CN104245947A - 用于对映选择性反应的新的氧化还原酶 - Google Patents

用于对映选择性反应的新的氧化还原酶 Download PDF

Info

Publication number
CN104245947A
CN104245947A CN201380019231.0A CN201380019231A CN104245947A CN 104245947 A CN104245947 A CN 104245947A CN 201380019231 A CN201380019231 A CN 201380019231A CN 104245947 A CN104245947 A CN 104245947A
Authority
CN
China
Prior art keywords
acid
polypeptide
seq
polynucleotide
hydroxyl
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201380019231.0A
Other languages
English (en)
Other versions
CN104245947B (zh
Inventor
Z·J·雷特曼
H·阎
B·D·宙一
J·H·萨普森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Duke University
Original Assignee
Duke University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Duke University filed Critical Duke University
Publication of CN104245947A publication Critical patent/CN104245947A/zh
Application granted granted Critical
Publication of CN104245947B publication Critical patent/CN104245947B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0006Oxidoreductases (1.) acting on CH-OH groups as donors (1.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/52Genes encoding for enzymes or proenzymes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0008Oxidoreductases (1.) acting on the aldehyde or oxo group of donors (1.2)
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • C07K2319/20Fusion polypeptide containing a tag with affinity for a non-protein ligand
    • C07K2319/21Fusion polypeptide containing a tag with affinity for a non-protein ligand containing a His-tag

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Biomedical Technology (AREA)
  • Biotechnology (AREA)
  • Molecular Biology (AREA)
  • General Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Enzymes And Modification Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

本申请描述了用于产生用于对映选择性反应的氧化还原酶的组合物和方法。本申请描述了用于产生(R)-2-羟基酸脱氢酶的新变体的组合物和方法,该酶能够以酶法将1-羧基-2-酮酸转换成1-羧基-(R)-2-羟基酸,或其逆反应。示例性的例子包括(a)(R)-2-羟基己二酸脱氢酶及其用于将2-氧代己二酸转换成(R)-2-羟基己二酸或其逆反应的用途;以及(b)(R)-2-羟基戊二酸脱氢酶及其用于将2-氧代戊二酸转换成(R)-2-羟基戊二酸或其逆反应的用途。本申请还描述了用于产生非天然微生物有机体以酶法将2-氧代己二酸转换成(E)-2-己烯二酸或己二酸,或以酶法将2-氧代戊二酸转换成(E)-2-戊烯二酸或戊二酸或各自逆反应的组合物和方法。

Description

用于对映选择性反应的新的氧化还原酶
相关申请
本申请是非临时申请,其要求递交于2012年2月29日的美国临时专利申请号61/604,630的优先权的权益,其在此以全文引用的方式并入本发明。本申请与递交于2013年2月27日的美国专利申请号13/___,___有关。
技术领域
本发明记载的是用于产生用于对映选择性反应的氧化还原酶的组合物和方法。本发明记载的是用于产生新变体(R)-2-羟基酸脱氢酶的组合物和方法,该酶能够以酶法将1-羧基-2-酮酸(即,1-羧基-2-含氧酸,α-酮羧酸,α-含氧酸)转换成1-羧基-(R)-2-羟基酸(即,1-羧基-D-2-羟基酸,(R)-α-羟基羧酸),或其逆反应。示例性的例子包括(a)(R)-2-羟基己二酸脱氢酶及其用于将2-氧代己二酸转换成(R)-2-羟基己二酸或其逆反应的用途;以及(b)(R)-2-羟基戊二酸脱氢酶及其用于将2-氧代戊二酸转换成(R)-2-羟基戊二酸或其逆反应的用途。本发明还记载的是用于产生非天然微生物有机体以酶法将2-氧代己二酸转换成(E)-2-己烯二酸或己二酸,或酶法将2-氧代戊二酸转换成(E)-2-戊烯二酸或戊二酸或各自逆反应的组合物和方法。
背景技术
己二酸,即,1,4-正丁烷二羧酸;COOH(CH2)4COOH,是世界范围内最常生产的化学物质之一,每年大约合成25亿千克以及80亿美元的全球市场。己二酸最常见的用途是用于室内装饰、汽车配件、服装和其它产品的尼龙6,6的合成。己二酸合成的标准工业方法是昂贵的,其主要缺点包括消耗化石燃料、效率低下的产出以及温室气体的产生。为了解决该需要,已经证实了生产己二酸的“更加绿色”的方法,但是这些方法还没有被广泛应用,部分原因是因为它们依赖于大规模的过氧化氢氧化,或是因为它们涉及非生物合成反应的非环保的发酵反应。Sato et al.Science 281:1646-1647(1998);Niu et al,Biotechnol.Prog.18:201-211(2002)。
已经讨论了在细菌中通过一系列重组酶合成己二酸的生物学方法。Burgard et al,美国专利号7,799,545;Burgard et al.,美国专利申请公开号US 2009/0305364;US 2010/0330626和US 2011/0195466。该生物合成途径具有降低输入材料的量和花费、减少化石燃料底物的需要以及降低污染物释放的潜能。在该方法中,来自共生梭菌(Clostridiasymbiosum)的编码谷氨酸发酵酶的基因表达于合适的细菌(例如大肠杆菌(Escherichia coli))以将2-氧代己二酸通过(R)-2-羟基己二酸、(R)-2-羟基己二酰-CoA、2-己烯二酰-CoA和2-己烯二酸转换成己二酸(图1A)。Parthasarathy et al.,Biochemistry 50:3540-3550(2011)。所述化合物,2-氧代己二酸(即,2-氧代己二酸),在几种有机体中(即,在赖氨酸分解代谢中)是天然代谢中间物并且实验显示己二酸可以在细菌中添加葡萄糖合成而得。Goh et al.,Mol.Genet.Metab.76:172-180(2002)。在其它例子中,谷氨酸通过(R)-2-羟基戊二酸、(R)-2-羟基戊二酰基-CoA、(E)-戊烯二酰-CoA、(E)-戊烯二酸((E)-glutaconate)(即,戊烯二酸((E)-pentenedioic acid))和戊二酸(glutarate)(即,戊二酸(pentanedioic acid))转换成戊二酸。
尽管其它生物合成方法已经在技术上成为可能,仍然没有建立用于有效将2-氧代己二酸转换成(R)-2-羟基己二酸的酶。发酵氨基酸球菌(Acidaminococcus fermentans)2-羟基戊二酸脱氢酶(HghH)被认为是用于将2-氧代己二酸转换成(R)-2-羟基己二酸((R)-2-hydroxyadipate)(即,(R)-2-羟基己二酸((R)-2-hydroxyhexanedioate))的酶。Parthasarathy et al.,Biochemistry 50:3540-3550(2011)。但是,HghH和2-羟基己二酸脱氢酶的缺点通常在于它们的天然底物是2-氧代己二酸的5碳类似物,2-氧代戊二酸。结果,由HghH转换2-氧代己二酸的效率比2-氧代戊二酸低20倍。因此,特异性将2-氧代己二酸转换成(R)-2-羟基己二酸的酶,称为(R)-2-羟基己二酸脱氢酶,需要克服效率低下的2-氧代己二酸催化和不期望的HghH对2-酮戊二酸的催化。虽然在自然界中观察到2-羟基己二酸脱氢酶活性,但编码该酶的基因还没有被鉴定出来。此外,该酶对该方法来说不是理想的,因为其底物特异性是混杂的并且2碳产物的立体化学是未知的。Suda,et al.,Arch.Biochem.Biophys.176(2):610-620(1976);Suda et al.,Biochem.Biophys.Res.Comm.77(2):586-591(1977);Suda et al.Pediatric Res.12(4):297-300(1978)。
异柠檬酸脱氢酶(isocitrate dehydrogenases,IDH)是将异柠檬酸转换成2-氧代戊二酸(α-酮戊二酸)的β-羟基酸氧化脱羧酶(图1B)并且在整个生命中无处不在。Northrop和Cleland,J.Biol.Chem.249:2928-2931(1974);Uhr et al.,J.Biol.Chem.249:2920-2927(1974)。
高异柠檬酸脱氢酶(Homoisocitrate dehydrogenases,HIDH)是来自IDH同一亚家族的β-羟基酸氧化脱羧酶,其将高异柠檬酸,异柠檬酸的7碳类似物,转换成2-氧代己二酸(2-氧代己二酸(2-oxohexanedioic acid))(图1C)。HIDH参与酵母、嗜热细菌和古细菌中一种替代的赖氨酸合成途径。Miyazaki et al.J.Biol.Chem.278:1864-1871(2003);Xu et al.,Cell Biochem.Biophys.46:43-64(2006)。最近外显子测序显示NADP+-依赖的IDH中的错义突变,其突变了催化过程中负责接触异柠檬酸的β-羧基的精氨酸残基。Yan etal.,N.Engl.J.Med.360:765-773(2009);Mardis et al.,N.Engl.J.Med.361:1058-1066(2009)。这些突变使得IDH酶失去它们天然的异柠檬酸脱氢酶活性并且获得将2-氧代戊二酸(α-酮戊二酸)转换成2-氧代戊二酸(2-羟基戊二酸)的新变体活性(图1D)。Dang et al.,Nature462:739-744(2009);Ward et al.,Cancer Cell 17,225-234(2010)。
由于与癌症和先天性代谢缺陷相关,所述化合物2-氧代己二酸是目前感兴趣的小生化物质。令人感兴趣的是检测和定量该化合物,特别是在对映体选择性的方式(即,从(S)-2-羟基戊二酸区分(R)-对映体)。这对于癌症和先天性代谢缺陷的研究或诊断将会是有用的。目前用质谱定量该化合物,但是这种仪器专业且昂贵。因此,更易用的定量方法将会是有用的。
连接(R)-2-羟基戊二酸至NAD+/NADH的酶可以允许开发NADH联的分析以定量(R)-2-羟基戊二酸。该分析的原理是将含有未知量的(R)-2-羟基戊二酸的样品加入含有(R)-2-羟基戊二酸脱氢酶和NAD+的反应混合物。然后,(R)-2-羟基戊二酸脱氢酶将等量的(R)-2-羟基戊二酸和NAD+按化学计量转换成NADH和2-氧代戊二酸。然后,NADH的量,其正好等于样品中输入(R)-2-羟基戊二酸的量,可以通过紫外光吸收(例如,340nm)或荧光(例如,340nm激发;450nm发射)来测量,或通过转换例如刃天青的第二探针来检测。这种“酶联比色法”方案已经可用于大量常见化学物质,例如葡萄糖、谷氨酸等。这对于降低目前需要质谱的(R)-2-羟基戊二酸定量的花费将是有用的。其可用于实验室研究,或甚至通过检测肿瘤、组织样品、血液等中的(R)-2-羟基戊二酸给临床提供诊断测试。
已经研究了来自酵母酿酒酵母(S.cerevisiae)和嗜热细菌极端嗜热菌(T.thermophilus)的HIDH。Miyazaki et al.J.Biol.Chem.278:1864-1871(2003);Lin et al.,Biochemistry 46:890-898(2007);Lin et al.,Biochemistry 47:4169-4180(2008);Lin et al.,Biochemistry 48:7305-7312(2009);Aktas和Cook,Biochemistry 48:3565-3577(2009)。
由于IDH和HIDH是同源的且功能上相关,类似的对HIDH的突变可以导致它们失去其天然HIDH活性并获得将2-氧代己二酸转换成(R)-2-羟基己二酸的能力(图1E)。其它β-羟基酸氧化脱羧酶的活性位点残基的突变可以把这些酶转换成2-羟基酸脱氢酶。也就是说,不是催化底物上3-羧基的去除和2-醇基的氧化而产生2-酮产物,而是突变体催化相同2-酮产物至相应2-醇的还原。该酶还催化逆反应(即,2-醇至2-酮的氧化)。
已经进行了人IDH1或IDH2和高异柠檬酸脱氢酶的比对,显示这些酶间明显的同源性。参见Aktas和Cook,Biochemistry 48:3565-3577(2009)。但是,这些蛋白的正确比对不是微不足道的。例如,Aktas和Cook不正确比对了人IDH1。参见Aktas和Cook,第3569页图3。比对中的第四条,Human_ICDH_NADP(即,HsIDH1),没有正确比对;该序列应当右移8个残基。当Aktas和Cook的图3中Human_ICDH_NADP和S.cerevisiae_HICDH进行比较时可以发现该错误。
在正确的比对中,功能上关键的残基互相对齐(参见图2B和3)。残基HsIDH1-R132与ScHIDH-R143对齐。对底物结合重要的HsIDH1-R100、-R109和-R132以及对催化必需的-Y139分别与ScHIDH-R114、-R124和-R143以及Y150对齐。相反,Aktas和Cook的比对将HsIDH1-R132与ScHIDH序列中E132和K133之间的缺口对齐。该比对也是不正确的,因为HsIDH1-G148与ScHIDH-R143对齐。关键的精氨酸残基是不可能被甘氨酸替换的。此外,在HsIDH1-R100和ScHIDH-R114之前有一个保守支链氨基酸(例如,Ile或Leu),并且在关键的催化精氨酸和酪氨酸残基(即,HsIDH1-R132/ScHIDH-R143和HsIDH1-R139/ScHIDH-Y150)之间有六个中间氨基酸。另外,本发明所述的实验证据强烈支持图2B和3中的比对。位置上对齐的残基如HsIDH1-R132H和ScHIDH-R143H的突变具有类似的功能改变。除其他事项外,这些例子证实IDH和HIDH序列中的类似残基的正确比对是无法预期的并且需要实验验证。
本发明所述的是负责创造催化2-氧代己二酸转换成(R)-2-羟基己二酸的(R)-2-羟基己二酸脱氢酶(即,氧化还原酶)的HIDH活性位点的残基的突变。用于创造该突变体的方法也已经对来自多个种属的各种HIDH酶进行过。采用本发明所述的方法产生了独特的核苷酸和蛋白序列。用于产生这些酶构建体的方法通过生化分析确认显示在HIDH突变体中的催化活性(在这种情况下,2-羟基己二酸脱氢酶活性)。所述HIDH突变体引入载体中以产生非天然微生物有机体(例如,酿酒酵母(Saccharomyces cerevisiae)、酵母)。转化的酵母可用于将来自有机体代谢的2-氧代己二酸转换成商业上有用的(E)-2-己烯二酸和/或己二酸产物。
异丙基苹果酸脱氢酶(Isopropylmalate dehydrogenases,IPMDH)和酒石酸脱氢酶(tartarate dehydrogenases,TDH)也是β-羟基酸氧化脱羧酶,可以采用本发明所述的方法被突变以改变活性。突变体IPMDH将4-甲基-2-酮戊酸还原成4-甲基-2-羟基戊酸。突变体TDH将3-羟基-2-氧代丙酸(β-羟基丙酮酸)还原成2,3-二羟基丙酸。
发明概述
本发明记载的是用于产生用于对映选择性反应的氧化还原酶的组合物和方法。本发明记载的是用于产生新变体(R)-2-羟基酸脱氢酶的组合物和方法,该酶能够以酶法将1-羧基-2-酮酸(即,1-羧基-2-含氧酸,α-酮羧酸,α-含氧酸)转换成1-羧基-(R)-2-羟基酸(即,1-羧基-D-2-羟基酸,(R)-α-羟基羧酸),或其逆反应。示例性的例子包括(a)(R)-2-羟基己二酸脱氢酶及其用于将2-氧代己二酸转换成(R)-2-羟基己二酸或其逆反应的用途;以及(b)(R)-2-羟基戊二酸脱氢酶及其用于将2-氧代戊二酸转换成(R)-2-羟基戊二酸或其逆反应的用途。本发明还记载的是用于产生非天然微生物以酶法将2-氧代己二酸转换成(E)-2-己烯二酸或己二酸,或酶法将2-氧代戊二酸转换成(E)-2-戊烯二酸或戊二酸或各自逆反应的组合物和方法。
本发明所述的一个实施方案是一个能够以酶法将1-羧基-2-酮酸(即,1-羧基-2-含氧酸,α-酮羧酸,α-含氧酸)转换成1-羧基-(R)-2-羟基酸(即,1-羧基-D-2-羟基酸,(R)-α-羟基羧酸),或其逆反应的功能性氧化还原酶(即,(R)-2-羟基酸脱氢酶)。
本发明所述的另一个实施方案是功能性(R)-2-羟基己二酸脱氢酶。
本发明所述的一个方面是编码多肽的包括核苷酸序列的多核苷酸,所述多肽包括功能性(R)-2-羟基己二酸脱氢酶,其用于催化将2-酮己二酸转换成(R)-2-羟基己二酸或其逆反应,其中所述多核苷酸是SEQID NO:3、5、7、9、11、13、17、21、25、29或33,或其简并、同源或密码子优化的变体中的任一个。
本发明所述的另一个方面是编码多肽的包括核苷酸序列的多核苷酸,所述多肽包括功能性(R)-2-羟基己二酸脱氢酶,其用于催化将2-氧代己二酸转换成(R)-2-羟基己二酸或其逆反应,其中所述多肽是SEQ ID NO:4、6、8、10、12、14、16、18、22、26、30、34或35–153,或其简并或同源的变体中的任一个。
本发明所述的另一个方面是编码多肽的包括核苷酸序列的多核苷酸,所述多肽包括功能性(R)-2-羟基己二酸脱氢酶,其用于催化将2-氧代己二酸转换成(R)-2-羟基己二酸或其逆反应,其中所述多核苷酸是与SEQ ID NO:1、3、5、7、9、11、13、17、21、25、29或33中所示的多核苷酸序列具有至少90%同一性;其条件是所编码的多肽具有位于SEQ ID NO:2的V111、R114、R115、R124、R143或Y150位置的活性位点的至少一个或多个突变;其中所述一个或多个突变破坏氧化脱羧作用但不破坏氧化还原酶活性。
本发明所述的另一个方面是编码多肽的包括核苷酸序列的多核苷酸,所述多肽包括功能性(R)-2-羟基己二酸脱氢酶,其用于催化将2-氧代己二酸转换成(R)-2-羟基己二酸或其逆反应,其中所述多核苷酸是显示于SEQ ID NO:1、3、5、7、9、11、13、17、21、25、29或33中带有不超过120个核苷酸取代的序列;其条件是所编码的多肽具有位于与SEQ ID NO:2的V111、R114、R115、R124、R143或Y150同功(analogous)的位置的活性位点的至少一个或多个突变;其中所述一个或多个突变破坏氧化脱羧作用但不破坏氧化还原酶活性。
