speed of spin coating is 5000rpm, and the time is 20s, and anneal 30 minutes at 100 DEG C after spin coating, THICKNESS CONTROL is at 200nm.Spin coating N-shaped intermediate layer, suspension comprises TiO 2, CsN 3and solvent, solvent is n-butanol, TiO 2concentration be 10mg/ml, TiO 2with CsN 3weight ratio be 1:8, the rotating speed of spin coating is 5000rpm, and the time is 10s, and 150 DEG C of oven dry, thickness is 6 μm.Then spin coating p-type intermediate layer, the solute in solution is FeCl 3, solvent is isopropyl alcohol, FeCl 3concentration be 12mg/ml, the rotating speed of spin coating is 5000rpm, and the time is 15s, and 200 DEG C of oven dry, thickness is 28nm.Then spin coating second active layer, the second active layer is P3HT and PC of 25mg/ml by concentration 61the solution spin coating of BM forms, and solvent is toluene, P3HT and PC 61the mass ratio of BM is 1:2, and the rotating speed of spin coating is 4200rpm, and the time is 20s, and anneal 10 minutes at 150 DEG C after spin coating, THICKNESS CONTROL is at 80nm.Then evaporation prepares electron buffer layer, and material is Li 2cO 3, thickness is 1nm, and evaporation is 2 × 10 at vacuum pressure -4carry out under Pa, evaporation rate is 0.2nm/s; Evaporation negative electrode, material is Pt, and thickness is 100nm, and evaporation is 2 × 10 at vacuum pressure -4carry out under Pa, evaporation rate is 7nm/s.Finally obtain desired polymer solar cell device.
The above embodiment only have expressed several execution mode of the present invention, and it describes comparatively concrete and detailed, but therefore can not be interpreted as the restriction to the scope of the claims of the present invention.It should be pointed out that for the person of ordinary skill of the art, without departing from the inventive concept of the premise, can also make some distortion and improvement, these all belong to protection scope of the present invention.Therefore, the protection range of patent of the present invention should be as the criterion with claims.

Claims (10)

1. a solar cell device, it is characterized in that, comprise stack gradually anode, Hole-injecting Buffer Layer for Improvement, the first active layer, intermediate layer, the second active layer, electron buffer layer and negative electrode, the material of described first active layer and the second active layer is poly-3-hexyl thiophene and 6,6-phenyl-C 61the mixture of-methyl butyrate, described intermediate layer comprises N-shaped intermediate layer and is laminated in the p-type intermediate layer of described N-shaped interlayer surfaces, the material in described N-shaped intermediate layer comprises cesium salt and is entrained in the titanium dioxide in described cesium salt, described cesium salt is selected from least one in cesium fluoride, cesium carbonate, cesium chloride and nitrine caesium, the material in described p-type intermediate layer is molysite, and described molysite is selected from least one in ferric trichloride, ferric bromide and iron sulfide.
2. solar cell device according to claim 1, is characterized in that: the thickness in described N-shaped intermediate layer is 1 μm ~ 15 μm, and the thickness in described p-type intermediate layer is 10nm ~ 50nm.
3. solar cell device according to claim 1, is characterized in that: the mass ratio 1:2 ~ 1:10 of titanium dioxide and described cesium salt described in described N-shaped intermediate layer.
4. solar cell device according to claim 1, is characterized in that: the material of described Hole-injecting Buffer Layer for Improvement is the mixture of poly-3,4-dioxyethylene thiophene and polyphenyl sulfonate.
5. solar cell device according to claim 1, is characterized in that: gather 3-hexyl thiophene and described 6,6-phenyl-C described in described first active layer and the second active layer 61the mass ratio of-methyl butyrate is 1:0.5 ~ 1:4.
6. a preparation method for solar cell device, is characterized in that, comprises the following steps:
Hole-injecting Buffer Layer for Improvement is prepared in spin coating on the anode surface;
On described Hole-injecting Buffer Layer for Improvement, spin coating contains poly-3-hexyl thiophene and 6,6-phenyl-C 61the solution of-methyl butyrate, forms the first active layer;
Suspension containing N-shaped intermediate layer material is spin-coated on described first active layer surface and prepares N-shaped intermediate layer, the material in described N-shaped intermediate layer comprises cesium salt and is entrained in the titanium dioxide in described cesium salt, and described cesium salt is selected from least one in cesium fluoride, cesium carbonate, cesium chloride and nitrine caesium;
P-type intermediate layer is prepared on the surface that solution containing molysite is spin-coated on described N-shaped intermediate layer, and described molysite is selected from least one in ferric trichloride, ferric bromide and iron sulfide;
Poly-3-hexyl thiophene and 6,6-phenyl-C is contained in the spin coating of described p-type interlayer surfaces 61the solution of-methyl butyrate, forms the second active layer; And
Electron buffer layer and negative electrode is prepared on the surface of described second active layer successively evaporation.
7. the preparation method of solar cell device according to claim 6, is characterized in that: the mass ratio 1:2 ~ 1:10 of titanium dioxide and described cesium salt described in described N-shaped intermediate layer.
8. the preparation method of solar cell device according to claim 6, is characterized in that: the thickness in described N-shaped intermediate layer is 1 μm ~ 15 μm, and the thickness in described p-type intermediate layer is 10nm ~ 50nm.
9. the preparation method of solar cell device according to claim 6, is characterized in that: described containing in the suspension of N-shaped intermediate layer material, the concentration of described titanium dioxide is 5mg/mL ~ 30mg/mL.
10. the preparation method of solar cell device according to claim 6, is characterized in that: described containing in the solution of molysite, the concentration of described molysite is 10mg/ml ~ 30mg/ml.
CN201310263555.0A 2013-06-27 2013-06-27 Solar cell device and production method thereof Pending CN104253175A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201310263555.0A CN104253175A (en) 2013-06-27 2013-06-27 Solar cell device and production method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310263555.0A CN104253175A (en) 2013-06-27 2013-06-27 Solar cell device and production method thereof