本发明所述的另一个方面是包括编码多肽的包括核苷酸序列的多核苷酸的载体,所述多肽包括功能性(R)-2-羟基己二酸脱氢酶。
本发明所述的另一个方面是包括任何一个包括多核苷酸的载体的培养的细胞,所述多核苷酸包括编码多肽的核苷酸序列,所述多肽包括功能性(R)-2-羟基己二酸脱氢酶。
本发明所述的另一个方面是包括功能性(R)-2-羟基己二酸脱氢酶的多肽,所述功能性(R)-2-羟基己二酸脱氢酶用于催化将2-氧代己二酸转换成(R)-2-羟基己二酸或其逆反应,其中所述多肽是与SEQ IDNO:2、4、6、8、10、12、14、16、18、20、22、24、26、28、30、32、34或35–153中所示的多肽序列具有至少90%同一性;其条件是所述多肽具有位于SEQ ID NO:2的V111、R114、R115、R124、R143或Y150位置的活性位点的至少一个或多个突变;其中所述一个或多个突变破坏氧化脱羧作用但不破坏氧化还原酶活性。
本发明所述的另一个方面是包括功能性(R)-2-羟基己二酸脱氢酶的多肽,所述功能性(R)-2-羟基己二酸脱氢酶用于催化将2-氧代己二酸转换成(R)-2-羟基己二酸或其逆反应,其中所述多肽是显示于SEQID NO:2、4、6、8、10、12、14、16、18、20、22、24、26、28、30、32、34或35–153中带有不超过40个氨基酸取代的序列;其条件是所述多肽具有位于与SEQ ID NO:2的V111、R114、R115、R124、R143或Y150同功的位置的活性位点的至少一个或多个突变;其中所述一个或多个突变破坏氧化脱羧作用但不破坏氧化还原酶活性。
本发明所述的另一个方面是用于催化将2-氧代己二酸转换成(R)-2-羟基己二酸或其逆反应的组合物,包括:(a)包括编码多肽的含有核苷酸序列的多核苷酸,所述多肽包括功能性(R)-2-羟基己二酸脱氢酶;(b)包括能够与(a)的互补物在杂交条件下杂交的核苷酸序列的多核苷酸,所述杂交条件包括于60℃7%十二烷基硫酸钠、0.5MNa2HPO4、1mM EDTA和60℃1×SSC、0.1%SDS中洗涤,其编码包括功能性(R)-2-羟基己二酸脱氢酶的多肽;(c)包括功能性氧化还原酶的包括氨基酸序列的多肽;(d)包括(a)或(b)或能够表达(c)的载体;或(e)用(d)转化的有机体;以及其条件是所述多肽具有与位于酿酒酵母高异柠檬酸脱氢酶(ScHIDH)即SEQ ID NO:2的V111、R114、R115、R124、R143或Y150同功的位置的活性位点的至少一个或多个突变;其中所述多肽在NADH的存在下催化将2-氧代己二酸转换成(R)-2-羟基己二酸。
在本发明所述的一些方面,所述多核苷酸是SEQ ID NO:1、3、5、7、9、11、13、15、17、19、21、23、25、27、29、31、33,或其简并、同源或密码子优化的变体中的任一个。
在本发明所述的一些方面,所述多肽是SEQ ID NO:2、4、6、8、10、12、14、16、18、20、22、24、26、28、30、32、34,35–153,或其简并、同源的变体中的任一个。
在本发明所述的一些方面,所述多核苷酸是SEQ ID NO:11,13,17,或其简并、同源或密码子优化的变体中的任一个。
在本发明所述的一些方面,所述多肽是SEQ ID NO:12,14,18,或其简并、同源的变体中的任一个。
在本发明所述的一些方面,所述有机体是大肠杆菌(Escherichiacoli)、酿酒酵母、巴斯德毕赤酵母(Pichia pastoris)、白地霉(Geotrichum candidum)、白色念珠菌(Candida albicans)、深红酵母(Rhodotorula rubra)或红东孢藻(Rhodosporidium sp)。
本发明所述的另一个方面是用于包括(R)-2-羟基己二酸脱氢酶的以酶法将2-氧代己二酸转换成(R)-2-羟基己二酸或其逆反应的方法,包括:(a)编码多肽的包括核苷酸序列的多核苷酸,所述多肽包括功能性(R)-2-羟基己二酸脱氢酶,其中所述多核苷酸是SEQ ID NO:1、3、5、7、9、11、13、15、17、19、21,或其简并、同源或密码子优化的变体中的任一个;(b)包括能够与(a)的互补物在杂交条件下杂交的核苷酸序列的多核苷酸,所述杂交条件包括于60℃7%十二烷基硫酸钠、0.5M Na2HPO4、1mM EDTA和65℃1×SSC、0.1%SDS中洗涤,其编码包括功能性(R)-2-羟基己二酸脱氢酶的多肽;(c)包括功能性(R)-2-羟基己二酸脱氢酶的包括氨基酸序列的多肽,,其中所述多肽是SEQ ID NO:2、4、6、8、10、12、14、16、18、20、22、35–153或其简并、或同源的变体中的任一个;(d)包括(a)或(b)或能够表达(c)的载体;或(e)用(d)转化的有机体;以及其条件是所述(R)-2-羟基己二酸脱氢酶具有与位于酿酒酵母高异柠檬酸脱氢酶(ScHIDH)SEQ ID NO:2的V111、R114、R115、R124、R143或Y150同功的位置的活性位点的至少一个或多个突变;以及其中所述(R)-2-羟基己二酸脱氢酶在NADH的存在下催化将2-氧代己二酸转换成(R)-2-羟基己二酸,或其逆反应。
本发明所述的另一个方面是用于包括(R)-2-羟基己二酸脱氢酶的以酶法将2-氧代己二酸转换成(R)-2-羟基己二酸或其逆反应的方法,包括:(a)选择多肽2、4、6、8、10、12、14、16、18、20、22、24、26、28、30、32、34或35–153;(b)将活性位点中一个或多个精氨酸残基突变成选自以下组的氨基酸:His,Lys,Gln,Asn,Leu,Ile,Val,Tyr,Phe,Trp,Cys,Ser,Thr,Met,Glu,Asp,Ala,Gly和Pro;其条件是所述多肽具有与位于酿酒酵母高异柠檬酸脱氢酶(ScHIDH)SEQ ID NO:2的R114、R115、R124、或R143同功的位置的活性位点的至少一个或多个突变;以及(c)分析氧化还原酶的酶活;其中所述多肽在NADH的存在下催化将2-氧代己二酸转换成(R)-2-羟基己二酸,或其逆反应。
本发明所述的另一个方面是(R)-2-羟基己二酸脱氢酶的将2-氧代己二酸转换成(R)-2-羟基己二酸或其逆反应的用途,包括:(a)编码多肽的包括核苷酸序列的多核苷酸,所述多肽包括功能性(R)-2-羟基己二酸脱氢酶,其中所述多核苷酸是SEQ ID NO:1,3,5,7,9,11,13,15,17,19,21,或其简并、同源或密码子优化的变体中的任一个;(b)包括能够与(a)的互补物在杂交条件下杂交的核苷酸序列的多核苷酸,所述杂交条件包括于60℃7%十二烷基硫酸钠、0.5M Na2HPO4、1mM EDTA和65℃1×SSC、0.1%SDS中洗涤,其编码包括功能性(R)-2-羟基己二酸脱氢酶的多肽;(c)包括功能性(R)-2-羟基己二酸脱氢酶的包括氨基酸序列的多肽,其中所述多肽是SEQ ID NO:2,4,6,8,10,12,14,16,18,20,22,35–153或其简并、或同源的变体中的任一个;(d)包括(a)或(b)或能够表达(c)的载体;或(e)用(d)转化的有机体;以及其条件是所述(R)-2-羟基己二酸脱氢酶具有与位于酿酒酵母高异柠檬酸脱氢酶(ScHIDH)SEQ ID NO:2的V111、R114、R115、R124、R143或Y150同功的位置的活性位点的至少一个或多个突变;其中所述(R)-2-羟基己二酸脱氢酶在NADH的存在下催化将2-氧代己二酸转换成(R)-2-羟基己二酸,或其逆反应。
本发明所述的另一个方面是编码多肽的包括核苷酸序列的多核苷酸,所述多肽包括功能性(R)-2-羟基己二酸脱氢酶,该酶用于催化将2-氧代己二酸转换成(R)-2-羟基己二酸或其逆反应,其中所述多核苷酸序列如SEQ ID NO:11或13中所示。
本发明所述的另一个方面是包括功能性(R)-2-羟基己二酸脱氢酶的多肽,该酶用于催化将2-氧代己二酸转换成(R)-2-羟基己二酸或其逆反应,其中所述多肽序列如SEQ ID NO:12或14中所示。
本发明所述的另一个方面是用于包括(R)-2-羟基己二酸脱氢酶的以酶法将2-氧代己二酸转换成(R)-2-羟基己二酸或其逆反应的方法,包括:(a)编码多肽的包括核苷酸序列的多核苷酸,所述多肽包括功能性(R)-2-羟基己二酸脱氢酶,其中所述多核苷酸是SEQ ID NO:11或13;(b)包括能够与(a)的互补物在杂交条件下杂交的核苷酸序列的多核苷酸,所述杂交条件包括于60℃7%十二烷基硫酸钠、0.5MNa2HPO4、1mM EDTA和65℃1×SSC、0.1%SDS中洗涤,其编码包括功能性(R)-2-羟基己二酸脱氢酶的多肽;(c)包括功能性(R)-2-羟基己二酸脱氢酶的包括氨基酸序列的多肽,其中所述多肽是SEQ IDNO:12或14;(d)包括(a)或(b)或能够表达(c)的载体;或(e)用(d)转化的有机体;以及其中所述(R)-2-羟基己二酸脱氢酶在NADH的存在下催化将2-氧代己二酸转换成(R)-2-羟基己二酸,或其逆反应。
本发明所述的另一个方面是(R)-2-羟基己二酸脱氢酶的将2-氧代己二酸转换成(R)-2-羟基己二酸或其逆反应的用途,包括:(a)编码多肽的包括核苷酸序列的多核苷酸,所述多肽包括功能性(R)-2-羟基己二酸脱氢酶,其中所述多核苷酸是SEQ ID NO:11或13;(b)包括能够与(a)的互补物在杂交条件下杂交的核苷酸序列的多核苷酸,所述杂交条件包括于60℃7%十二烷基硫酸钠、0.5M Na2HPO4、1mMEDTA和65℃1×SSC、0.1%SDS中洗涤,其编码包括功能性(R)-2-羟基己二酸脱氢酶的多肽;(c)包括氨基酸序列的多肽,所述氨基酸序列包括功能性(R)-2-羟基己二酸脱氢酶,其中所述多肽是SEQ IDNO:12或14;(d)包括(a)或(b)或能够表达(c)的载体;或(e)用(d)转化的有机体;以及其中所述(R)-2-羟基己二酸脱氢酶在NADH的存在下催化将2-氧代己二酸转换成(R)-2-羟基己二酸,或其逆反应。
本发明所述的另一个方面是,当供应2-氧代己二酸和NADH,或者己二酸和NAD+以及其它合适的辅因子或原料时,以酶法将2-氧代己二酸转换成己二酸或其逆反应的方法,包括非天然有机体,其包括以外源性核酸转化的微生物有机体,所述外源性核酸编码:(a)(R)-2-羟基己二酸脱氢酶(生产(R)-2-羟基己二酸);(b)己二酸Co-A转移酶(生产(R)-羟基己二酰-CoA);(c)羟基己二酰-CoA脱水酶(生产(E)-2-己烯二酰-CoA);(d)己二酸Co-A转移酶(生产(E)-2-己烯二酸);(e)2-己烯二酸脱氢酶(生产己二酸);其中(a)-(e)包括催化将2-氧代己二酸转换成己二酸或其逆反应的酶。
本发明所述的另一个方面是,当供应2-氧代己二酸和NADH,或者(E)-2-己烯二酸和NAD+以及其它合适的辅因子或原料时,以酶法将2-氧代己二酸转换成(E)-2-己烯二酸或其逆反应的方法,包括非天然有机体,其包括以外源性核酸转化的微生物有机体,所述外源性核酸编码:(a)(R)-2-羟基己二酸脱氢酶(生产(R)-2-羟基己二酸);(b)己二酸Co-A转移酶(生产(R)-羟基己二酰-CoA);(c)羟基己二酰-CoA脱水酶(生产(E)-2-己烯二酰-CoA;(d)己二酸Co-A转移酶(生产(E)-2-己烯二酸);其中(a)-(d)包括催化将2-氧代己二酸转换成(E)-2-己烯二酸或其逆反应的酶。
本发明所述的另一个方面是,当供应2-氧代戊二酸和NADH,或者戊烯二酸和NAD+以及其它合适的辅因子或原料时,以酶法将2-氧代戊二酸转换成戊二酸或其逆反应的方法,包括非天然有机体,其包括以外源性核酸转化的微生物有机体,所述外源性核酸编码:(a)(R)-2-羟基戊二酸脱氢酶(生产(R)-2-羟基戊二酸);(b)戊烯二酰Co-A转移酶(生产(R)-2-羟基戊二酰-CoA);(c)羟基己二酰-CoA脱水酶(生产(E)-戊烯二酰-CoA);(d)戊烯二酰Co-A转移酶(生产(E)-戊烯二酸,即(E)-戊烯二酸);(e)戊烯二酸脱氢酶(生产戊二酸,即戊二酸(pentanedioic acid));其中(a)-(e)包括催化将2-氧代戊二酸转换成戊二酸或其逆反应的酶。
本发明所述的另一个方面是,当供应2-氧代己二酸和NADH,或者己二酸和NAD+以及其它合适的辅因子或原料时,以酶法将2-氧代己二酸转换成己二酸或其逆反应的方法,包括非天然有机体,其包括:(a)编码包括SEQ ID NO:155(HIDH)的(R)-2-羟基戊二酸脱氢酶(生产(R)-2-羟基己二酸)的SEQ ID NO:154(Lys12);(b)编码包括SEQ ID NO:158(gctA)和161(gctB)的己二酸Co-A转移酶(生产(R)-羟基己二酰-CoA)的SEQ ID NO:156或157(gctA)和SEQ ID NO:159或160(gctB);(c)编码包括SEQ ID NO:164(hgdA)、167(hgdB)和170(hgdc)的羟基己二酰-CoA脱水酶(生产(E)-2-己烯二酰-CoA)的SEQ ID NO:162或163(hgdA)和SEQID NO:162或163(hgdB)和SEQ ID NO:168或169(hgdc);(d)编码包括SEQ ID NO:158(gctA)和161(gctB)的己二酸Co-A转移酶(生产(E)-2-己烯二酸)的SEQ ID NO:156或157(gctA)和SEQ ID NO:159或160(gctB);(e)编码包括SEQ ID NO:173(gdh)的2-己烯二酸脱氢酶(生产己二酸)的SEQ ID NO:171或172(gdh);其中(a)-(e)包括催化将2-氧代己二酸转换成己二酸或其逆反应的酶。
本发明所述的另一个方面是,当供应2-氧代己二酸和NADH,或者(E)-2-己烯二酸和NAD+以及其它合适的辅因子或原料时,以酶法将2-氧代己二酸转换成(E)-2-己烯二酸或其逆反应的方法,包括非天然有机体,其包括以外源性核酸转化的微生物有机体,所述外源性核酸编码:(a)编码包括SEQ ID NO:155(HIDH)的(R)-2-羟基己二酸脱氢酶(生产(R)-2-羟基己二酸)的SEQ ID NO:154(Lys12);(b)编码包括SEQ ID NO:158(gctA)和161(gctB)的己二酸Co-A转移酶(生产(R)-羟基己二酰-CoA)的SEQ ID NO:156或157(gctA)和SEQ ID NO:159或160(gctB);(c)编码包括SEQ ID NO:164(hgdA)、167(hgdB)和170(hgdc)的羟基己二酰-CoA脱水酶(生产(E)-2-己烯二酰-CoA)的SEQ ID NO:162或163(hgdA)和SEQID NO:162或163(hgdB)和SEQ ID NO:168或169(hgdc);(d)编码包括SEQ ID NO:158(gctA)和161(gctB)的己二酸Co-A转移酶(生产(E)-2-己烯二酸)的SEQ ID NO:156或157(gctA)和SEQ ID NO:159或160(gctB);其中(a)-(d)包括催化将2-氧代己二酸转换成(E)-2-己烯二酸或其逆反应的酶。
本发明所述的另一个方面是,当供应2-氧代己二酸和NADH,或者己二酸和NAD+以及其它合适的辅因子或原料时,以酶法将2-氧代己二酸转换成己二酸或其逆反应的方法,包括非天然有机体,其包括:(a)编码包括SEQ ID NO:155(HIDH)的(R)-2-羟基戊二酸脱氢酶(生产(R)-2-羟基己二酸)的SEQ ID NO:154(Lys12);(b)编码包括SEQ ID NO:158(gctA)和161(gctB)的己二酸Co-A转移酶(生产(R)-羟基己二酰-CoA)的SEQ ID NO:156或157(gctA)和SEQ ID NO:159或160(gctB);(c)编码包括SEQ ID NO:164(hgdA)、167(hgdB)和170(hgdc)的羟基己二酰-CoA脱水酶(生产(E)-2-己烯二酰-CoA)的SEQ ID NO:162或163(hgdA)和SEQID NO:162或163(hgdB)和SEQ ID NO:168或169(hgdc);(d)编码包括SEQ ID NO:173(gdh)的2-己烯二酸脱氢酶(生产己二酰-CoA)的SEQ ID NO:171或172(gdh);(e)编码包括SEQ ID NO:158(gctA)和161(gctB)的己二酸Co-A转移酶(生产己二酸)的SEQ ID NO:156或157(gctA)和SEQ ID NO:159或160(gctB);其中(a)-(e)包括催化将2-氧代己二酸转换成己二酸或其逆反应的酶。
本发明所述的另一个实施方案是功能性(R)-2-羟基戊二酸脱氢酶。
本发明所述的一个方面是包括编码多肽的包括核苷酸序列的多核苷酸,所述多肽包括功能性(R)-2-羟基戊二酸脱氢酶,其用于催化将2-氧代戊二酸转换成(R)-2-羟基戊二酸或其逆反应,其中所述多核苷酸是SEQ ID NO:3、5、7、9、11、13、17、21、25、29或33,或其简并、同源或密码子优化的变体中的任一个。
本发明所述的另一个方面是包括编码多肽的包括核苷酸序列的多核苷酸,所述多肽包括功能性(R)-2-羟基戊二酸脱氢酶,其用于催化将2-氧代戊二酸转换成(R)-2-羟基戊二酸或其逆反应,其中所述多肽是SEQ ID NO:4、6、8、10、12、14、16、18、22、26、30、34或35–153,或其简并、同源的变体中的任一个。
本发明所述的另一个方面是包括编码多肽的包括核苷酸序列的多核苷酸,所述多肽包括功能性(R)-2-羟基戊二酸脱氢酶,其用于催化将2-氧代戊二酸转换成(R)-2-羟基戊二酸或其逆反应,其中所述多核苷酸是与SEQ ID NO:1、3、5、7、9、11、13、17、21、25、29或33中所示的多核苷酸序列具有至少90%同一性;其条件是所编码的多肽具有位于SEQ ID NO:2的V111、R114、R115、R124、R143或Y150位置的活性位点的至少一个或多个突变;其中所述一个或多个突变破坏氧化脱羧作用,但不破坏氧化还原酶活性。
本发明所述的另一个方面是包括编码多肽的包括核苷酸序列的多核苷酸,所述多肽包括功能性(R)-2-羟基戊二酸脱氢酶,其用于催化将2-氧代戊二酸转换成(R)-2-羟基戊二酸或其逆反应,其中所述多核苷酸是显示于SEQ ID NO:1、3、5、7、9、11、13、17、21、25、29或33中带有不超过120个核苷酸取代的序列;其条件是所编码的多肽具有与位于SEQ ID NO:2的V111、R114、R115、R124、R143或Y150同功的位置的活性位点的至少一个或多个突变;其中所述一个或多个突变破坏氧化脱羧作用,但不破坏氧化还原酶活性。
在一些方面,载体包括编码多肽的包括核苷酸序列的多核苷酸,所述多肽包括功能性(R)-2-羟基戊二酸脱氢酶。
在一些方面,培养的细胞包括载体,所述载体包括编码多肽的包括核苷酸序列的多核苷酸,所述多肽包括功能性(R)-2-羟基戊二酸脱氢酶。
本发明所述的另一个方面是包括功能性(R)-2-羟基戊二酸脱氢酶的多肽,所述功能性(R)-2-羟基戊二酸脱氢酶用于催化将2-氧代戊二酸转换成(R)-2-羟基戊二酸或其逆反应,其中所述多肽是与SEQ IDNO:2、4、6、8、10、12、14、16、18、20、22、24、26、28、30、32、34或35–153中所示的多肽序列具有至少90%同一性;其条件是所述多肽具有位于SEQ ID NO:2的V111、R114、R115、R124、R143或Y150位置的活性位点的至少一个或多个突变;其中所述一个或多个突变破坏氧化脱羧作用,但不破坏氧化还原酶活性。
本发明所述的另一个方面是包括功能性(R)-2-羟基戊二酸脱氢酶的多肽,所述功能性(R)-2-羟基戊二酸脱氢酶用于催化将2-氧代戊二酸转换成(R)-2-羟基戊二酸或其逆反应,其中所述多肽是显示于SEQID NO:2、4、6、8、10、12、14、16、18、20、22、24、26、28、30、32、34或35–153中带有不超过40个氨基酸取代的序列;其条件是所述多肽具有与位于SEQ ID NO:2的V111、R114、R115、R124、R143或Y150同功的位置的活性位点的至少一个或多个突变;其中所述一个或多个突变破坏氧化脱羧作用,但不破坏氧化还原酶活性。
本发明所述的另一个方面是用于催化将2-氧代戊二酸转换成(R)-2-羟基戊二酸或其逆反应的组合物,包括:(a)包括编码多肽的包括核苷酸序列的多核苷酸,所述多肽包括功能性(R)-2-羟基戊二酸脱氢酶;(b)包括能够与(a)的互补物在杂交条件下杂交的核苷酸序列的多核苷酸,所述杂交条件包括于60℃7%十二烷基硫酸钠、0.5MNa2HPO4、1mM EDTA和60℃1×SSC、0.1%SDS中洗涤,其编码包括功能性(R)-2-羟基戊二酸脱氢酶的多肽;(c)包括功能性氧化还原酶的包括氨基酸序列的多肽;(d)包括(a)或(b)或能够表达(c)的载体;或(e)用(d)转化的有机体;以及其条件是所述多肽具有与位于酿酒酵母高异柠檬酸脱氢酶(ScHIDH)即SEQ ID NO:2的V111、R114、R115、R124、R143或Y150同功的位置的活性位点的至少一个或多个突变;并且其中所述多肽在NADH的存在下催化将2-氧代戊二酸转换成(R)-2-羟基戊二酸。
在一些方面,所述多核苷酸是SEQ ID NO:1、3、5、7、9、11、13、15、17、19、21、23、25、27、29、31、33,或其简并、同源或密码子优化的变体中的任一个。
在一些方面,所述多肽是SEQ ID NO:2、4、6、8、10、12、14、16、18、20、22、24、26、28、30、32、34、35–153,或其简并、或同源的变体中的任一个。
在一些方面,所述多核苷酸是SEQ ID NO:11、13、17,或其简并、同源或密码子优化的变体中的任一个。
在一些方面,所述多肽是SEQ ID NO:12、14、18,或其简并、同源的变体中的任一个。
在一些方面,所述有机体是大肠杆菌、酿酒酵母、巴斯德毕赤酵母、白地霉、白色念珠菌、深红酵母或红东孢藻。
本发明所述的另一个方面是用于包括(R)-2-羟基戊二酸脱氢酶的以酶法将2-氧代戊二酸转换成(R)-2-羟基戊二酸或其逆反应的方法,包括:(a)包括编码多肽的包括核苷酸序列的多核苷酸,所述多肽包括功能性(R)-2-羟基戊二酸脱氢酶,其中所述多核苷酸是SEQ ID NO:1、3、5、7、9、11、13、15、17、19、21,或其简并、同源或密码子优化的变体中的任一个;(b)包括能够与(a)的互补物在杂交条件下杂交的核苷酸序列的多核苷酸,所述杂交条件包括于60℃7%十二烷基硫酸钠、0.5M Na2HPO4、1mM EDTA和65℃1×SSC、0.1%SDS中洗涤,其编码包括功能性(R)-2-羟基戊二酸脱氢酶的多肽;(c)包括氨基酸序列的包括功能性(R)-2-羟基戊二酸脱氢酶的多肽,其中所述多肽是SEQ ID NO:2、4、6、8、10、12、14、16、18、20、22、35–153或其简并、同源的变体中的任一个;(d)包括(a)或(b)或能够表达(c)的载体;或(e)用(d)转化的有机体;以及其条件是所述(R)-2-羟基戊二酸脱氢酶具有与位于酿酒酵母高异柠檬酸脱氢酶(ScHIDH)SEQ ID NO:2的V111、R114、R115、R124、R143或Y150同功的位置的活性位点的至少一个或多个突变;并且其中所述(R)-2-羟基戊二酸脱氢酶在NADH的存在下催化将2-氧代戊二酸转换成(R)-2-羟基戊二酸,或其逆反应。
本发明所述的另一个方面是用于包括(R)-2-羟基戊二酸脱氢酶的以酶法将2-氧代戊二酸转换成(R)-2-羟基戊二酸或其逆反应的方法,包括:(a)选择多肽2、4、6、8、10、12、14、16、18、20、22、24、26、28、30、32、34或35–153;(b)将活性位点中一个或多个精氨酸残基突变成选自以下组的氨基酸:His、Lys、Gln、Asn、Leu、Ile、Val、Tyr、Phe、Trp、Cys、Ser、Thr、Met、Glu、Asp、Ala、Gly、和Pro;其条件是所述多肽具有与位于酿酒酵母高异柠檬酸脱氢酶(ScHIDH)SEQ ID NO:2的R114、R115、R124、或R143同功的位置的活性位点的至少一个或多个突变;以及(c)分析氧化还原酶的酶活;其中所述多肽在NADH的存在下催化将2-氧代戊二酸转换成(R)-2-羟基戊二酸,或其逆反应。
本发明所述的另一个方面是(R)-2-羟基戊二酸脱氢酶的将2-氧代戊二酸转换成(R)-2-羟基戊二酸或其逆反应的用途,包括:(a)包括编码多肽的包括核苷酸序列的多核苷酸,所述多肽包括功能性(R)-2-羟基戊二酸脱氢酶,其中所述多核苷酸是SEQ ID NO:1、3、5、7、9、11、13、15、17、19、21,或其简并、同源或密码子优化的变体中的任一个;(b)包括能够与(a)的互补物在杂交条件下杂交的核苷酸序列的多核苷酸,所述杂交条件包括于60℃7%十二烷基硫酸钠、0.5M Na2HPO4、1mM EDTA和65℃1×SSC、0.1%SDS中洗涤,其编码包括功能性(R)-2-羟基戊二酸脱氢酶的多肽;(c)包括功能性(R)-2-羟基戊二酸脱氢酶的包括氨基酸序列的多肽,其中所述多肽是SEQ ID NO:2、4、6、8、10、12、14、16、18、20、22、35–153或其简并、或同源的变体中的任一个;(d)包括(a)或(b)或能够表达(c)的载体;或(e)用(d)转化的有机体;以及其条件是所述(R)-2-羟基戊二酸脱氢酶具有与位于酿酒酵母高异柠檬酸脱氢酶(ScHIDH)SEQ ID NO:2的V111、R114、R115、R124、R143或Y150同功的位置的活性位点的至少一个或多个突变;并且其中所述(R)-2-羟基戊二酸脱氢酶在NADH的存在下催化将2-氧代戊二酸转换成(R)-2-羟基戊二酸,或其逆反应。
本发明所述的另一个方面是包括编码多肽的包括核苷酸序列的多核苷酸,所述多肽包括功能性(R)-2-羟基戊二酸脱氢酶,该酶用于将2-氧代戊二酸转换成(R)-2-羟基戊二酸或其逆反应,其中所述多核苷酸序列如SEQ ID NO:11或13中所示。
本发明所述的另一个方面是包括功能性(R)-2-羟基戊二酸脱氢酶的多肽,该酶用于将2-氧代戊二酸转换成(R)-2-羟基戊二酸或其逆反应,其中所述多肽如SEQ ID NO:12或14中所示。
本发明所述的另一个方面是用于包括(R)-2-羟基戊二酸脱氢酶的以酶法将2-氧代戊二酸转换成(R)-2-羟基戊二酸或其逆反应的方法,包括:(a)包括编码多肽的包括核苷酸序列的多核苷酸,所述多肽包括功能性(R)-2-羟基戊二酸脱氢酶,其中所述多核苷酸是SEQ ID NO:11或13;(b)包括能够与(a)的互补物在杂交条件下杂交的核苷酸序列的多核苷酸,所述杂交条件包括于60℃7%十二烷基硫酸钠、0.5M Na2HPO4、1mM EDTA和65℃1×SSC、0.1%SDS中洗涤,其编码包括功能性(R)-2-羟基戊二酸脱氢酶的多肽;(c)包括功能性(R)-2-羟基戊二酸脱氢酶的包括氨基酸序列的多肽,其中所述多肽是SEQ IDNO:12或14;(d)包括(a)或(b)或能够表达(c)的载体;或(e)用(d)转化的有机体;以及其中所述(R)-2-羟基戊二酸脱氢酶在NADH的存在下催化将2-氧代戊二酸转换成(R)-2-羟基戊二酸,或其逆反应。
本发明所述的另一个方面是(R)-2-羟基戊二酸脱氢酶的将2-氧代戊二酸转换成(R)-2-羟基戊二酸或其逆反应的用途,包括:(a)包括编码多肽的包括核苷酸序列的多核苷酸,所述多肽包括功能性(R)-2-羟基戊二酸脱氢酶,其中所述多核苷酸是SEQ ID NO:11或13;(b)包括能够与(a)的互补物在杂交条件下杂交的核苷酸序列的多核苷酸,所述杂交条件包括于60℃7%十二烷基硫酸钠、0.5M Na2HPO4、1mM EDTA和65℃1×SSC、0.1%SDS中洗涤,其编码包括功能性(R)-2-羟基戊二酸脱氢酶的多肽;(c)包括功能性(R)-2-羟基戊二酸脱氢酶的包括氨基酸序列的多肽,其中所述多肽是SEQ ID NO:12或14;(d)包括(a)或(b)或能够表达(c)的载体;或(e)用(d)转化的有机体;以及其中所述(R)-2-羟基戊二酸脱氢酶在NADH的存在下催化将2-氧代戊二酸转换成(R)-2-羟基戊二酸,或其逆反应。
本发明所述的另一个方面是功能性氧化还原酶(即,(R)-2-羟基羧酸脱氢酶),该酶能够以酶法将1-羧基-2-酮酸(即,1-羧基-2-含氧酸,α-酮羧酸,α-含氧酸)转换成1-羧基-(R)-2-羟基酸(即,1-羧基-D-2-羟基酸,(R)-α-羟基羧酸),或其逆反应。
本发明所述的一个方面是包括编码多肽的包括核苷酸序列的多核苷酸,所述多肽包括功能性氧化还原酶(即,(R)-2-羟基酸脱氢酶),该酶能够以酶法将1-羧基-2-酮酸(即,1-羧基-2-含氧酸,α-酮羧酸,α-含氧酸)转换成1-羧基-(R)-2-羟基酸(即,1-羧基-D-2-羟基酸,(R)-α-羟基羧酸),或其逆反应,其中所述多核苷酸是SEQ ID NO:1、3、5、7、9、11、13、15、17、19、21、23、25、27、29、31、33,或其简并、同源或密码子优化的变体中的任一个。
本发明所述的另一个方面是包括功能性氧化还原酶的多肽,该酶能够以酶法将1-羧基-2-酮酸转换成1-羧基-(R)-2-羟基酸,其中所述多肽是SEQ ID NO:2、4、6、8、10、12、14、16、18、20、22、24、26、28、30、32、34,或其简并、同源或密码子优化的变体中的任一个。
本发明所述的一个方面是包括功能性氧化还原酶的多肽,该酶能够以酶法将1-羧基-2-酮酸转换成1-羧基-(R)-2-羟基酸,其中所述多肽是SEQ ID NO:35–153或其简并、同源或密码子优化的变体中的任一个。
本发明所述的另一个方面是包括编码多肽的包括多核苷酸的载体,所述多肽包括能够以酶法将1-羧基-2-酮酸转换成1-羧基-(R)-2-羟基酸的功能性氧化还原酶,其中所述多核苷酸是SEQ ID NO:1、3、5、7、9、11、13、15、17、19、21、23、25、27、29、31、33,或其简并、同源或密码子优化的变体中的任一个。
本发明所述的另一个方面是包括编码多肽的包括核苷酸序列的多核苷酸的载体,所述多肽包括能够以酶法将1-羧基-2-酮酸转换成1-羧基-(R)-2-羟基酸的功能性氧化还原酶,其中所述多肽是SEQ ID NO:2、4、6、8、10、12、14、16、18、20、22、24、26、28、30、32、34或35-153,或其简并、同源的变体中的任一个。
本发明所述的另一个方面是包括所述载体的培养的细胞,所述载体包括能够以酶法将1-羧基-2-酮酸转换成1-羧基-(R)-2-羟基酸的功能性氧化还原酶。
本发明所述的另一个方面是包括编码多肽的包括核苷酸序列的多核苷酸,所述多肽包括能够以酶法将1-羧基-2-酮酸转换成1-羧基-(R)-2-羟基酸的功能性氧化还原酶,其中所述核苷酸序列是与SEQ IDNO:1、3、5、7、9、11、13、15、17、19、21、23、25、27、29、31或33中所示的多核苷酸序列具有至少90%同一性;其条件是所编码的多肽具有与位于酿酒酵母高异柠檬酸脱氢酶(ScHIDH)即SEQID NO:2的V111、R114、R115、R124、R143或Y150同功的位置的活性位点的至少一个或多个突变;其中所述一个或多个突变破坏氧化脱羧作用但不破坏氧化还原酶活性。
本发明所述的另一个方面是包括编码多肽的包括核苷酸序列的多核苷酸,所述多肽包括能够以酶法将1-羧基-2-酮酸转换成1-羧基-(R)-2-羟基酸的功能性氧化还原酶,其中所述核苷酸序列是与SEQ IDNO:1、3、5、7、9、11、13、15、17、19、21、23、25、27、29、31或33中所示的序列之一,具有不多于120个核苷酸取代;其条件是所编码的多肽具有与位于酿酒酵母高异柠檬酸脱氢酶(ScHIDH)即SEQ ID NO:2的V111、R114、R115、R124、R143或Y150同功的位置的活性位点的至少一个或多个突变;其中所述一个或多个突变破坏氧化脱羧作用但不破坏氧化还原酶活性。
本发明所述的一个方面是包括编码多肽的包括核苷酸序列的多核苷酸,所述多肽包括能够以酶法将1-羧基-2-酮酸转换成1-羧基-(R)-2-羟基酸的功能性氧化还原酶,其中所编码的多肽是与SEQ ID NO:2、4、6、8、10、12、14、16、18、20、22、24、26、28、30、32、34或35–153中所示的多肽序列具有至少90%同一性;其条件是所编码的多肽具有与位于酿酒酵母高异柠檬酸脱氢酶(ScHIDH)即SEQ IDNO:2的V111、R114、R115、R124、R143或Y150同功的位置的活性位点的至少一个或多个突变;其中所述一个或多个突变破坏氧化脱羧作用但不破坏氧化还原酶活性。
本发明所述的另一个方面是包括编码多肽的包括核苷酸序列的多核苷酸,所述多肽包括能够以酶法将1-羧基-2-酮酸转换成1-羧基-(R)-2-羟基酸的功能性氧化还原酶,其中所编码的多肽是与SEQ IDNO:2、4、6、8、10、12、14、16、18、20、22、24、26、28、30、32、34或35–153中所示的多肽序列之一具有不多于40个氨基酸取代;其条件是所编码的多肽具有与位于酿酒酵母高异柠檬酸脱氢酶(ScHIDH)即SEQ ID NO:2的V111、R114、R115、R124、R143或Y150同功的位置的活性位点的至少一个或多个突变;其中所述一个或多个突变破坏氧化脱羧作用但不破坏氧化还原酶活性。
在一些方面,载体包括编码多肽的包括核苷酸序列的多核苷酸,所述多肽包括能够以酶法将1-羧基-2-酮酸转换成1-羧基-(R)-2-羟基酸的功能性氧化还原酶。
本发明所述的另一个方面是包括任何所述载体的培养的细胞,所述载体包括编码多肽的包括核苷酸序列的多核苷酸,所述多肽包括能够以酶法将1-羧基-2-酮酸转换成1-羧基-(R)-2-羟基酸的功能性氧化还原酶。
本发明所述的另一个方面是包括能够以酶法将1-羧基-2-酮酸转换成1-羧基-(R)-2-羟基酸的功能性氧化还原酶的多肽,其中所述多肽是与SEQ ID NO:2、4、6、8、10、12、14、16、18、20、22、24、26、28、30、32、34或35–153中所示的多肽序列具有至少90%同一性;其条件是所述多肽具有与位于酿酒酵母高异柠檬酸脱氢酶(ScHIDH)即SEQ ID NO:2的V111、R114、R115、R124、R143或Y150同功的位置的活性位点的至少一个或多个突变;其中所述一个或多个突变破坏氧化脱羧作用但不破坏氧化还原酶活性。
本发明所述的另一个方面是包括能够以酶法将1-羧基-2-酮酸转换成1-羧基-(R)-2-羟基酸的功能性氧化还原酶的多肽,其中所编码的多肽是与SEQ ID NO:2、4、6、8、10、12、14、16、18、20、22、24、26、28、30、32、34或35–153中所示的多肽序列之一具有不多于40个氨基酸取代;其条件是所述多肽具有位于酿酒酵母高异柠檬酸脱氢酶(ScHIDH)即SEQ ID NO:2的V111、R114、R115、R124、R143或Y150同功的位置的活性位点的至少一个或多个突变;其中所述一个或多个突变破坏氧化脱羧作用但不破坏氧化还原酶活性。
本发明所述的一个方面是包括编码多肽的包括核苷酸序列的多核苷酸,所述多肽包括功能性(R)-2-羟基酸脱氢酶,其用于催化将1-羧基-2-酮酸对映选择性转换成1-羧基-(R)-2-羟基酸或其逆反应,其中所述多核苷酸是SEQ ID NO:3、5、7、9、11、13、17、21、25、29或33,或其简并、同源或密码子优化的变体中的任一个。
本发明所述的一个方面是包括编码多肽的包括核苷酸序列的多核苷酸,所述多肽包括功能性(R)-2-羟基酸脱氢酶,其用于催化将1-羧基-2-酮酸对映选择性转换成1-羧基-(R)-2-羟基酸或其逆反应,其中所述多肽是SEQ ID NO:4、6、8、10、12、14、16、18、22、26、30、34或35–153,或其简并、同源的变体中的任一个。
本发明所述的一个方面是包括编码多肽的包括核苷酸序列的多核苷酸,所述多肽包括功能性(R)-2-羟基酸脱氢酶,其用于催化将1-羧基-2-酮酸对映选择性转换成1-羧基-(R)-2-羟基酸或其逆反应,其中所述多核苷酸是与SEQ ID NO:3、5、7、9、11、13、17、21、25、29或33中所示的多核苷酸序列具有至少90%同一性;其条件是所编码的多肽具有位于SEQ ID NO:2的V111、R114、R115、R124、R143或Y150位置的活性位点的至少一个或多个突变;其中所述一个或多个突变破坏氧化脱羧作用但不破坏氧化还原酶活性。
本发明所述的一个方面是包括编码多肽的包括核苷酸序列的多核苷酸,所述多肽包括功能性(R)-2-羟基酸脱氢酶,其用于催化将1-羧基-2-酮酸对映选择性转换成1-羧基-(R)-2-羟基酸或其逆反应,其中所述多核苷酸是与SEQ ID NO:3、5、7、9、11、13、17、21、25、29或33中带有不超过120个核苷酸取代的序列;其条件是所编码的多肽具有与位于SEQ ID NO:2的V111、R114、R115、R124、R143或Y150同功的位置的活性位点的至少一个或多个突变;其中所述一个或多个突变破坏氧化脱羧作用但不破坏氧化还原酶活性。
在一些方面,载体包括所述多核苷酸,所述多核苷酸包括功能性(R)-2-羟基羧酸脱氢酶。
在一些方面,培养的细胞包括载体,所述载体包括所述多核苷酸,所述多核苷酸包括功能性(R)-2-羟基羧酸脱氢酶。
本发明所述的另一个方面是包括功能性(R)-2-羟基酸脱氢酶的多肽,该酶用于催化将1-羧基-2-酮酸对映选择性转换成1-羧基-(R)-2-羟基羧酸或其逆反应,其中所述多肽是与SEQ ID NO:2、4、6、8、10、12、14、16、18、20、22、24、26、28、30、32、34或35–153中所示的多肽序列具有至少90%同一性;其条件是所述多肽具有位于SEQID NO:2的V111、R114、R115、R124、R143或Y150位置的活性位点的至少一个或多个突变;其中所述一个或多个突变破坏氧化脱羧作用但不破坏氧化还原酶活性。
本发明所述的另一个方面是包括功能性(R)-2-羟基羧酸脱氢酶的多肽,该酶用于催化将1-羧基-2-酮酸对映选择性转换成1-羧基-(R)-2-羟基羧酸或其逆反应,其中所述多肽是与SEQ ID NO:2、4、6、8、10、12、14、16、18、20、22、24、26、28、30、32、34或35–153中所示的序列具有不多于40个氨基酸取代;其条件是所述多肽具有与位于SEQ ID NO:2的V111、R114、R115、R124、R143或Y150同功的位置的活性位点的至少一个或多个突变;其中所述一个或多个突变破坏氧化脱羧作用但不破坏氧化还原酶活性。
本发明所述的另一个方面是用于催化将1-羧基-2-酮酸对映选择性转换成1-羧基-(R)-2-羟基酸或其逆反应的组合物,包括:(a)包括编码多肽的包括核苷酸序列的多核苷酸,所述多肽包括功能性(R)-2-羟基酸脱氢酶;(b)包括能够与(a)的互补物在杂交条件下杂交的核苷酸序列的多核苷酸,所述杂交条件包括于60℃7%十二烷基硫酸钠、0.5M Na2HPO4、1mM EDTA和60℃1×SSC、0.1%SDS中洗涤,其编码包括功能性(R)-2-羟基戊二酸脱氢酶的多肽;(c)包括功能性氧化还原酶的包括氨基酸序列的多肽;(d)包括(a)或(b)或能够表达(c)的载体;或(e)用(d)转化的有机体;以及其条件是所述多肽具有与位于酿酒酵母高异柠檬酸脱氢酶(ScHIDH)即SEQID NO:2的V111、R114、R115、R124、R143或Y150同功的位置的活性位点的至少一个或多个突变;并且其中所述多肽在NADH的存在下催化将1-羧基-2-酮酸转换成1-羧基-(R)-2-羟基酸。
在本发明所述的一个方面,所述多核苷酸是SEQ ID NO:1、3、5、7、9、11、13、15、17、19、21、23、25、27、29、31、33,或其简并、同源或密码子优化的变体中的任一个。
在本发明所述的一个方面,所述多肽是SEQ ID NO:2、4、6、8、10、12、14、16、18、20、22、24、26、28、30、32、34,35–153,或其简并、同源的变体中的任一个。
在本发明所述的一个方面,所述多核苷酸是SEQ ID NO:11,13,17,或其简并、同源或密码子优化的变体中的任一个。
在本发明所述的一个方面,所述多肽是SEQ ID NO:12,14,18,或其简并、同源的变体中的任一个。
在本发明所述的一个方面,所述有机体是大肠杆菌、酿酒酵母、巴斯德毕赤酵母、白地霉、白色念珠菌、深红酵母或红东孢藻。