Publications (1)

Publication Number Publication Date
CN104253175A true CN104253175A (en) 2014-12-31

Family

ID=52187903

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310263555.0A Pending CN104253175A (en) 2013-06-27 2013-06-27 Solar cell device and production method thereof

Country Status (1)

Country Link
CN (1) CN104253175A (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102088060A (en) * 2010-12-06 2011-06-08 电子科技大学 Laminated organic thin-film solar cell and preparation method thereof
CN102810641A (en) * 2011-05-30 2012-12-05 海洋王照明科技股份有限公司 Polymer solar cell and preparation method thereof
CN102810642A (en) * 2011-06-03 2012-12-05 海洋王照明科技股份有限公司 Polymer solar cell and preparation method thereof
CN102856498A (en) * 2011-06-28 2013-01-02 海洋王照明科技股份有限公司 Parallel type polymer solar cell and preparation method thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102088060A (en) * 2010-12-06 2011-06-08 电子科技大学 Laminated organic thin-film solar cell and preparation method thereof
CN102810641A (en) * 2011-05-30 2012-12-05 海洋王照明科技股份有限公司 Polymer solar cell and preparation method thereof
CN102810642A (en) * 2011-06-03 2012-12-05 海洋王照明科技股份有限公司 Polymer solar cell and preparation method thereof
CN102856498A (en) * 2011-06-28 2013-01-02 海洋王照明科技股份有限公司 Parallel type polymer solar cell and preparation method thereof

Similar Documents

Publication Publication Date Title
CN103296209A (en) Solar cell combining heterostructure plasmons and bulk heterojunctions
CN111081883B (en) Efficient and stable planar heterojunction perovskite solar cell and preparation method
CN102810640B (en) A kind of inversion type polymer solar battery and preparation method thereof
JP2015532524A (en) Polymer solar cell and manufacturing method thereof
CN102790177B (en) Polymer solar battery and preparation method thereof
CN102956826B (en) Polymer solar battery and preparation method thereof
CN103824940A (en) Solar cell device and preparation method thereof
CN104253167A (en) Solar cell device and production method thereof
CN102810641B (en) A kind of polymer solar battery and preparation method thereof
CN104253175A (en) Solar cell device and production method thereof
CN104253216A (en) Solar cell device and production method thereof
CN104253213A (en) Solar cell device and production method thereof
CN104253220A (en) Solar cell device and production method thereof
CN103928617A (en) Method for manufacturing high-conductivity organic thin-film solar photovoltaic cells
CN104253165A (en) Solar cell device and method for manufacturing same
CN103928621A (en) Polymer solar cell and preparation method thereof
CN103022359B (en) Solar cell device and preparation method thereof
CN104253221A (en) Solar cell device and method for manufacturing same
CN102856497B (en) P-type doped parallel polymer solar cell and preparation method thereof
CN104253211A (en) Solar cell device and method for manufacturing same
CN104253214A (en) Solar cell device and production method thereof
CN104253218A (en) Solar cell device and production method thereof
CN104253219A (en) Solar cell device and method for manufacturing same
CN104253217A (en) Solar cell device and method for manufacturing same
CN104253224A (en) Solar cell device and method for manufacturing same

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20141231