本发明所述的另一个方面是用于包括(R)-2-羟基羧酸脱氢酶的以酶法将1-羧基-2-酮酸转换成1-羧基-(R)-2-羟基酸或其逆反应的方法,包括:(a)包括编码多肽的包括核苷酸序列的多核苷酸,所述多肽包括功能性(R)-2-羟基酸脱氢酶,其中所述多核苷酸是SEQ ID NO:1、3、5、7、9、11、13、15、17、19、21或其简并、同源或密码子优化的变体中的任一个;(b)包括能够与(a)的互补物在杂交条件下杂交的核苷酸序列的多核苷酸,所述杂交条件包括于60℃7%十二烷基硫酸钠、0.5M Na2HPO4、1mM EDTA和65℃1×SSC、0.1%SDS中洗涤,其编码包括功能性(R)-2-羟基酸脱氢酶的多肽;(c)包括功能性(R)-2-羟基羧酸脱氢酶的包括氨基酸序列的多肽,其中所述多肽是SEQ ID NO:2、4、6、8、10、12、14、16、18、20、22、35–153或其简并、或同源的变体中的任一个;(d)包括(a)或(b)或能够表达(c)的载体;或(e)用(d)转化的有机体;以及其条件是所述(R)-2-羟基酸脱氢酶具有与位于酿酒酵母高异柠檬酸脱氢酶(ScHIDH)SEQ ID NO:2的V111、R114、R115、R124、R143或Y150同功的位置的活性位点的至少一个或多个突变;并且其中所述(R)-2-羟基酸脱氢酶在NADH的存在下催化将1-羧基-2-酮酸转换成1-羧基-(R)-2-羟基酸,或其逆反应。
本发明所述的另一个方面是用于包括(R)-2-羟基羧酸脱氢酶的以酶法将1-羧基-2-酮酸转换成1-羧基-(R)-2-羟基酸或其逆反应的方法,包括:(a)选择多肽2、4、6、8、10、12、14、16、18、20、22、24、26、28、30、32、34,或35–153;(b)将活性位点中一个或多个精氨酸残基突变成选自以下组的氨基酸:His、Lys、Gln、Asn、Leu、Ile、Val、Tyr、Phe、Trp、Cys、Ser、Thr、Met、Glu、Asp、Ala、Gly和Pro;其条件是所述多肽具有与位于酿酒酵母高异柠檬酸脱氢酶(ScHIDH)SEQ ID NO:2的R114、R115、R124、或R143同功的位置的活性位点的至少一个或多个突变;以及(c)分析氧化还原酶的酶活;其中所述多肽在NADH的存在下催化将1-羧基-2-酮酸转换成1-羧基-(R)-2-羟基酸,或其逆反应。
本发明所述的另一个方面是(R)-2-羟基酸脱氢酶的将1-羧基-2-酮酸转换成1-羧基-(R)-2-羟基酸或其逆反应的用途,包括:(a)编码多肽的包括核苷酸序列的多核苷酸,所述多肽包括功能性(R)-2-羟基酸脱氢酶,其中所述多核苷酸是SEQ ID NO:1、3、5、7、9、11、13、15、17、19、21,或其简并、同源或密码子优化的变体中的任一个;(b)包括能够与(a)的互补物在杂交条件下杂交的核苷酸序列的多核苷酸,所述杂交条件包括于60℃7%十二烷基硫酸钠、0.5MNa2HPO4、1mM EDTA和65℃1×SSC、0.1%SDS中洗涤,其编码包括功能性(R)-2-羟基酸脱氢酶的多肽;(c)包括功能性(R)-2-羟基羧酸脱氢酶的包括氨基酸序列的多肽,其中所述多肽是SEQ ID NO:2、4、6、8、10、12、14、16、18、20、22、35–153或其简并、同源的变体中的任一个;(d)包括(a)或(b)或能够表达(c)的载体;或(e)用(d)转化的有机体;以及其条件是所述(R)-2-羟基酸脱氢酶具有与位于酿酒酵母高异柠檬酸脱氢酶(ScHIDH)SEQ ID NO:2的V111、R114、R115、R124、R143或Y150同功的位置的活性位点的至少一个或多个突变;并且其中所述(R)-2-羟基酸脱氢酶在NADH的存在下催化将1-羧基-2-酮酸转换成1-羧基-(R)-2-羟基酸,或其逆反应。
本发明所述的另一个方面是包括编码多肽的包括核苷酸序列的多核苷酸,所述多肽包括功能性(R)-2-羟基酸脱氢酶,该酶用于将2-氧代戊二酸转换成(R)-2-羟基戊二酸或其逆反应,其中所述多核苷酸序列如SEQ ID NO:11或13中所示。
本发明所述的另一个方面是包括功能性(R)-2-羟基酸脱氢酶的多肽,该酶用于将1-羧基-2-酮酸转换成1-羧基-(R)-2-羟基酸或其逆反应,其中所述多肽如SEQ ID NO:12或14中所示。
本发明所述的另一个方面是用于包括(R)-2-羟基酸脱氢酶的以酶法将1-羧基-2-酮酸转换成1-羧基-(R)-2-羟基酸或其逆反应的方法,包括:(a)包括编码多肽的包括核苷酸序列的多核苷酸,所述多肽包括功能性(R)-2-羟基酸脱氢酶,其中所述多核苷酸是SEQ ID NO:11或13;(b)包括能够与(a)的互补物在杂交条件下杂交的核苷酸序列的多核苷酸,所述杂交条件包括于60℃7%十二烷基硫酸钠、0.5MNa2HPO4、1mM EDTA和65℃1×SSC、0.1%SDS中洗涤,其编码包括功能性(R)-2-羟基酸脱氢酶的多肽;(c)包括氨基酸序列包括功能性(R)-2-羟基羧酸脱氢酶的多肽,其中所述多肽是SEQ ID NO:12或14;(d)包括(a)或(b)或能够表达(c)的载体;或(e)用(d)转化的有机体;以及其中所述(R)-2-羟基酸脱氢酶在NADH的存在下催化将1-羧基-2-酮酸转换成1-羧基-(R)-2-羟基酸,或其逆反应。
本发明所述的另一个方面是(R)-2-羟基酸脱氢酶的将1-羧基-2-酮酸转换成1-羧基-(R)-2-羟基酸或其逆反应的用途,包括:(a)编码多肽的包括核苷酸序列的多核苷酸,所述多肽包括功能性(R)-2-羟基酸脱氢酶,其中所述多核苷酸是SEQ ID NO:11或13;(b)包括能够与(a)的互补物在杂交条件下杂交的核苷酸序列的多核苷酸,所述杂交条件包括于60℃7%十二烷基硫酸钠、0.5M Na2HPO4、1mM EDTA和65℃1×SSC、0.1%SDS中洗涤,其编码包括功能性(R)-2-羟基酸脱氢酶的多肽;(c)包括氨基酸序列包括功能性(R)-2-羟基羧酸脱氢酶的多肽,其中所述多肽是SEQ ID NO:12或14;(d)包括(a)或(b)或能够表达(c)的载体;或(e)用(d)转化的有机体;以及其中所述(R)-2-羟基酸脱氢酶在NADH的存在下催化将1-羧基-2-酮酸转换成1-羧基-(R)-2-羟基酸,或其逆反应。
本发明所述的另一个实施方案是功能性氧化还原酶。
本发明所述的一个方面是包括编码多肽的包括核苷酸序列的多核苷酸,所述多肽包括功能性氧化还原酶,其中所述多核苷酸是SEQ IDNO:1、3、5、7、9、11、13、15、17、19、21、23、25、27、29、31、33,或其简并、同源或密码子优化的变体中的任一个。
本发明所述的另一个方面是包括功能性氧化还原酶的多肽,其中所述多肽是SEQ ID NO:2、4、6、8、10、12、14、16、18、20、22、24、26、28、30、32、34,或其简并、同源或密码子优化的变体中的任一个。
本发明所述的一个方面是包括功能性氧化还原酶的多肽,其中所述多肽是SEQ ID NO:35–153或其简并、或同源的变体中的任一个。
本发明所述的一个方面是包括编码多肽的包括核苷酸序列的多核苷酸的载体,所述多肽包括功能性氧化还原酶,其中所述多核苷酸是SEQ ID NO:1、3、5、7、9、11、13、15、17、19、21、23、25、27、29、31、33,或其简并、同源或密码子优化的变体中的任一个。
本发明所述的另一个方面是包括编码多肽的包括核苷酸序列的多核苷酸的载体,所述多肽包括功能性氧化还原酶,其中所编码的多肽是SEQ ID NO:2、4、6、8、10、12、14、16、18、20、22、24、26、28、30、32、34或35–153或其简并、或同源的变体中的任一个。
本发明所述的另一个方面是包括所述载体的培养的细胞,所述载体包括编码多肽的包括核苷酸序列的多核苷酸,所述多肽包括功能性氧化还原酶。
本发明所述的另一个方面是包括编码多肽的包括核苷酸序列的多核苷酸,所述多肽包括功能性氧化还原酶,其中所述多核苷酸是与SEQ ID NO:1、3、5、7、9、11、13、15、17、19、21、23、25、27、29、31或33中所示的多核苷酸序列具有至少90%同一性;其条件是所编码的多肽具有与位于酿酒酵母高异柠檬酸脱氢酶(ScHIDH)即SEQ ID NO:2的V111、R114、R115、R124、R143或Y150同功的位置的活性位点的至少一个或多个突变;其中所述一个或多个突变破坏氧化脱羧作用但不破坏氧化还原酶活性。
本发明所述的另一个方面是包括编码多肽的包括核苷酸序列的多核苷酸,所述多肽包括功能性氧化还原酶,其中所述多核苷酸是与SEQ ID NO:1、3、5、7、9、11、13、15、17、19、21、23、25、27、29、31或33中所示的序列之一具有不多于120个核苷酸取代;其条件是所编码的多肽具有与位于酿酒酵母高异柠檬酸脱氢酶(ScHIDH)即SEQ ID NO:2的V111、R114、R115、R124、R143或Y150同功的位置的活性位点的至少一个或多个突变;其中所述一个或多个突变破坏氧化脱羧作用但不破坏氧化还原酶活性。
本发明所述的一个方面是包括编码多肽的包括核苷酸序列的多核苷酸,所述多肽包括功能性氧化还原酶,其中所述多肽是与SEQ IDNO:2、4、6、8、10、12、14、16、18、20、22、24、26、28、30、32、34或35–153中所示的多肽序列具有至少90%同一性;其条件是所编码的多肽具有与位于酿酒酵母高异柠檬酸脱氢酶(ScHIDH)即SEQ ID NO:2的V111、R114、R115、R124、R143或Y150同功的位置的活性位点的至少一个或多个突变;其中所述一个或多个突变破坏氧化脱羧作用但不破坏氧化还原酶活性。
本发明所述的另一个方面是包括编码多肽的包括核苷酸序列的多核苷酸,所述多肽包括功能性氧化还原酶,其中所述多肽是与SEQ IDNO:2、4、6、8、10、12、14、16、18、20、22、24、26、28、30、32、34或35–153中所示的多肽序列之一具有不多于40个氨基酸取代;其条件是所述多肽具有与位于酿酒酵母高异柠檬酸脱氢酶(ScHIDH)即SEQ ID NO:2的V111、R114、R115、R124、R143或Y150同功的位置的活性位点的至少一个或多个突变;其中所述一个或多个突变破坏氧化脱羧作用但不破坏氧化还原酶活性。
本发明所述的另一个方面是包括多个多核苷酸载体的载体,所述多核苷酸载体包括编码多肽的包括核苷酸序列的多核苷酸,所述多肽包括功能性氧化还原酶。在一些方面,所述多核苷酸是编码包括功能性氧化还原酶的多肽的密码子优化的核苷酸序列。
本发明所述的另一个方面是包括任何所述载体的培养的细胞,所述载体包括编码多肽的包括核苷酸序列的多核苷酸,所述多肽包括功能性氧化还原酶。
本发明所述的另一个方面是包括功能性氧化还原酶的多肽,其中所述多肽是与SEQ ID NO:2、4、6、8、10、12、14、16、18、20、22、24、26、28、30、32、34或35–153中所示的多肽序列具有至少90%同一性;其条件是所述多肽具有与位于酿酒酵母高异柠檬酸脱氢酶(ScHIDH)即SEQ ID NO:2的V111、R114、R115、R124、R143或Y150同功的位置的活性位点的至少一个或多个突变;其中所述一个或多个突变破坏氧化脱羧作用但不破坏氧化还原酶活性。
本发明所述的另一个方面是包括功能性氧化还原酶的多肽,其中所编码的多肽是与SEQ ID NO:2、4、6、8、10、12、14、16、18、20、22、24、26、28、30、32、34或35–153中所示的多肽序列之一具有不多于40个氨基酸取代;其条件是所述多肽具有与位于酿酒酵母高异柠檬酸脱氢酶(ScHIDH)即SEQ ID NO:2的V111、R114、R115、R124、R143或Y150同功的位置的活性位点的至少一个或多个突变;其中所述一个或多个突变破坏氧化脱羧作用但不破坏氧化还原酶活性。
附图说明
图1:将2-氧代己二酸转换成己二酸的生物合成方法。(A)来自常规代谢的(1)2-氧代己二酸在细菌中由(R)-2-羟基己二酸脱氢酶和NADH转换成(2)(R)-2-羟基己二酸;由戊烯二酸Co-A转移酶和CoA转换成(3)(E)-2-羟基己二酰-CoA;由羟基己二酰-CoA脱水酶转换成(4)(E)-2-己烯二酰-CoA;由戊烯二酸Co-A转移酶和CoA转换成(5)(E)-2-己烯二酸;以及由(E)-2-己烯二酸脱氢酶和NADH转换成(6)己二酸。(B)IDH催化异柠檬酸的NAD(P)+-关联可逆氧化脱羧以形成2-氧代戊二酸和CO2。(C)在人癌症中,IDH1突变体(例如,HsIDH1-R132H、HsIDH2-R140Q)催化2-氧代戊二酸的非羧化还原成(R)-2-羟基戊二酸。(D)HIDH催化高异柠檬酸的NAD+-关联可逆氧化脱羧以形成2-氧代己二酸和CO2。(E)HIDH突变体催化2-氧代己二酸的非羧化还原成(R)-2-羟基己二酸。
图2:(A)TtHIDH(浅灰色;PDB登录号3ASJ;Miyazaki et al.J.Biol.Chem.278,1864-1871(2003))叠加到HsIDH1与异柠檬酸复合体(深灰色;PDB登录号1TOL;Xu et al.,J.Biol.Chem.279,33946-33957(2004))上的活性位点的三维结构。TtHIDH相应残基显示在括号中。(B)来自人(Homo sapiens,Hs)、酿酒酵母(Saccharomycescerevisiae,Sc)、粟酒裂殖酵母(Schizosaccharomyces pombe,Sp)、极端嗜热菌(Thermus thermophilus,Tt)和大肠杆菌(Escherichia coli,Ec)的异柠檬酸脱氢酶(IDH)、高异柠檬酸脱氢酶(HIDH)、异丙基苹果酸脱氢酶(IPMDH)和酒石酸脱氢酶(TDH)的活性位点序列比对以粗体保守精氨酸残基如下所示:HsIDH1、HsIDH2、ScHIDH、SpHIDH、TtHIDH、TtIPMDH、ScIPMDH和EcTDH。
图3:来自各个种属的异柠檬酸脱氢酶(IDH)、高异柠檬酸脱氢酶(HIDH)、异丙基苹果酸脱氢酶(IPMDH)和酒石酸脱氢酶(TDH)的比对。
图4:TtHIDH-R118H的活性和产物分析。(A)开始含有5μgTtHIDH-R118H、100μM NADH和15mM 2-氧代己二酸的标准反应随时间推移NADH的减少。在含有TtHIDH-WT替换TtHIDH-R118H的对照反应和含有不含2-氧代己二酸底物的TtHIDH-R118H的对照反应中观察到最少的NADH的氧化。(B)向反应加入CO2如NaHCO3在存在TtHIDH-WT而不是存在TtHIDH-R118H的情况下刺激NADH的氧化。(C)TtHIDH-R118H也被2-氧代戊二酸刺激。(D)监控含有BSA、TtHIDH-WT或TtHIDH-R118H的反应的NADH浓度2小时,在反应混合以及2小时之后立即测定(R)-2-羟基己二酸的浓度。反应于45℃与100μM NADH和15mM 2-氧代己二酸进行。每个数据点显示n=2反应的平均值和平均值的标准误差(SEM),并且其代表三次独立实验。
图5:ScHIDH-R143H的活性和产物分析。除非另有说明,反应是以100μM NADH、15mM 2-氧代己二酸和0.4μg纯化的ScHIDH-R143H或对照进行。(A)在BSA(蛋白对照)、ScHIDH-WT或ScHIDH-R143H存在下NADH的起始速率降低。(B)在0-60mMNaHCO3存在下由ScHIDH-WT或ScHIDH-R143H催化的NADH的起始速率降低。(C)以15mM的5-碳、6-碳和7-碳二酸2-氧代戊二酸、2-氧代己二酸和2-氧代庚二酸分别作为底物由ScHIDH-R143H催化的NADH的起始速率降低。(D)对含有2mM NADH和2mM 2-氧代己二酸在0、5和10h由340nm紫外吸光度所测的NADH浓度,以及由LC-MS/MS定量的(R)-2-羟基己二酸浓度。显示n=2反应的平均值和SEM(如果足够大可显示),并且其代表三次独立实验。
图6:一组ScHIDH突变体的活性。显示突变的人基因(IDH1或IDH2)和突变,和鉴定癌症中突变或鉴定体外突变的新变体功能的参照。过表达ScHIDH-WT,-V111D,-R114Q,-R115Q,-R143C,-R143H,-R143K和-Y150D的粗裂解物加入含有15mM 2-氧代己二酸和100-800μM NADH的反应混合物中。显示在含有各种突变体的裂解物的存在下NADH中降低率的平均值和SEM(n=2)。
图7:ScHIDH突变体的纯化。纯化的ScHIDH突变体的银染SDS-PAGE。每份15μg每种纯化的蛋白上样。
图8:ScHIDH突变体的速率分析。(A)含有10mM 2-氧代己二酸、300μM NADH和所示ScHIDH突变体的反应中随时间推移NADH的减少。(B)含有所示ScHIDH突变体和0-300μM NADH的反应中NADH的起始速率降低。(C)含有ScHIDH-R143H和15mM的2-氧代己二酸、2-氧代戊二酸或2-氧代庚二酸的反应中NADH的起始速率降低。除非另有说明,反应含有40ng/μL所示纯化的酶、15mM 2-氧代己二酸、100mM HEPES、pH 7.3、20mM MgCl2和100μM NADH。速率表述为或者以μmol NADH min-1mg-1酶或者以任意相对速率的NADH减少(氧化)每单位时间每单位酶质量。数据为平均值±s.d.(n=2)并代表三次独立实验。
图9:ScHIDH反应的LC-MS/MS分析。(A)监测含有50mMHEPES、pH 7.3、5mM MgCl2、50mM NaHCO3、5mM 2-oxoadipate、100μM NADH的反应中NADH的氧化。45min后(箭头所示),加入[3,3,4,4-2H4]-2-羟基戊二酸(2HG-d4)内标并且反应用二乙酰-L-酒石酸酐(DATAN)衍生化并进行LC-MS/MS分析。(B)2HG-d4的裂解谱,其用作标准化不同反应间离子计数的内标。T1:Q1/Q3(m/z)=367.0/151.0,T2:Q1/Q3(m/z)=367.0/132.0。(C)跃迁(表示T1和T2)对应于高异柠檬酸。如右侧的质量裂解图所示T1:Q1/Q3(m/z)=421.3/205.1,T2:Q1/Q3(m/z)=421.3/187.0。(d)跃迁对应于2-羟基己二酸。如右侧的质量裂解图所示T1:Q1/Q3(m/z)=377.0/161.2,T2:Q1/Q3(m/z)=377.0/143.2。结果代表两个独立实验。(A)中数据是来自两个独立实验的平均值±s.d.。
图10:ScHIDH突变体化学计量产生(R)-2-羟基己二酸。(A)由LC-MS/MS定量的起始含有40ng/μL所示ScHIDH突变体、2mMNADH、2mM 2-氧代己二酸、20mM MgCl2和500mM HEPES的反应的(R)-2-羟基己二酸浓度。(B)对相同反应于340nm吸光度所测的NADH浓度。数据点是来自n=3独立实验的平均值±s.d.。
图11:ScHIDH-R143H的pH依赖性。在标准条件下于各种pHs在HEPES缓冲液中分析ScHIDH-R143H的活性。速率相对于pH7.4的速率。最适pH估计为7.4,与野生型酶相似。重要的是,这与大多数用于基于生物的化学品生产的有机体的细胞质相容。
图12:ScHIDH-R143H的镁依赖性。在标准条件下于各种MgCl2浓度分析ScHIDH-R143H的活性。反应速率相对于20mM MgCl2的速率。MgCl2的KM估计为1.1mM,与野生型HIDH酶相似。
图13:HsIDH1,HsIDH2,SpHIDH和ScHIDH的比对。比对结果显示人(Hs)、粟酒裂殖酵母(Saccharomyes pombe,Sp)和酿酒酵母(Sc)中各自蛋白的二级结构以及保守精氨酸残基的位置。与癌症(cancer ares)相关的人IDH1和IDH2中特定突变显示于上图中。本发明所述的ScHIDH中的同源突变显示于下图中。
图14:ScHIDH-R115Q的活性。(A)含有10mM 2-氧代己二酸、300μM NADH和所示ScHIDH突变体的反应中随时间推移NADH的减少。(B)由所示ScHIDH突变体于如x-轴所示0-22mM 2-氧代己二酸和300μM NADH催化的NADH氧化的起始速率。(C)由所示ScHIDH突变体在如x-轴所示0-42mM NaHCO3和15mM 2-氧代己二酸以及100μM NADH存在下催化的NADH-减少的起始速率。用荧光光谱仪确定NADH浓度(激发波长:340nm;发射波长:450nm)。除非另有说明,所有反应含有20mM MgCl2、40ng/μL纯化的酶和100mM HEPES、pH 7.3。显示n=2反应的平均值±s.d.并且图代表三个独立实验。所示的野生型ScHIDH和ScHIDH-R114Q,-R143K,-R143C和-R143H用于比较。
图15:2-氧代己二酸从赖氨酸α-氨基己二酸生物合成途径改变为外源生物催化路线。在真菌和一些细菌中,存在替代赖氨酸生物合成的酶催化生物合成路线。在该替代性赖氨酸生物合成途径中,来自常规代谢的2-氧代戊二酸(1)(也被称为α-酮戊二酸)通过几种酶法步骤转换成2-氧代己二酸(2)。然后,2-氧代己二酸由α-氨基己二酸转氨酶(α-aminoadipate aminotransferase,AAT)转换成2-氨基己二酸(3)(也被称为α-氨基己二酸)。2-氨基己二酸由α-氨基己二酸还原酶(α-aminoadipate reductase,AAR)转换成2-氨基己二酸半醛(4),其然后被另外两步转换以收获赖氨酸(5)。带有lys2-801突变的酵母株缺乏AAR活性,导致(3)的积累,并被用作微生物宿主。这导致2-氧代己二酸(2)的反馈积累,改变为由外源性突变体ScHIDH介导的通过突变体ScHIDH的生物催化途径。辅因子未显示。导致(2)的步骤发生于线粒体中,而随后形成(3)的步骤发生于细胞质中,(2)可能在腔室之间转运,因为AAT同种型在每个腔室中均有表达。之前该途径的详细讨论见于Xu et al.,Cell Biochem.andBiophys.46(1):43-64(2006)。
图16:由突变体ScHIDH使之成为可能的外源性己二酸生物合成路线。(1)2-氧代己二酸;(2)(R)-2-羟基己二酸;(3)(R)-2-羟基己二酰-CoA;(4)(E)-2-己烯二酰-CoA;(5)(E)-2-己烯二酸;(6)己二酸;(7)己二酰-CoA。没有显示所有的辅因子。ScHIDH和可能的gdh采用NADH作为辅因子而gctA/gctB在它们的反应中交换CoASH和O2。开发从(1)、(2)、(3)、(4)、(5)的路线在酵母中表达以收获(E)-2-己烯二酸并作为己二酸途径的基础。己二酸生物合成的两个可能的代谢途径存在于:(A)(E)-2-己烯二酰-CoA双键的饱和或(B)(E)-2-己烯二酸双键的饱和。在(A)中,生物合成路线是(1)、(2)、(3)、(4)、(5)、(6),并且在(B)中生物合成路线是(1)、(2)、(3)、(4)、(7)、(6)。
图17:pESC-leu2d-gctA/gctB/lys12*质粒和克隆中间物。(A)pESC-leu2d-gctA/gctB的酶切分析。(B)pESC-leu2d-gctA/gctB/lys12*质粒图谱。插入由测序确认。
图18:pESC-His-hgdA/hgdB/hgdC质粒和中间物。(A)pESC-Leu2d-hgdB。(B)pESC-His-hgdA/hgdC酶切分析。(C)pESC-His-hgdA/hgdB/hgdC质粒图谱。插入由测序确认。
图19:pESC-Trp-gdh质粒图谱。
发明详述
在一些人癌症中最常突变的IDH残基是胶质瘤中的人细胞质NADP+依赖的异柠檬酸脱氢酶(HsIDH1)的Arg132和人白血病中的人线粒体NADP+依赖的IDH(HsIDH2)的Arg140。Yan et al.,N.Engl.J.Med.360:765-773(2009);Ward et al.,Cancer Cell 1:225-243(2010)。这些突变的精氨酸残基破坏了天然异柠檬酸底物的β-羧基的相互作用并导致新变体酶功能。Dang et al.,Nature 462:739-744(2009);Wardet al.,Cancer Cell 17:225-243(2010);Pietrak et al.,Biochemistry 50L4804-4812(2011)。
比较人细胞质NADP依赖IDH(HsIDH1)和极端嗜热菌HIDH(TtHIDH)的活性位点以鉴定相似残基位置。Xu et al.,J.Biol.Chem.279:33946-33957(2004);Miyazaki et al.J.Biol.Chem.278:1864-1871(2003)。虽然还没有HIDH与高异柠檬酸底物复合的结构,存在HIDH与高异柠檬酸类似物(2S,3S)-硫杂高异柠檬酸复合的结构;该类似物与高异柠檬酸不同在于C-4被硫原子取代。Nango et al.,J.Biochem.150(6):607-614,(2011)。基于HsIDH1和TtHIDH的晶体结构,分析了相关拓扑结构和负责底物中共同羧基相互作用的特定氨基酸残基(图2A)。酶的比对用于鉴定活性位点周围残基的一级结构、二级结构和相似性(图2B)。这些包括HsIDH1的β-链5(残基128–133)与相应的TtHIDH中β-链(残基114-119)的比对,以及HsIDH1的α-螺旋5(残基95-103)与相应的TtHIDH中α-螺旋(残基83-91)的比对。
HsIDH1的β-链5内含有的Arg132残基具有与TtHIDH的Arg118相似的相应拓扑结构。另外,HsIDH1的α-螺旋5含有Arg100——癌症突变体HsIDH2-R140的同源物——其以相同的方式对应于TtHIDH的Arg88。这些观察结果显示TtHIDH的Arg88和Arg118以与HsIDH1的Arg100和Arg132接触异柠檬酸底物的β-羧基类似的方式正常发挥作用以接触高异柠檬酸底物的β-羧基。Nango et al.,J.Biochem.150(6):607-614(2011)。鉴于类似的结构位置可能揭示类似的功能,认为这些来自人癌症的突变热点残基可以转化催化活性。因为R132H将HsIDH转换成(R)-2-羟基戊二酸脱氢酶,类似的TtHIDH突变R118H将TtHIDH转换成(R)-2-羟基己二酸脱氢酶。Yan et al.,N.Engl.J.Med.360:765(2009);Dang et al.,Nature 462:739(2009)。
TtHIDH-R118H产生R-2-羟基己二酸。
为了研究TtHIDH-R118H突变体的功能,表达并纯化TtHIDH-WT和TtHIDH-R118H,通过NADH的氧化速率监测它们的活性。TtHIDH-R118H在15mM 2-氧代己二酸的存在下以0.058±0.0031U(μmol NADH min-1mg-1)的起始速率氧化NADH(图4A)。相反,在TtHIDH-WT的存在下或不带有2-氧代己二酸的TtHIDH-R118H的存在下观察到最少的NADH氧化(<0.01U)。HIDH-WT能够正常进行反向还原羧化反应,其中要求CO2作为底物以羧化2-氧代己二酸并形成高异柠檬酸。正如所预期的,当以NaHCO3的形式向含有2-氧代己二酸和NADH的反应中加入CO2时,TtHIDH-WT能够以0.14±0.022U的速率消耗NADH(图4B)。但是,与不含有NaHCO3的反应相比,加入NaHCO3并没有刺激TtHIDH-R118H的活性(0.059vs.0.058U,p=0.95)。这些结果显示TtHIDH-WT进行涉及还原羧化的期望的逆反应,而TtHIDH-R118H能够催化不涉及羧化的还原反应。
TtHIDH-R118H的NADH氧化活性的分析表明氢负离子(hydrideion)从NADH被转移到2-氧代己二酸底物。该氢负离子转移(hydridetransfer),和来自溶液的质子的加入,被假设认为导致2-氧代己二酸的α-酮基的加氢反应以形成2-羟基己二酸。因为β-羟基酸氧化脱羧酶及其癌症相关突变体对(R)-羟基己二酸作为其底物/产物是立体选择性的,预期该产物是2-羟基己二酸的(R)对映体。Dang et al.,Nature 462:739-744(2009);Aktas和Cook,Biochemistry 48:3565-3577(2009)。为了验证该假设,开发了鉴别(R)-和(S)-对映体的2-羟基己二酸的靶向定量的高效液相色谱串联质谱(LC-MS/MS)方法。该方法采用二乙酰-L-酒石酸酐衍生化步骤以产生以不同时间从LC柱洗脱的(R)-和(S)-2-羟基己二酸对映体。
在NADH和2-氧代己二酸存在的包含TtHIDH-R118H的反应混合物中产物(R)-2-羟基己二酸增加。反应2h后,NADH的浓度降低了61.3μM,而(R)-2-羟基己二酸的浓度增加了61.3μM,显著地与(R)-2-羟基己二酸的化学计量产品1:1的一致(图4D)。在所有含有2-氧代己二酸的反应中看到2-羟基己二酸的背景水平(在含有15mM 2-氧代己二酸的反应中大约10μM),但在不含有2-氧代己二酸的对照中看不到。这是由于带有R/S-2-羟基己二酸的外消旋混合物的2-氧代己二酸的少量水平的污染(0.061%w/w),可能来自2-氧代己二酸化学储液的少量自发还原。没有观察到(S)-2-羟基己二酸的增加,确认该反应是对(R)-对映体的生产是特异的。在存在TtHIDH-WT或缓冲液对照下进行的反应中没有观察到(R)-2-羟基己二酸的这种增加。因此,TtHIDH-R118H是生产(R)-2-羟基己二酸的(R)-2-羟基己二酸脱氢酶。
还研究了TtHIDH-R118H的底物特异性。虽然TtHIDH被认为是极端嗜热菌中赖氨酸催化途径的HIDH活性之源,但是实际上该酶对5-碳的2-氧代戊二酸比6-碳的2-氧代己二酸效率高20倍。Miyazaki etal.J.Biol.Chem.278:1864(2003)。存在15mM 2-氧代戊二酸比存在15mM 2-氧代己二酸的情况下TtHIDH-R118H氧化NADH的速率快1.3倍(图4C),显示2-氧代戊二酸可能是TtHIDH-R118H的更优选的底物。
ScHIDH-R143H产生R-2-羟基己二酸。
与TtHIDH相反,其与高异柠檬酸相比更喜欢异柠檬酸,来自酿酒酵母的HIDH(由LYS12编码)具有对高异柠檬酸比异柠檬酸快216倍的速率。Lin et al.,Biochemistry 46:890-898(2007)。来自ScHIDH的(R)-2-羟基己二酸脱氢酶被认为具有对2-氧代己二酸比对2-氧代戊二酸更高的特异性并且可能是基于生物的己二酸生成的有用的2-羟基己二酸脱氢酶。因为没有ScHIDH可用的结构信息,考察了TtHIDH和ScHIDH之间的比对(图2B和3)。ScHIDH的Arg143与TtHIDH的Arg118同源,支持了ScHIDH-R143H是TtHIDH-R118H并因此也是HsIDH1-R132H的类似物的假设。Miyazaki et al.J.Biol.Chem.278:1864-1871(2003)。
从细菌表达并纯化ScHIDH-R143H并研究其酶学性质。在2-氧代己二酸的存在下ScHIDH-R143H氧化NADH(0.0096±0.000014U),但ScHIDH-WT具有最低活性(<0.001U)(图5A)。ScHIDH-R143H具有85±21μM的对NADH的米氏常数(KM,NADH)以及1.4±0.25mM的KM,2-氧代己二酸,0.020±0.0027U的最大速度(Vmax)。如TtHIDH的情况,当CO2加入到反应混合物作为HCO3时,ScHIDH-WT证实强有力的活性(0.061±0.0090U;图5B),与由该酶催化的还原、羧化逆反应一致。Lin et al.,Biochemistry 46:890-898(2007)。ScHIDH-WT具有10±3.7mM的其相当于与该酶先前观察到的16.3mM的与TtHIDH-R118H类似,ScHIDH-R143H没有被加入的高至60mM的NaHCO3刺激。
ScHIDH-WT催化异柠檬酸的氧化脱羧,尽管以比高异柠檬酸慢216倍的速度,其意味着ScHIDH可以作用于其它底物。Lin et al.,Biochemistry 46:890-898(2007)。分析突变体ScHIDH-R143H以确定该蛋白是否能够利用其它二羧基酮酸作为底物(图5C)。但是,与不含有底物的反应相比,没有检测到在存在15mM 2-氧代戊二酸的情况下NADH氧化速率的显著增加(二者均<0.001U,p=0.58)。另外,也没有检测到在存在15mMα-氧代己二酸的7-碳类似物的2-氧代庚二酸的情况下NADH氧化的显著增加(<0.001U,与没有底物的相比p=0.47)。因此,ScHIDH-R143H对于2-氧代己二酸相似的其它α-酮二羧酸具有最低或没有混杂活性。
已经确认的是(R)-2-羟基己二酸是ScHIDH-R143H的产物(图5D)。组装了起始含有2mM NADH和2mM 2-氧代己二酸的反应。10h后,与缓冲液对照相比,(R)-2-羟基己二酸的浓度提高到0.97mM,而NADH的浓度降低了0.62mM。这接近所预期的反应的化学计量,其中等摩尔量的NADH、H+和α-酮己二酸被转换成NAD+和2-羟基己二酸。2-羟基己二酸产物是(R)–对映体,并且在含有ScHIDH-WT的对照反应中没有观察到2-羟基己二酸的积累。
多个ScHIDH突变体具有2-羟基己二酸脱氢酶活性。
进行实验以确定癌症中所观察的其它IDH突变体是否也能够赋予HIDH新变体功能。制备HsIDH1-G97D,HsIDH1-R132C,HsIDH1-Y139D,HsIDH2-R140Q和HsIDH2-R172K的ScHIDH类似物。已经在癌症细胞系中观察到这些突变体,在原发癌症中观察到,或者在体外已经显示赋予新变体2-羟基戊二酸活性。Bleeker et al.,Hum.Mut.30:1-11(2009);Yan et al.,N.Engl.J.Med.360:765-773(2009);Ward et al.,Cancer Cell 17:225-234(2010);Ward et al.,Oncogene 2011:1-8(2011)。这些类似的ScHIDH突变体,如在HsIDH1和ScHIDH通过基于结构的比对确定的(图2B和3),是V111D,R114Q,R143K,R143C和Y150D。还通过将精氨酸残基突变为谷氨酸产生ScHIDH-R115Q。当于高NADH浓度(200–800μM)分析时,表达这些突变的细菌的粗裂解物具有2-羟基己二酸活性(图6)。值得注意的是,ScHIDH-R143K能够于相对高的800μM的NADH浓度与ScHIDH-R143H一样快地引发反应速率83.0±0.03%,虽然它在100μM NADH的标准条件下仅能引发忽略不计的活性(ScHIDH-R143H的3.6±0.3%)。因此,多个癌症相关突变能够导致获得性HIDH功能(HIDH gain-of-function)。
在人癌症中观察到的IDH突变体类似的HIDH突变体能够催化NADH依赖的将2-氧代己二酸转换成(R)-2-羟基己二酸。这是来自不同系统发育的HIDH的情况,表明通过特异性突变引入(R)-2-羟基己二酸脱氢酶是可能的。本发明的研究显示IDH癌症突变热点的活性位点精氨酸残基不仅在NADP+依赖的IDH中而且在作用于(R)-羟基酸的β-羟基酸氧化脱羧酶亚族的远亲酶中是保守的。Pietrak et al.,Biochemistry 50:4804-4812(2011)。因此,这些精氨酸残基似乎“掩盖”了脱羧催化过程特异性的酶的非羧化催化功能。最近的研究发现异柠檬酸的紧密结合导致IDH非脱羧活性的竞争性抑制,并且R132H突变破坏异柠檬酸结合并释放该抑制。Pietrak et al.,Biochemistry 50:4804-4812(2011)。本发明的结果显示这也是HIDH和高异柠檬酸的情况。关键精氨酸残基的突变能够在其它作用于(R)-羟基酸底物的β-羟基酸氧化脱羧酶,例如异丙基苹果酸脱氢酶(SEQ ID NO:23–30)或酒石酸脱氢酶(SEQ ID NO:31–34)中具有相似的作用。
将2-氧代己二酸酶法转换成(R)-2-羟基己二酸是建议的生物合成己二酸生产方法的关键步骤,但是之前该步骤由于缺乏进行反应的特定的酶而受到阻碍。Parthasarathy et al.,Biochemistry 50:3540-3550(2011)。本发明的研究显示可以创造ScHIDH突变体以解决该问题。ScHIDH-R143H对于2-氧代戊二酸作为底物具有最低或没有活性,解决了不期望的在该工艺的最初研究中完成的,当HghH用于该步骤时引起的2-氧代戊二酸还原的问题。Parthasarathy et al.,Biochemistry50:3540-3550(2011)。TtHIDH突变体可能不适合用于该应用,因为它们具有对2-氧代戊二酸的混杂底物特异性并且因为它们的极其高的温度最优值。
与HsIDH1-R132H和HsIDH2-R172K类似的突变导致活性最高的ScHIDH突变体。这些是在癌症中各自密码子的最常见的突变,其可以意味着由于提高的新变体功能它们更加频繁地被选择。与ScHIDH-R143H的强有力的活性相反的ScHIDH-R143C的无法检测到的活性与以下事实一致:HsIDH1-R132C导致对于新变体活性比HsIDH1-R132H低2倍的Vmax。Dang et al.,Nature 462:739-744(2009);Gross et al.,J.Exp.Med.207:339-344(2010)。无法检测到的ScHIDH-R114Q活性与该残基突变提供更少的新变体活性一致。备选地,ScHIDH中位置R114和R115的两个精氨酸残基的存在可以给该位置提供冗余性,这样即便引入R114Q,R115能够补充其“掩盖”非羧化催化功能的功能。
产生并分析以下突变,但并未证实100μM NADH底物分析中的2-羟基己二酸脱氢酶活性(或更高NADH底物水平的最低活性):ScHIDH-V111D;ScHIDH-R114Q;ScHIDH-R115Q;ScHIDH-R143C和ScHIDH-Y150D。这些突变中的一些可以实际上具有在该分析条件下无法检测到的低水平活性。
令人惊讶的是,ScHIDH-R114Q和-R115Q具有比其它突变体(即,R114H或R115H)低得多的活性,因为HsIDH2-R140和HsIDH2-R172突变在人白血病中大约同样常见。HsIDH1-R132突变,其在胶质瘤中更频繁,与HsIDH2-R172突变同源。当前的研究还没有发现具有HsIDH2-R140、HsIDH2-R172或HsIDH1-R132突变体的癌症组织中2-羟基戊二酸水平之间的不同。这些结果表明HsIDH2中R140和R172突变导致相似的获得性2-羟基戊二酸脱氢酶活性功能。但是,ScHIDH-R143突变体(例如R143H和R143K,其与HsIDH2-R172突变体同源)与ScHIDH-R114突变体(与HsIDH2-R140突变体同源)相比具有更加强有力的活性。
另外可被突变的残基是ScHIDH-R124。基于同源的粟酒裂殖酵母HIDH(即,SpHIDH)的结构,该残基是接触高异柠檬酸底物β-羧基的三个Arg残基中的一个。参见Bulfer et al.,Proteins 80(2):661-666(2012)。基于与SpHIDH同源序列和对SpHIDH结构的考察,Arg114和Arg143是ScHIDH接触高异柠檬酸底物β-羧基的另外两个Arg残基。参见Xu et al.,J.Biol.Chem.279(32):33946-33957(2004)。本发明所述的结果显示Arg143和Arg114,其是接触高异柠檬酸底物β-羧基的另外两个ScHIDHArg残基,当其突变时导致(R)-2-羟基己二酸脱氢酶活性(图6)。因此,本发明的分析表明如ScHIDH-R124H的突变将会具有(R)-2-羟基己二酸脱氢酶活性。
本发明所公开的具有最强氧化还原酶活性的突变是Arg至His的突变,但是Arg至Lys和Arg至Gln以及其它非Arg氨基酸可能具有氧化还原酶活性功能并可以设想为如本发明所述的突变的可替代性的方面。例如,Arg可以突变为His,Lys,Gln,Asn,Leu,Ile,Val,Tyr,Phe,Trp,Cys,Ser,Thr,Met,Glu,Asp,Ala,Gly或Pro。另外,多个HIDH活性位点残基可以同时突变。例如,可以在单个多肽中制得突变R114H,R115H,R124H和R143H。
因此,本发明所述的是用于生产所述多肽的多核苷酸、多肽、重组方法、表达所述多肽的密码子优化的多核苷酸、含有所述多核苷酸的载体、生产所述多肽的表达系统以及包括这些表达系统的培养的宿主细胞。
如所指出的,本发明所述的一个方面是编码本发明所述的多肽或其保守氨基酸取代的多肽的多核苷酸。在下面更详细地提供关于选择“保守”氨基酸取代的指导。在一个实施方案中,所述多核苷酸是DNA。
本发明所述的另一个方面是编码本发明所述的多肽的密码子优化的多核苷酸。密码子优化的多核苷酸编码多肽,但是,通过用该特定有机体的基因中更频繁或最频繁使用的密码子替换一个或多个、或显著数量的天然序列的密码子,将该天然密码子优化以增强有机体的细胞中的表达。各种种属对氨基酸的特定密码子显示出偏好。用于密码子优化的种属特异性密码子表和程序可用于创建本发明所述的多核苷酸编码序列的优化的密码子。
本发明所述的另一个方面是编码本发明所述的多肽的分离的多核苷酸。短语“分离的多核苷酸”是指从其天然环境分离的多核苷酸。因此,重组的培养的宿主细胞内生产的和/或含有的多核苷酸被认为是本发明所述的分离的目的。另外,“分离的多核苷酸”是已经从重组的培养的宿主被部分或基本上纯化的多核苷酸。此外,分离的多核苷酸包括通过重组方式,通过例如PCR的方法、例如固相合成的合成方法,以及其它任何本领域已知的将多核苷酸从其天然环境分离的方法生产的多核苷酸。
本发明所述的另一个方面是制备载体的方法,包括将本发明所述的多核苷酸插入载体。在另一个方面,记载了通过该方法生产的载体。
在另一个方面,记载了制备培养的宿主细胞的方法,包括将所述载体引入培养的宿主细胞。在另一个方面,通过本发明所述的方法生产培养的宿主细胞。
在另一个方面,记载了分离的多肽,由包括以下步骤的方法生产:(a)将包括编码所述多肽的多核苷酸的载体引入培养的宿主细胞;(b)培养所述宿主细胞;(c)表达所述多肽;以及(d)回收所述多肽。在另一个方面,记载了生产多肽的方法包括:(a)在所述载体表达的条件下培养本发明所述的宿主细胞;以及(b)回收所述多肽。
在另一个方面,记载了含有至少一种本发明所述的多核苷酸的细胞。所述细胞可以是原核或真核。在一个方面,所述含有至少一种本发明所述的多核苷酸的细胞是大肠杆菌、酿酒酵母、巴斯德毕赤酵母、白地霉、白色念珠菌、深红酵母或红东孢藻。
在一个实施方案中,所述多核苷酸包括SEQ ID NO:1、3、5、7、9、11、13、15、17、19、21、23、25、27、29、31、33、154、156、157、159、160、162、163、165、166、168、169、171或172所示的核苷酸序列或其简并、同源或密码子优化的变体。在另一个实施方案中,所述多肽包括SEQ ID NO:2、4、6、8、10、12、14、16、18、20、22、24、26、28、30、32、34、35–153、155、158、161、164、167、170或173所示的氨基酸序列。
在另一个实施方案中,所述多核苷酸包括能够与SEQ ID NO:1、3、5、7、9、11、13、15、17、19、21、23、25、27、29、31、33、154、156、157、159、160、162、163、165、166、168、169、171或172所示的核苷酸序列的任一个的互补物杂交的多核苷酸。
在其它方面,所述多核苷酸可以包括(a)SEQ ID NO:1、3、5、7、9、11、13、15、17、19、21、23、25、27、29、31、33、154、156、157、159、160、162、163、165、166、168、169、171或172的多核苷酸序列,或其片段、其结构域、其密码子优化的变体或其简并变体;(b)能够表达SEQ ID NO:2、4、6、8、10、12、14、16、18、20、22、24、26、28、30、32、34、35–153、155、158、161、164、167、170或173的功能性多肽的多核苷酸序列、其片段、其结构域、其密码子优化的变体或其简并变体;(c)与(a)或(b)具有基本上的相似性的多核苷酸序列;(d)能够与(a)、(b)或(c)杂交的多核苷酸序列;(e)与(a)、(b)、(c)或(d)互补的多核苷酸序列;或(f)与(a)、(b)、(c)或(d)反向互补的多核苷酸序列。上述任何多核苷酸可以用于增强、减弱、抑制或沉默本发明所述的多核苷酸或多肽的表达。在一个方面,所述多核苷酸可以调节细胞中的多核苷酸表达水平。
本发明所述的多核苷酸包括具有涉及一个或多个核苷酸的取代、缺失和/或添加的变体。所述变体可以在编码区、非编码区或二者均发生改变。编码区的改变可以产生保守或非保守氨基酸取代、缺失或添加。这些之中尤其优选的是沉默取代、添加和缺失,其不会改变突变的氧化脱羧酶蛋白或其部分的性质和活性,具有新变体(R)-2-羟基己二酸脱氢酶活性。在该方面还尤其优选保守取代(参见下文)。
本发明所述的进一步的实施方案包括包括多核苷酸的核酸分子,所述多核苷酸具有与以下具有大约50%、55%、60%、65%、70%、75%、80%、85%、90%、91%、92%、93%、94%、95%、96%、97%、98%或99%同一性,以及更优选至少大约90%同一性:(a)编码具有SEQ ID NO:2、4、6、8、10、12、14、16、18、20、22、24、26、28、30、32、34、35–153、155、158、161、164、167、170或173中的氨基酸序列的多肽的核苷酸序列、或其简并、同源或密码子优化的变体;(b)编码具有SEQ ID NO:2、4、6、8、10、12、14、16、18、20、22、24、26、28、30、32、34、35–153、155、158、161、164、167、170或173中的氨基酸序列的多肽的核苷酸序列、或其简并、同源或密码子优化的变体;(c)能够与上述(a)或(b)中的任何核苷酸序列的互补物进行杂交的以及能够表达SEQ ID NO:2、4、6、8、10、12、14、16、18、20、22、24、26、28、30、32、34、35–153、155、158、161、164、167、170或173中的氨基酸序列的功能性多肽的核苷酸序列。
在一个实施方案中,本发明所述的核酸分子包括具有核苷酸序列的多核苷酸,所述多核苷酸编码具有SEQ ID NO:2、4、6、8、10、12、14、16、18、20、22、24、26、28、30、32、34、35–153、155、158、161、164、167、170或173中所示的氨基酸序列的多肽。在另一个实施方案中,所述核酸分子包括具有SEQ ID NO:1、3、5、7、9、11、13、15、17、19、21、23、25、27、29、31、33、154、156、157、159、160、162、163、165、166、168、169、171或172中所示的核苷酸序列的多核苷酸,或其简并、同源或密码子优化的变体。
在一个实施方案中,本发明所述的核酸分子包括编码多肽的包括核苷酸序列的多核苷酸,所述多肽包括功能性(R)-2-羟基酸脱氢酶,其用于催化将1-羧基-2-酮酸转换成1-羧基-(R)-2-羟基酸或其逆反应,包括多肽,其中所述多核苷酸与SEQ ID NO:1、3、5、7、9、11、13、15、17、19、21、23、25、27、29、31或33中所示的多核苷酸序列具有至少90%同一性;其条件是所编码的多肽具有位于SEQ ID NO:2的V111、R114、R115、R124、R143或Y150位置的活性位点的至少一个或多个突变;其中所述一个或多个突变破坏氧化脱羧作用但不破坏氧化还原酶活性。
在另一个实施方案中,本发明所述的核酸分子包括编码多肽的包括核苷酸序列的多核苷酸,所述多肽包括功能性(R)-2-羟基羧酸脱氢酶,其用于催化将1-羧基-2-酮酸转换成1-羧基-(R)-2-羟基羧酸或其逆反应,包括多肽,其中所述多核苷酸是显示于SEQ ID NO:1、3、5、7、9、11、13、15、17、19、21、23、25、27、29、31或33中带有不超过120个核苷酸取代的序列;其条件是所编码的多肽具有与位于SEQ IDNO:2的V111、R114、R115、R124、R143或Y150同功的位置的活性位点的至少一个或多个突变;其中所述一个或多个突变破坏氧化脱羧作用但不破坏氧化还原酶活性。
具有与编码用于立体选择性反应的具有新变体(R)-2-羟基酸脱氢酶活性的氧化还原酶的参考核苷酸序列具有至少,例如,90%“同一性”的核苷酸序列的多核苷酸是指除了所述多核苷酸序列可以包括编码具有新变体氧化还原酶或(R)-2-羟基羧酸脱氢酶活性的氧化脱羧酶多肽的参考核苷酸序列的每100个核苷酸多至大约十个点突变外,与所述参考序列相同的多核苷酸的核苷酸序列。换句话说,为了获得与参考核苷酸序列具有大约至少90%同一性的核苷酸序列的多核苷酸,所述参考序列的多至10%的核苷酸可以被缺失或用其它核苷酸取代,或是多至所述参考序列的总核苷酸的10%的量的核苷酸可以被插入所述参考序列。所述参考序列的这些突变可以发生于所述参考核苷酸序列的5’-或3’-末端位置或是位于这些末端位置之间的任何位置,穿插于或者所述参考序列中单个核苷酸之间或者所述参考序列内一个或多个连续的基团中。
如上文所指出的,可以通过确定它们的百分比同一性比较两个或多个多核苷酸序列。同样,可以通过确定它们的百分比同一性比较两个或多个氨基酸序列。两个序列的百分比同一性,不论核酸或肽序列,通常被描述为两个比对序列之间完全匹配的数字除以较短序列的长度并乘以100。核酸序列的大致比对是由Smith和Waterman,Advancesin Applied Mathematics 2:482-489(1981)的局部同源算法提供的。该算法可以采用由Dayhoff,Atlas of Protein Sequences and Structure,M.O.Dayhoff ed.,5suppl.3:353-358,National Biomedical ResearchFoundation,Washington,D.C.,USA开发的评分矩阵并由Gribskov,Nucl.Acids Res.14(6):6745-6763(1986)标准化而扩展用于肽序列。用于核酸和多肽序列的该算法的实现是由Genetics Computer Group(Madison,Wis.)在他们的BESTFIT应用程序中提供的。该方法的默认参数记载于Wisconsin Sequence Analysis Package ProgramManual,Version 8(1995)(可从Genetics Computer Group,Madison,Wis.获取)。
例如,由于遗传密码的简并性,本领域普通技术人员将认识到大量具有与SEQ ID NO:1、3、5、7、9、11、13、15、17、19、21、23、25、27、29、31、33或154中所示的核酸序列具有至少50%、55%、60%、65%、70%、75%、80%、85%、90%、91%、92%、93%、94%、95%、96%、97%、98%或99%同一性的序列,或其简并、同源或密码子优化的变体的核酸分子会编码具有新变体氧化还原酶活性(例如,(R)-2-羟基己二酸脱氢酶活性)的氧化脱羧酶多肽。
实际上,因为这些核苷酸序列的简并变体均编码相同的多肽,很明显本领域技术人员甚至无需进行任何本发明所述的功能分析或测量。在本领域进一步认识到,对于不是简并变体的核酸分子,合理数量也会编码具有新变体氧化还原酶活性(例如,(R)-2-羟基己二酸脱氢酶活性)的氧化脱羧酶。这是因为本领域技术人员充分认识到氨基酸取代或者不太可能或不可能显著影响蛋白质的功能(例如,用第二个脂肪族氨基酸替换一个脂肪族氨基酸)。
最近,较长多核苷酸序列的合成生产的进展已经使得编码显著较长多肽的核酸的合成生产不必采用传统克隆技术。该类服务的商业提供者包括Blue Heron,Inc.,Bothell,WA。Blue Heron,Inc.采用的技术记载于美国专利号:6,664,112;6,623,928;6,613,508;6,444,422;6,312,893;4,652,639;美国公开专利申请号:2002/0119456A1;2002/0077471A1以及公开国际专利申请(公开号)WO 03054232A3;WO 0194366A1;WO 9727331A2和WO 9905322A1,全部通过参考引入本发明。
分子生物学、微生物学和重组核酸的传统技术也可以被用于生产本发明所述的多核苷酸。这些技术是公知的并且被以下文献解释:例如,Current Protocols in Molecular Biology,F.M.Ausebel,ed.,Vols.I,II,和III(1997);Sambrook et al.,Molecular Cloning:A LaboratoryManual,第2版,Cold Spring Harbor Laboratory Press,Cold SpringHarbor,N.Y.(1989);DNA Cloning:A Practical Approach,D.N.Glover,ed.,Vols.I和II(1985);Oligonucleotide Synthesis,M.L.Gait,ed.(1984);Nucleic Acid Hybridization,Hames和Higgins,eds.(1985);Transcription and Translation,Hames和Higgins,eds.(1984);AnimalCell Culture,R.I.Freshney,ed.(1986);Immobilized Cells andEnzymes,IRL Press(1986);Perbal,“A Practical Guide to MolecularCloning”;系列丛书,Methods in Enzymology,Academic Press,Inc.(1984);Gene Transfer Vectors for Mammalian Cells,J.H.Miller和M.P.Calos,eds.,Cold Spring Harbor Laboratory(1987);和Methodsin Enzymology,Wu和Grossman和Wu,eds.,分别地Vols.154和155,全部通过参考引入本文。
包括本发明所述的多核苷酸或核酸分子的载体、用重组载体遗传工程化的培养的宿主细胞和通过重组技术具有新变体(R)-2-羟基己二酸脱氢酶活性的氧化脱羧酶多肽的产物是本发明所述的组合物的实施方案。
可以采用公知的技术如感染、转导、转染、转位、电穿孔和转化将重组构建体引入培养的宿主细胞中。例如,这些载体可以是噬菌体、质粒、病毒或逆转录病毒载体。逆转录病毒载体可以是有复制能力的或复制缺陷的。在后一种情况中,病毒的繁殖通常只发生在互补的培养的宿主细胞中。
多核苷酸可以连接到含有选择性标记的载体用于在培养的宿主中繁殖。通常,质粒载体在沉淀中引入,例如磷酸钙沉淀或在与带电脂质的复合物中引入。如果所述载体是病毒,其可在体外采用合适的包装细胞系包装并且然后转导入培养的宿主细胞。
优选的是包括感兴趣的所述多核苷酸的顺式作用控制区的载体。合适的反式作用因子可以由培养宿主提供、由互补载体提供或引入培养的宿主时由载体本身提供。
在这方面的某些实施方案中,该载体提供了特异性表达,其可以是可诱导的和/或细胞类型特异性的。这类载体中特别优选的是那些可受易于操控的环境因素诱导的,例如温度和营养添加剂。
用于本发明所述的这些方面的表达载体包括染色体来源的、游离基因来源的和病毒来源的载体,例如,细菌质粒、噬菌体、酵母游离体、酵母染色体元件、病毒(例如,杆状病毒、乳头瘤多型空泡病毒、痘苗病毒、腺病毒、禽痘病毒、伪狂犬病毒和逆转录病毒)来源的载体,及源自其组合的载体,如粘粒和噬菌粒。
DNA插入片段应当被可操作地连接到合适的启动子,如噬菌体λPL启动子、大肠杆菌lac、trp和tac启动子、SV40早期和晚期启动子和逆转录病毒LTRs的启动子,仅举几例。其它合适的启动子对于本领域技术人员是已知的。表达构建体还含有转录起始、终止位点以及在转录区中的用于翻译的核糖体结合位点。构建体表达的成熟转录物的编码部分可以包括开始的翻译起始和适当地定位于所述被转录和/或翻译的多核苷酸的末端的终止密码子(UAA、UGA或UAG)。
如所指出的,表达载体优选包括至少一个选择性标记。这类标记包括用于真核细胞培养的二氢叶酸还原酶或新霉素抗性和用于大肠杆菌和其它细菌培养的四环素或氨苄青霉素抗性基因。合适的培养的宿主的代表性的例子包括,但不限于,细菌细胞,如大肠杆菌、链霉菌和鼠伤寒沙门氏菌细胞;真菌细胞,如酵母包括大肠杆菌、酿酒酵母、巴斯德毕赤酵母、白地霉、白色念珠菌、深红酵母或红东孢藻;昆虫细胞如果蝇S2和草地夜蛾Sf9细胞;动物细胞如CHO、COS和黑色素瘤细胞;以及植物细胞。上述培养的宿主细胞的合适的培养基和条件是本领域已知的。
这些载体中优选用于细菌的包括例如,pET24b或pET22b可获取自Novagen,Madison,WIpET-24b(+)和pET-22b(+);pET表达系统24b(目录号69750)和22b(目录号70765),分别可获取自EMDBiosciences,Inc.,Novagen Brand,Madison,WI;参见有关载体pET-24b和pET-22b详细产品信息章节),pQE70,pQE60和pQE-9,可获取自Qiagen Inc.,Valencia,CA;pBS载体,PHAGESCRIPT载体BLUESCRIPT载体,pNH8A,pNH16a,pNH18A,pNH46A,可获取自Stratagene,La Jolla,CA;以及ptrc99a,pKK223-3,pKK233-3,pDR540,pRIT5可获取自Pharmacia(现为Pfizer,Inc.,New York,NY)。在优选的真核载体中是pWLNEO、pSV2CAT、pOG44、pXT1和pSG可获取自Stratagene;以及pSVK3、pBPV、pMSG和pSVL可获取自Pharmacia。其它合适的载体对本领域技术人员是显而易见的。
适合用于如本发明所述的细菌启动子包括大肠杆菌lacI和lacZ启动子、T3和T7启动子、gpt启动子、λPR和PL启动子以及trp启动子。合适的真核启动子包括CMV立即早期启动子、HSV胸苷激酶启动子、早期和晚期SV40启动子和逆转录病毒LTRs的启动子,如劳斯肉瘤病毒(RSV)的那些,以及金属硫蛋白启动子,如小鼠金属硫蛋白-I启动子。
将载体构建体引入培养的宿主细胞可以通过磷酸钙转染、DEAE-葡聚糖介导的转染、阳离子脂质介导的转染、电穿孔、转导、感染或其他方法起作用。这些方法在许多权威的实验室手册中描述,如Daviset al.,Basic Methods In Molecular Biology,2nd Edition(1995)。
本发明所述的编码多肽的高等真核生物的DNA的转录可以通过将增强子序列插入载体得以提高。增强子是DNA的顺式作用元件,通常大约从10至300bp,在给定的培养的宿主细胞类型中作用以提高启动子的转录活性。增强子的例子包括SV40增强子,其定位于复制起点后边100-270bp,巨细胞病毒早期启动子增强子,复制起点后边的多瘤病毒增强子以及腺病毒增强子。
对于翻译的蛋白质进入内质网的内腔、进入周质空间或进入细胞外环境中的分泌,可将合适的分泌信号引入所表达的多肽。所述信号可以对所述多肽是内源性的或它们可以是异源信号。
所述多肽可以修饰的形式表达,如融合蛋白,并可以不仅包括分泌信号还可以包括额外的异源功能区。例如,额外氨基酸的区,尤其是带电氨基酸,可以添加到例如,所述多肽的N-末端,以提高培养的宿主细胞的在纯化或随后的处理和存储过程中的稳定性和持久性。另外,肽部分可以被添加到所述多肽以促进纯化。在所述多肽的最终制备之前该区域可以被去除。对多肽添加肽部分以产生分泌或排泄、以提高稳定性和以便于纯化等等是本领域熟知的和常规的技术。优选的融合蛋白包括有助于溶解蛋白的来自免疫球蛋白的异源区域。例如,EP0464533(对应加拿大的2,045,869)公开了融合蛋白,其包括与另一个人蛋白或其部分一起的免疫球蛋白分子的恒定区的多个部分。在许多情况下,融合蛋白的Fc部分对于治疗和诊断的用途是完全有利的,从而导致例如提高的药代动力学性质。另一方面,人们希望在所述有利的方式中对于一些用途能够在融合蛋白被表达、检测和纯化后删除Fc部分。当Fc部分被证明阻碍在治疗和诊断中的使用,例如,当融合蛋白被作为抗原用于免疫就是这种情况。在药物发现中,例如,人蛋白质已与Fc部分融合用于高通量筛选分析的目的(如hIL5-受体,以鉴定hIL5的拮抗剂)。参见,Bennett,D.,et al.,J.MolecularRecognition,8:52-58(1995)和Johanson,K.et al.,J.Biol.Chem.270(16):9459-9471(1995)。
多肽
本发明所述的多核苷酸包括那些编码本发明所述的多肽的突变、变体、取代或特别的例子。例如,关于如何制造表型沉默氨基酸取代的指南由以下文献提供:Bowie,J.U.et al.,“Deciphering the Messagein Protein Sequences:Tolerance to Amino Acid Substitutions,”Science 247:1306-1310(1990),其中作者指出蛋白惊人地耐受氨基酸取代。虽然可以通过应用这些一般原则来获得任意数目的氨基酸的取代,对于具体取代的指导,本领域技术人员可以查阅关于氧化脱羧酶结构域的结构和功能的本发明所引用的参考文献。
还应该理解的是,取决于所使用的标准,本发明所述的多肽的氧化脱羧酶活性位点的确切的“位置”或序列可以在在本发明所述的实施方案的范围内的特定的变体中稍微不同。例如,活性位点的确切定位可以稍微改变和/或围绕活性位点的氨基酸残基可以改变。因此,可以设想如本发明所述的展示新变体氧化还原酶活性(例如,(R)-2-羟基己二酸脱氢酶活性)的氧化脱羧酶多肽的变体。这些变体包括缺失、插入、倒置、重复和取代。如上文所指出的,关于哪种氨基酸改变可能为表型沉默的指南可见于Bowie,J.U.,et al.,“Deciphering theMessage in Protein Sequences:Tolerance to Amino AcidSubstitutions,”Science 247:1306-1310(1990)。
因此,SEQ ID NO:2、4、6、8、10、12、14、16、18、20、22、24、26、28、30、32、34,35–153,155,158,161,164,167,170或173的多肽的片段、衍生物或类似物可以是(i)那些其中一个或多个所述的氨基酸残基(例如,1,2,3,4,5,7,8,9,10,11,12,13,14,15,16,17,18,19,20,25,30,35,40,45或50个残基或甚至更多个)被保守或非保守氨基酸残基(优选保守氨基酸残基)取代。这些取代的氨基酸残基可以是或可以不是那些由遗传密码编码的,或(ii)那些其中一个或多个所述的氨基酸残基包括取代基(例如,1、2、3、4、5、7、8、9、10、15、20、25、30、35、40、45或50个残基或甚至更多个),或(iii)那些其中成熟多肽与其它化合物融合,如提高所述多肽半衰期的化合物(例如,聚乙二醇),或(iv)那些其中额外氨基酸融合至成熟多肽,如IgG Fc融合区肽或前导或分泌序列或用于成熟多肽或前蛋白序列的纯化的序列。这样的片段、衍生物和类似物被认为在本领域技术人员从本发明的教导的范围之内。
此外,SEQ ID NO:2、4、6、8、10、12、14、16、18、20、22、24、26、28、30、32、34、35–153155、158、161、164、167、170或173的多肽的片段、衍生物或类似物可以被一个或多个保守或非保守氨基酸残基(优选保守氨基酸残基)取代。在某些情况下,这些多肽、片段、衍生物或其类似物将具有与SEQ ID NO:2、4、6、8、10、12、14、16、18、20、22、24、26、28、30、32、34、35–153155、158、161、164、167、170或173所述的多肽序列具有至少50%、55%、60%、65%、70%、75%、80%、85%、90%、91%、92%、93%、94%、95%、96%、97%、98%或99%同一性的多肽序列并且将包括功能性或非功能性蛋白或酶。
如本发明所述,在许多情况下,所述氨基酸取代或突变优选性质轻微的,如不显著影响蛋白的折叠或活性的保守氨基酸取代。当然,本领域技术人员所进行的氨基酸取代的数量取决于许多因素,包括本发明所述的那些。通常任何给定多肽的取代数量不会超过大约100、90、80、70、60、50、40、30、25、20、19、18、17、16、15、14、13、12、11、10、9、8、7、5、6、4、3、2或1。
如图2B、3和13所述的序列比对可用于确定哪些位置的取代或突变可作用于本发明所述酶的活性位点以改变酶活或产生新变体活性。进一步地,取代或突变可用于修饰基于本发明所述的进化保守残基的一级、二级或三级结构。这种修饰可以减弱或增强酶活、改变底物或辅因子偏好或产生新变体酶活。
具有新变体氧化还原酶活性(例如,(R)-2-羟基己二酸脱氢酶活性)的氧化脱羧酶中对功能重要的氨基酸可以通过本领域已知的方法鉴定,如定点突变或丙氨酸扫描突变。Cunningham和Wells,Science 244:1081-1085(1989)。后一种方法在分子中的每个残基引入单个丙氨酸突变。然后,测试所得突变体分子的生物学活性,例如如本发明提供的实施例中所示的。对于配体结合关键的位点也可通过结构分析确定,如结晶、核磁共振或光亲和标记。Smith,et al.,J.Mol.Biol.224:899-904(1992)和de Vos,et al.Science 255:306-312(1992)。即便从蛋白的N-末端缺失一个或多个氨基酸导致蛋白的一种或多种生物学功能的修饰或缺失,其它生物学活性可以保留。
还可以设想在本发明所述的“分离的多肽”的制备中有用的多肽可以通过固相合成方法生产。参见Houghten,R.A.,Proc.Natl.Acad.Sci.USA 82:5131-5135(1985)和美国专利号4,631,211至Houghten et al.(1986)。
本发明所述的多肽可以分离的形式提供。术语“多肽”涵盖“分离的多肽”。短语“分离的多肽”是指从其天然环境分离的多肽。因此,重组培养的宿主细胞之内生产和/或包含的多肽被认为是本发明所述的分离的目的。进一步地,“分离的多肽”是已经从重组培养的宿主被部分或基本上纯化的多肽。
具有与新变体氧化还原酶活性(例如,(R)-2-羟基己二酸脱氢酶活性)的氧化脱羧酶多肽的参考氨基酸序列具有所示百分比同一性的氨基酸序列的多肽可以通过如上文所示的关于多核苷酸的方法确定,包括计算机辅助的方法。就像是前面讨论的核苷酸序列考察并比较多肽氨基酸序列。本领域技术人员将会认识到,当考虑到对多肽分析这些方法和程序的相应的用途时,这些对多核苷酸所讨论的分子端点的概念将会具有直接的类似物。例如,关于多核苷酸所讨论的人工校正是指核酸的5’-和3’-端点,而相同的讨论也适用于多肽的N-末端和C-末端。
具有与新变体氧化还原酶活性(例如,(R)-2-羟基己二酸脱氢酶活性)的氧化脱羧酶多肽,其在翻译过程中或之后差异化修饰,例如通过糖基化、乙酰化、磷酸化、酰胺化、通过已知的保护/阻断基团的衍生化、蛋白水解酶切、与抗体分子或其他细胞配体相连等。任何多种化学修饰可以通过已知技术进行,包括但不限于,通过溴化氢、胰蛋白酶、胰凝乳蛋白酶、木瓜蛋白酶、金黄色葡萄球菌V8蛋白酶、NaBH4的特异性化学裂解;乙酰化、甲酰化、氧化、还原;在衣霉素存在下代谢合成等。
额外的翻译后修饰可以包括,例如,如N-连接或O-连接的糖链、N-末端或C-末端处理、化学部分连接氨基酸主链、N-连接或O-连接的糖链的化学修饰和N-末端甲硫氨酸残基的添加,其结果是载体和构建体适于在原核培养的宿主细胞中具有新变体氧化还原酶活性的氧化脱羧酶多肽的表达。所述多肽还可以用可检测的标记修饰,如酶、荧光、同位素或亲和标记,以允许用于检测和分离蛋白。
本发明所述的组合物和方法的范围包括所有实际的或潜在的本发明所述的方面、实施方案、实施例和偏好的组合。本发明所述的所有酶反应包括正向和逆反应并且包括应用质量作用的原理,通过改变本发明所述的酶、反应物、产物、辅因子、中间代谢物、反馈抑制子或增强子的相关浓度来驱动一个或另一个方向的反应的平衡。进一步地,可以调整物理化学因子如pH、温度、压力或溶剂以调节本发明所述的反应。
实施例
实施例1
HIDH构建体的制备
缺失3’-终止密码子的编码极端嗜热菌HIDH(TTC1012)的平末端1002碱基对(bp)片段扩增自极端嗜热菌HB27gDNA文库(ATCC)。缺失3’-终止密码子的编码LYS12的平末端1110bp片段采用KAPATaq DNA聚合酶(KAPA Biosystems,Woford,MA)扩增自酿酒酵母gDNA文库。这些片段按照制造商的说明书克隆入pTrcHis2-TOPO(Invitrogen,Carlsbad,CA)。采用QuikChange定点突变试剂盒(Agilent)进行突变。所有构建体采用pTrcHis2-for和pTrcHis2-rev引物测序验证。构建体列于表1,SEQ ID NO:1-22。
实施例2
HIDH突变体的纯化
从公开的方法调整了高异柠檬酸脱氢酶的表达和纯化过程。Lin etal.,Biochemistry 46:890-898(2007)。表达构建体转化入BL21-DE3大肠杆菌(Stratagene)。单菌落接种到5mL LB-Amp培养基起子培养物(starter cultures)并摇动(37℃225rpm)生长6h。起子培养物(5mL)加入45mL LB-Amp,摇动2h,并且用1mM IPTG诱导后再摇动2小时。4,500×g 4℃离心收集沉淀并在2mL缓冲液B(500mM NaCl,10mM MgCl2,20mM咪唑,2mMβ-巯基乙醇,10mM Tris,pH 7.5,补充来自Roche的1×无EDTA的cOmplete MiniTM蛋白酶抑制剂)中冰上重悬并在Sonifer 250(Branson)上冰上每次15秒超声6个循环。13,000×g 4℃离心澄清该裂解物。裂解物上样到已经用缓冲液B 300×g4℃离心10min预平衡过的Ni-NTA离心柱(Qiagen)。然后用10倍柱体积的含有75mM咪唑,5%甘油和0.1%Triton-X 100的缓冲液B 900×g离心1min洗涤。采用改成含有500mM咪唑的缓冲液B获得洗脱液。洗脱液标准化至400ng/μL,加入10%甘油并分装存储于-80℃。用考马斯蓝G染料(Sigma)或SilverQuest银染试剂盒(LifeTechnologies)染色的SDS-PAGE分析纯度(图7)。
实施例3
HIDH突变体的粗裂解物的制备
为了获得粗裂解物,如上所述的0.5mL起子培养物加入4.5mLLB-Amp,摇动2h,在用1mM IPTG孵育后再摇动2h。4,500×g 4℃离心收集这些培养物的沉淀。这些沉淀冰上重悬于500μL缓冲液A(0.2%Triton-X 100,1mM PMSF,0.5mM EDTA,10mM Tris,pH7.5)并在Sonifer 250(Branson)上冰上每次15秒超声6个循环。然后,13,000×g 4℃,15分钟离心下来,并该澄清的裂解物再用裂解缓冲液标准化至700ng/μL并分装存储于-80℃。根据制造商的说明书采用BioRad蛋白分析试剂确定蛋白浓度。
实施例4
活性测量
NADH、2-氧代己二酸、2-氧代戊二酸、2-庚二酸和MgCl2来自Sigma。标准反应混合物含有15mM 2-氧代己二酸、100μM NADH和终浓度20mMMgCl2和500mM HEPES,pH7.3的反应缓冲液。通过PolarSTAR Optima读板机(BMG Labtech)以激发340nm和发射450nm的荧光的减弱监测NADH氧化。荧光监测反应在覆盖有透明光学膜的黑色384微孔板(Greiner 788076)中的10μL体积中进行。荧光水平基于在含有BSA的反应缓冲液中的标准NADH转换成NADH浓度。高含量NADH的反应由在透明96孔板中的40μL体积中的NADH在340nm的紫外吸光度来监测。
实施例5
反应速率计算
反应速率是每单位时间每单位纯化的酶或粗裂解物的NADH的氧化,1单位(U)是1μmolNADH min-1mg -1。速率是对反应的第一个10分钟的最小二乘线性回归计算的起始速率。对于KM的确定,使用底物/辅因子的浓度至少比KM高5×,而感兴趣的种属在浓度上发生改变;底物/辅因子的浓度:500μM NADH;15mM 2-氧代己二酸;20mMMgCl2。报告的α-羟基己二酸(2-羟基己二酸)Vmax值是获取自2-氧代己二酸KM确定实验。将数据置于在GraphPad Prism 5.0(GraphPadSoftware,La Jolla,CA)中采用非线性回归的曲线中来估算米氏常数KM和Vmax参数。t-检验(Student’s t-tests)用于确定在二羧酸底物而不是2-氧代己二酸存在下反应的平均速率(n=4)是否显著高于无底物对照。
实施例6
反应物的合成
将1mg 2-氧代己二酸与1mg NaBH4在200μL无水甲醇中60℃反应30min以产生(R)-和(S)-2-羟基己二酸的外消旋混合物并通过直接注入式质谱确认。如前所述合成[3,3,4,4-2H4]-(R/S)-2-羟基戊二酸(2-羟基戊二酸;2HG-d4)。Jin et al.,PLoS one 6,e16812:1-8(2011)。
实施例7
通过LC-MS/MS对(R)-和(S)-2-羟基己二酸的定量
基于对2-羟基戊二酸所描述的方法进行定量、对映体特异性的LC-MS/MS。Jin et al.,PLoS one 6,e16812:1-8(2011);Struys,et al.,Clin.Chem.50:1391-1395(2004)。对于20μL反应混合物,加入2μL130μg/mL的水中的[3,3,4,4-2H4]-2-羟基戊二酸(内标)的外消旋混合物并通过真空离心机干燥所述混合物(50℃,15min)。干燥的残留物用50mg/mL新鲜制备的二氯甲烷/冰醋酸(体积比4:1)中的二乙酰基-L-酒石酸酐(Sigma)处理并加热(75℃,30min)。干燥(50℃,15min)后所述残留物溶解于100μL LC流动相A(参见下文)用于分析。Agilent1200系列HPLC(Santa Clara,CA)用于液相色谱(LC)并且Sciex/Applied Biosystems API 3200QTrap(Carlsbad,CA)用于三重四极杆质谱(MS/MS)。流动相A:水、3%乙腈、280μL氢氧化铵(~25%),pH用甲酸(~98%)调节为3.6。流动相B:甲醇。分析柱:Kinetex C-18,150×4.6mm,2.6μm,以及SafeGuard C-184×3mm guard-column来自Phenomenex(Torrance,CA)。柱温度:45℃。以1mL/min流速的洗脱梯度:0–1min 0%B,1–2min 0–100%B,2–3.5min 100%B,3.5–4min 100–0%B,4–10min 0%B。注入体积:10μL。监测Q1/Q3(m/z)转换:377/161,2-羟基己二酸(2HA)和367/151,[3,3,4,4-2H4]-2-羟基戊二酸(2HG-d4)。为了校准,0,0.16,0.54,1.8,6和20μg/mL的如上述合成的2-羟基己二酸(Sigma)在反应缓冲液中进行分析。根据从HPLC柱洗脱的时间区分(R)-和(S)-对映体,采用与如前所述的2-羟基戊二酸的外消旋混合物相比(R)-2-羟基戊二酸的相对洗脱时间来鉴定(R)-2-羟基己二酸对映体。Jin et al.,PLoS one 6,e16812:1-8(2011)。标准品与实验样品一起进行分析。除最低水平(0.16μg/mL,80%)之外所有的精度接收标准均为85%。
实施例8
TtHIDH-R118H是(R)-2-羟基戊二酸脱氢酶
本发明所述的实验显示极端嗜热菌HIDH R188H突变体,TtHIDH-R118H,在NADH的存在下消耗2-氧代己二酸(图4A)。进一步的实验证实TtHIDH-R118H产生(R)-2-羟基己二酸作为该反应的产物(图4C)。TtHIDH-R118H还利用2-氧代戊二酸作为底物,并且活性比2-氧代己二酸所观察到的更快。“戊二酸”是指5-碳骨架;而“己二酸”是指6-碳骨架。因此,通过NADH的氧化所观察和检测的由TtHIDH-R118H催化的反应是“(R)-2-羟基戊二酸脱氢酶”活性(图4C)。因此,所述TtHIDH-R118H酶作为进行下述可逆相互转换的(R)-2-羟基戊二酸脱氢酶起作用:
自然界中FAD-连接的(R)-2-羟基戊二酸脱氢酶是丰富的。在某些人癌症中,HsIDH1和HsIDH2的突变有效转换这些酶成为NADPH-连接的2-羟基戊二酸脱氢酶。参见Dang et al.,Nature 462:739-744(2009)。尽管如此,这是首次证实的体外采用定点突变产生的新的NADH-连接的2-羟基戊二酸脱氢酶。因此,本发明所述的同源的HIDH突变体也被认为具有2-羟基戊二酸活性。参见表1和2。
实施例9
异丙基苹果酸脱氢酶和酒石酸脱氢酶的活性转换
本发明公开了基于本发明所述的方法的带有预测的2-羟基酸脱氢酶活性的野生型和突变体异丙基苹果酸脱氢酶和酒石酸脱氢酶的多核苷酸和多肽序列。参见表1,SEQ ID NO:23-34。这些突变与对本发明所述的ScHIDH1-R114H-R115H或-R143H突变体所做的那些是同源的。参见图2B。显示了酿酒酵母异丙基苹果酸脱氢酶(ScIPMDH)、极端嗜热菌异丙基苹果酸脱氢酶(TtIPMDH)和大肠杆菌酒石酸脱氢酶(EcTDH)序列。序列表中公开的突变是Arg至His突变,但是Arg至Lys和Arg至Gln以及其它非Arg氨基酸可能具有新变体(R)-2-羟基己二酸脱氢酶活性功能并可以设想为如本发明所述的多肽的可替代性的实施方案。例如,Arg可以突变为His,Lys,Gln,Asn,Leu,Ile,Val,Tyr,Phe,Trp,Cys,Ser,Thr,Met,Glu,Asp,Ala,Gly或Pro。进一步地,多个IPMDH或TDH活性位点残基可以同时突变。HsIDH1或ScHIDH活性位点的那些同源位置的残基对于本发明所述的突变是有用的靶标。例如,ScHIDH多肽(即,SEQ ID NO:2)的V111,R114,R115,R124,R143,Y150等,同源位置的残基是为了生产带有新变体(R)-2-羟基己二酸脱氢酶活性的氧化还原酶的如本发明所述的突变的候选物。
实施例10
高异柠檬酸脱氢酶向(R)-2-羟基己二酸脱氢酶的转换
可从NCBI蛋白数据库获取的突变体高异柠檬酸脱氢酶的多肽序列列于表2。包括编码列于表2的各自多肽的核苷酸序列的基因在公开的数据库中是已知的并且是可获取的。表2列出野生型多肽的GI号并且所编码多核苷酸可同样从数据库或例如通过反向翻译获取。每个列于表2的多肽序列具有两个如残基和位置号所示的Arg至His突变,其根据本发明所公开的实验数据预计可以将野生型酶从氧化脱羧酶转换成氧化还原酶(脱氢酶)。
在示例性的、非限制性的实施方案中,表2和SEQ ID NO:35-138中所公开的突变含有与ScHIDH(SEQ ID NO:2)的R114和R132同源位置的Arg至His突变,其分别对应于HsIDH1(SEQ ID NO:140)的R100和R132位置。参见图2和3。例如,SEQ ID NO:35包括带有突变R96H和R126H的荚膜阿耶罗菌(Ajellomyces capsulate)HIDH的多肽序列,其对应于ScHIDH的R114和R132突变。
表2和SEQ ID NO:35-138中的Arg至His突变是示例性的,因为Arg至Lys、Arg至Gln以及其它非Arg氨基酸可能具有氧化还原酶活性功能并可以设想为如本发明所述的突变体多肽的可替代性的实施方案。例如,所示Arg残基可以突变为His、Lys、Gln、Asn、Leu、Ile、Val、Tyr、Phe、Trp、Cys、Ser、Thr、Met、Glu、Asp、Ala、Gly或Pro。此外,多个HIDH活性位点残基可以在单个多肽中同时突变。例如,可以在本发明所述的多肽的范围内设想ScHIDH的同源位置,如V111,R114,R115,R124,R143,Y150的残基突变。可以对本发明所述的编码多肽的多核苷酸进行突变或在本发明所述的多肽的固相合成中进行突变。可以对特定多肽中的1、2、3、4、5、6、7、8、9、10、15、20、30、40或50或甚至更多的氨基酸残基进行突变。突变可以是保守的,或者改变特定残基或位置的生化特性。在某些方面,所述多肽可以具有一个或多个突变或保守氨基酸取代,其条件是多肽具有与位于酿酒酵母高异柠檬酸脱氢酶(ScHIDH)即SEQ ID NO:2的V111、R114、R115、R124、R143或Y150同功的位置的活性位点的至少一个或多个突变。
这些突变还可以引入编码所述突变体多肽的多核苷酸,例如,通过反向转录多肽序列以产生编码在特定有机体中表达的多肽的密码子优化的核苷酸序列。另外,基于可从各种数据库(例如NCBI)获取的序列并且采用本领域已知的标准方法引入突变,野生型核苷酸序列可从获取自有机体的cDNA克隆或合成制备。
实施例11
ScHIDH R143突变体的动力学特性
在384黑色微孔板中以10或20μL体积40ng/μL酶、15mM 2-氧代己二酸、100μM NADH、20mMMgCl2和100mM HEPES,pH7.3进行分析。在荧光读板仪(fluorescent plate reader)上通过荧光(激发波长:340nm;发射波长:450nm)的减弱监测NADH浓度。荧光强度基于NADH标准品转换成NADH浓度。高含量NADH的反应(>300μM)由相同读板机上在透明96孔板中的40μL体积中的NADH在340nm的紫外吸光度来监测。25℃进行ScHIDH反应并且45℃进行TtHIDH反应。报告的速率是来自反应的第一个10分钟的起始速率。对于KM的确定,使用的底物的浓度至少比KM高5×(对于NADH,500μM;对于2-氧代己二酸,15mM)而感兴趣的底物在浓度上发生改变。将数据置于采用非线性回归的方程式(1)来估算米氏常数KM和Vmax,其中x是底物浓度并且y是速率。
(1)         y=Vmax·x/KM+x
表3概括了ScHIDH-R143C,-R143H和-R143K的速率数据。
实施例12
ScHIDH-R143H的pH依赖性
在上述实施例11所述的标准反应条件下于各种pH在HEPES缓冲液中分析ScHIDH-R143H的活性。速率为相对于pH7.4的速率。最适pH估计为7.4,与野生型酶相似。结果如图11所示。该pH与大多数用于基于生物的化学品生产的有机体的细胞质相容。
实施例13
ScHIDH-R143H的镁依赖性
在实施例11所述的标准反应条件下于各种MgCl2浓度分析ScHIDH-R143H的活性。速率为相对于20mM MgCl2的速率。MgCl2的KM估计为1.1mM,与野生型ScHIDH酶相似。结果如图12所示。
实施例14
ScHIDH-R115Q的比对与活性
本发明还确定了纯化的ScHIDH-R115Q的活性。当在如上所述的标准反应条件(40ng酶、10mM 2-氧代己二酸、100μMNADH、0.5MHEPES,pH7.4,20mM MgCl2)下分析,该突变体表现得基本上与野生型相同。ScHIDH R115Q的数据进一步提供基于比对甚或结构数据不是明显的关于有活性的和那些没有活性的突变体的证据。参见图13。值得注意的是,不清楚R114或R115是否与HsIDH1-R100功能性同源,因为这两个残基在酶的一级序列和三维结构方面与HsIDH1-R100比对均非常紧密。
与ScHIDH-R143H相反,在标准反应条件下,ScHIDH-R115Q突变体在2-氧代己二酸存在下或单独NADH时不氧化NADH(参见图14A和B)。但是,像野生型ScHIDH,当以NaHCO3的形式提供CO2作为底物时R115Q突变体不氧化NADH(参见图14C)。总之,这些结果显示ScHIDH R115Q突变体与野生型ScHIDH具有相似的反应性。因此,即便不清楚Arg114或Arg115与在人IDH1中产生功能改变的癌症相关的Arg100突变是否同源,这些数据显示ScHIDHArg114是人IDH1Arg100的功能性类似物。
实施例15
己二酸和其它代谢物的生物合成的表达系统的产生
创造用于在微生物的生物合成途径中表达ScHIDH突变体和酶的质粒。选择酿酒酵母作为宿主有机体。与大多数有机体相反,嗜热细菌和真菌,包括酿酒酵母,在替代的赖氨酸生物合成途径中产生2-氧代己二酸作为中间物(参见图15)。因此,酵母通过代谢途径提供2-氧代己二酸作为生物合成己二酸合成的起始材料。此外,酿酒酵母是生物分子合成的建立的宿主,有许多突变体菌株可用,并且大量遗传工具可用于调控该有机体。
酿酒酵母ura3–52 lys2–801amber ade2–101ochre trp1–Δ63his3–Δ200 leu2–Δ1(YPH499,被描述于pESC酵母抗原表位标记的载体Clontech公司手册217451-12)用作宿主菌株基因型以协助2-氧代己二酸作为己二酸生物合成的反应物。该菌株具有编码在赖氨酸生物合成中正常发挥功能的α氨基己二酸还原酶(AAR)的Lys2(lys2–801amber)基因缺失。参见Chattoo et al.,Genetics 93(1):51-65(1979)。AAR(EC 1.2.1.31)催化2-氨基己二酸(图15中的3)在C6的还原成半醛(图15中的4)。在该系统中,Lys2缺陷导致2-氨基己二酸的积累。α-氨基己二酸转氨酶(AAT,EC 2.6.1.39)催化将2-氧代己二酸(图15中的2)转换成接近真菌赖氨酸生物合成途径中的Lys2/AAR的2-氨基己二酸。AAT被2-氨基己二酸反馈抑制,导致2-氧代己二酸积累,其可以被驱入外源性己二酸途径。
在酵母的外源性,ScHIDH-突变体-起始的,己二酸生物合成途径中的编码四个酶的六个基因被克隆并表达。该途径如图16所示。突变体ScHIDH通过特异性作用于2-氧代己二酸以将其转入外源性己二酸生物合成途径起始己二酸生物合成。剩下的外源性生物合成途径由戊烯二酸CoA-转移酶;羟基戊二酰-CoA脱水酶和非脱羧戊二酰辅酶A脱氢酶进行。所有基因采用从头基因合成用对酵母表达优化的密码子进行合成。原始基因、密码子优化的序列和多肽列于表4。注意ScHIDH突变体(LYS12突变体)不是密码子优化的因为该基因来自酿酒酵母。
选择并产生ScHIDH-R143C突变体是因为体外数据显示R143C突变体具有所分析的任何ScHIDH突变体的最高的最大转换。缺失由ScHIDH残基2-21组成的线粒体定位序列以将ScHIDH-R143C靶向细胞质。选择该定位是因为剩下的外源性己二酸生物合成酶也产生于细胞质,并且因为2-氧代己二酸底物在其正常生物合成为赖氨酸的下一步是穿梭入细胞质的。
生成编码戊烯二酸CoA-转移酶的来自发酵氨基酸球菌的gctA和gctB基因以催化从常规代谢由ScHIDH突变体转换而来的生成己二酸的生物催化路线的第二步和第四步。第二步是为外源性己二酸生物合成途径用CoA硫酯激活(R)-2-羟基己二酸(图16中的2)以产生(R)-2-羟基己二酰-CoA(图16中的3)(图16)。第四步是释放来自(E)-2-己烯二酰-CoA(图16中的4)的CoA硫酯以产生(E)-2-己烯二酸(图16中的5),循环CoA硫酯。另外,双键可在硫酯释放之前还原,在此种情况中戊烯二酸CoA-转移酶会从己二酰-CoA(图16中的7)释放CoA硫酯以形成己二酸(图16中的6)。生成编码2-羟基戊二酰-CoA脱水酶亚基(hgdA和hgdB)以及辅-激活子(hgdC)来自共生梭菌的hgdA和hgdB基因以及来自发酵氨基酸球菌的hgdC以氧化(R)-2-羟基己二酰-CoA(图16中的3)的2-羟基为(E)-2-己烯二酰-CoA(图16中的4)的双键。之前确认了由gctA,gctB,hgdA,hgdB,hgdC编码的酶针对6-碳底物的活性。参见Parthasarathy et al.,Biochemistry50(17):3540-3550(2011)。
pESC-leu2d-gctA/gctB/lys12*载体如图17所示。该质粒从pESC-leu2d构建以提供在表位标记的插入基因的酵母表达的亮氨酸选择控制下的高质粒拷贝数目。参见Ro et al.,BMC biotechnol.8(83)1-14(2008)。5′BamHI和3′SalI位点加入gctA以克隆该基因入MSC2框架带有C-末端MYC标签以产生pESC-leu2d-gctA作为构建中间物。5′SpeI和3′SacI位点加入gctB并且该基因克隆至pESC-leu2d-gctA的MCS1框架带有C-末端Flag标签,产生pESC-leu2d-gctA/gctB。5′BamHI和3′SalI位点加入lys12,如上所述去除线粒体定位信号并引入R143C突变,以克隆该基因入pESC-His MCS2框架带有C-末端MYC标签以产生pESC-His-lys12*作为构建中间物。然后,从pESC-His-lys12*释放带有5′HpaI和3′KasI位点的PGAL1-lys12*-tCYC1片段并且克隆入pESC-Leu2d-gctB/gctA骨架的HpaI和KasI位点以产生pESC-leu2d-gctA/gctB/lys12*。
pESC-His-hgdA/hgdB/hgdC质粒如图18所示。该质粒从pESC-His(被描述于pESC酵母表位标记的载体Clontech公司手册217451-12),其通过从培养基中去除组氨酸选择,用于表位标记的插入基因的酵母表达。5′BamHI和3′SalI位点加入hgdC以克隆该基因入MSC2框架带有C-末端MYC标签以产生pESC-His-hgdC作为构建中间物。5′EcoRI和3′NotI位点加入hgdA并且该基因克隆至pESC-His-hgdC的MCS1框架带有C-末端Flag标签,产生pESC-leu2d-hgdA/hgdC。限制性位点5′BamHI和3′SalI位点加入hgdB以克隆该基因入pESC-leu2d MCS2框架带有C-末端MYC标签以产生pESC-leu2d-hgdB作为构建中间物。然后,从pESC-leu2d-hgdB*释放带有5′HpaI和3′KasI位点的PGAL1-hgdB-tCYC1片段并且克隆入pESC-His-hgdA/hgdC骨架的HpaI和KasI位点以产生pESC-His-hgdA/hgdB/hgdC。
己二酸的ScHIDH生物合成途径用酶系统组合来自pESC-leu2d-gctA/gctB/lys12*和pESC-His-hgdA/hgdB/hgdC的基因的表达以饱和(E)-2-己烯二酸或(E)-2-己烯二酰-CoA的双键。一种方法是表达由来自杂食脱硫球菌(也被称为acd基因,NCBI:FJ688103.1)的gdh基因编码的非脱羧戊二酰-CoA脱氢酶的酵母优化的编码序列以将(E)-2-己烯二酰-CoA(图16中的4)饱和为己二酰-CoA(图16中的7)。参见Wischgoll et al.,J.Bacteriol.191(13):4401-4409(2009);Wischgoll et al.,Biochemistry 49(25):5350-5357(2010);Parthasarathyet al.,Biochemistry 50(17):3540-3550(2011)。pESC-Trp-gdh如图19所示。通过将gcd以5′BamHI和3′SalI位点克隆入MCS2框架带有带有C-末端MYC标签产生pESC-Trp-gdh。
通过调节包括表达系统中的下游酶的组合(参见图15),该途径或该途径的节段用于产生己二酸生物合成途径中的中间物,包括(R)-2-羟基己二酰-CoA(图16中的3)或(E)-2-己烯二酸(图16中的5)。pESC-leu2d-gctA/gctB/lys12*可用于产生(R)-2-羟基己二酰-CoA。pESC-leu2d-gctA/gctB/lys12*和pESC-His-hgdA/hgdB/hgdC可用于产生(E)-2-己烯二酸。生物催化生产(E)-2-己烯二酸的用途是其提供用于可催化还原成己二酸的非市售的精细化学品的生物合成路线,与非生物催化己二酸合成方法相比是潜在成本节约。
(E)-2-己烯二酸如Tanaka所述合成。参见Tanaka et al.,Intl.J.Systematic Evol.Microbiol.50:639-644(2000)。获取己二酸用作分析方法的标准品以采用LC-MS、LC-UV或其它分析方法,分析通过生物合成途径的(E)-2-己烯二酸和己二酸的产生。
该生物合成途径通过定量所产生的己二酸、(E)-2-己烯二酸或其它中间物来优化。采用LC-MS或其它可用的分析方法。Tanaka et al.,Intl.J.Systematic Evol.Microbiol.50:639-644(2000)。优化包括改变宿主菌株为其它酵母,包括酿酒酵母、巴斯德毕赤酵母、白地霉、白色念珠菌、深红酵母或红东孢藻。优化还可以包括改变宿主菌株为非真菌宿主包括细菌、藻类和其它有机体如大肠杆菌、枯草芽孢杆菌、弗氏链霉菌(Streptomyces fradiae)、Paracoccus haeundaensis和盘基网柄菌(Dictyostelium discoideum)。优化可以包括对生长条件在有机体生长的不同点改变生长温度、改变生长条件的培养基组成、改变原料组成、改变赖氨酸浓度等。优化可以包括采用不同质粒的不同基因组合、采用不同表达质粒、改变基因上表位标记的位置(N-或C-末端)和类型,以及从基因去除表位标记。优化可以包括采用不同种属来源的gctA,gctB,hgdA,hgdB,hgdC和lys12和其它基因。优化可以包括创造带有稳定插入表达盒至有机体基因组以稳定表达(而不是瞬时质粒表达)的有机体。该生物合成途径可以通过重复使用较大生长容器(从1mL至几升规模至千升规模至制造规模容器)(例如>1000L)扩大规模。

Claims (97)

1.一种多核苷酸,其包含编码多肽的核苷酸序列,所述多肽包括功能性(R)-2-羟基己二酸脱氢酶,其用于催化将2-氧代己二酸转换成(R)-2-羟基己二酸或其逆反应,其中所述多核苷酸是SEQ ID NO:3、5、7、9、11、13、17、21、25、29或33,或其简并、同源或密码子优化的变体中的任一个。
2.一种多核苷酸,其包含编码多肽的核苷酸序列,所述多肽包括功能性(R)-2-羟基己二酸脱氢酶,其用于催化将2-氧代己二酸转换成(R)-2-羟基己二酸或其逆反应,其中所述多肽是SEQ ID NO:4、6、8、10、12、14、16、18、22、26、30、34或35–153,或其简并或同源的变体中的任一个。
3.一种多核苷酸,其包含编码多肽的核苷酸序列,所述多肽包括功能性(R)-2-羟基己二酸脱氢酶,其用于催化将2-氧代己二酸转换成(R)-2-羟基己二酸或其逆反应,其中所述多核苷酸与SEQ ID NO:1、3、5、7、9、11、13、17、21、25、29或33中所示的多核苷酸序列具有至少90%同一性;
其条件是所编码的多肽具有位于SEQ ID NO:2的V111、R114、R115、R124、R143或Y150位置的活性位点的至少一个或多个突变;
其中所述一个或多个突变破坏氧化脱羧作用但不破坏氧化还原酶活性。
4.一种多核苷酸,其包含编码多肽的核苷酸序列,所述多肽包括功能性(R)-2-羟基己二酸脱氢酶,其用于催化将2-氧代己二酸转换成(R)-2-羟基己二酸或其逆反应,其中所述多核苷酸是显示于SEQ IDNO:1、3、5、7、9、11、13、17、21、25、29或33中带有不超过120个核苷酸取代的序列;
其条件是所编码的多肽具有与位于SEQ ID NO:2的V111、R114、R115、R124、R143或Y150同功的位置的活性位点的至少一个或多个突变;
其中所述一个或多个突变破坏氧化脱羧作用但不破坏氧化还原酶活性。
5.一种载体,其包含权利要求1-4任一项所述的多核苷酸。
6.一种培养的细胞,其包含权利要求5的任意所述载体。
7.一种包括功能性(R)-2-羟基己二酸脱氢酶的多肽,该酶用于催化将2-氧代己二酸转换成(R)-2-羟基己二酸或其逆反应,其中所述多肽与SEQ ID NO:2、4、6、8、10、12、14、16、18、20、22、24、26、28、30、32、34或35–153中所示的多肽序列具有至少90%同一性;
其条件是所述多肽具有位于SEQ ID NO:2的V111、R114、R115、R124、R143或Y150位置的活性位点的至少一个或多个突变;
其中所述一个或多个突变破坏氧化脱羧作用,但不破坏氧化还原酶活性。
8.一种包括功能性(R)-2-羟基己二酸脱氢酶的多肽,该酶用于催化将2-氧代己二酸转换成(R)-2-羟基己二酸或其逆反应,其中所述多肽是显示于SEQ ID NO:2、4、6、8、10、12、14、16、18、20、22、24、26、28、30、32、34或35–153中带有不超过40个氨基酸取代的序列;
其条件是所述多肽具有与位于SEQ ID NO:2的V111、R114、R115、R124、R143或Y150同功的位置的活性位点的至少一个或多个突变;
其中所述一个或多个突变破坏氧化脱羧作用,但不破坏氧化还原酶活性。
9.一种用于催化将2-氧代己二酸转换成(R)-2-羟基己二酸或其逆反应的组合物,其包含:
(a)多核苷酸,其包含编码多肽的核苷酸序列,所述多肽包括功能性(R)-2-羟基己二酸脱氢酶;
(b)多核苷酸,其包含编码多肽的核苷酸序列,所述核苷酸序列能够与(a)的互补物在杂交条件下杂交,所述杂交条件包括于60℃7%十二烷基硫酸钠、0.5M Na2HPO4、1mM EDTA,于60℃1×SSC、0.1%SDS中洗涤,所述多肽包括功能性(R)-2-羟基己二酸脱氢酶;
(c)包括功能性氧化还原酶的包含氨基酸序列的多肽;
(d)包含(a)或(b)或能够表达(c)的载体;或
(e)用(d)转化的有机体;以及
其条件是所述多肽具有与位于酿酒酵母高异柠檬酸脱氢酶(ScHIDH)即SEQ ID NO:2的V111、R114、R115、R124、R143或Y150同功的位置的活性位点的一个或多个突变;以及
其中所述多肽在NADH的存在下催化将2-氧代己二酸转换成(R)-2-羟基己二酸。
10.根据权利要求9所述的组合物,其中所述多核苷酸是SEQ IDNO:1、3、5、7、9、11、13、15、17、19、21、23、25、27、29、31、33,或其简并、同源或密码子优化的变体中的任一个。
11.根据权利要求9所述的组合物,其中所述多肽是SEQ ID NO:2、4、6、8、10、12、14、16、18、20、22、24、26、28、30、32、34,35–153,或其简并或同源的变体中的任一个。
12.根据权利要求9所述的组合物,其中所述多核苷酸是SEQ IDNO:11、13、17,或其简并、同源或密码子优化的变体中的任一个。
13.根据权利要求9所述的组合物,其中所述多肽是SEQ ID NO:12、14、18,或其简并、同源的变体。
14.根据权利要求9所述的组合物,其中有机体是大肠杆菌、酿酒酵母、巴斯德毕赤酵母、白地霉、白色念珠菌、深红酵母或红东孢藻。
15.一种用于包括(R)-2-羟基己二酸脱氢酶的以酶法将2-氧代己二酸转换成(R)-2-羟基己二酸或其逆反应的方法,包括:
(a)多核苷酸,其包含编码多肽的核苷酸序列,所述多肽包括功能性(R)-2-羟基己二酸脱氢酶,其中所述多核苷酸是SEQ ID NO:1,3,5,7,9,11,13,15,17,19,21,或其简并、同源或密码子优化的变体中的任一个;
(b)多核苷酸,其包含编码多肽的核苷酸序列,所述核苷酸序列能够与(a)的互补物在杂交条件下杂交,所述杂交条件包括于60℃7%十二烷基硫酸钠、0.5M Na2HPO4、1mM EDTA,65℃1×SSC、0.1%SDS中洗涤,所述多肽包括功能性(R)-2-羟基己二酸脱氢酶;
(c)包括功能性(R)-2-羟基己二酸脱氢酶的包含氨基酸序列的多肽,其中所述多肽是SEQ ID NO:2、4、6、8、10、12、14、16、18、20、22、35–153或其简并、同源的变体中的任一个;
(d)包含(a)或(b)或能够表达(c)的载体;或
(e)用(d)转化的有机体;以及
其条件是所述(R)-2-羟基己二酸脱氢酶具有与位于酿酒酵母高异柠檬酸脱氢酶(ScHIDH)SEQ ID NO:2的V111、R114、R115、R124、R143或Y150同功的位置的活性位点的一个或多个突变;以及
其中所述(R)-2-羟基己二酸脱氢酶在NADH的存在下催化将2-氧代己二酸转换成(R)-2-羟基己二酸,或其逆反应。
16.一种用于包括(R)-2-羟基己二酸脱氢酶的以酶法将2-氧代己二酸转换成(R)-2-羟基己二酸或其逆反应的方法,其包括:
(a)选择多肽2、4、6、8、10、12、14、16、18、20、22、24、26、28、30、32、34或35–153;
(b)将活性位点中一个或多个精氨酸残基突变成选自以下组的氨基酸:His、Lys、Gln、Asn、Leu、Ile、Val、Tyr、Phe、Trp、Cys、Ser、Thr、Met、Glu、Asp、Ala、Gly和Pro;其条件是所述多肽具有与位于酿酒酵母高异柠檬酸脱氢酶(ScHIDH)SEQ ID NO:2的R114、R115、R124、或R143同功的位置的活性位点的一个或多个突变;以及
(c)分析氧化还原酶的酶活;
其中所述多肽在NADH的存在下催化将2-氧代己二酸转换成(R)-2-羟基己二酸,或其逆反应。
17.(R)-2-羟基己二酸脱氢酶将2-氧代己二酸转换成(R)-2-羟基己二酸或其逆反应的用途,包括:
(a)多核苷酸,其包含编码多肽的核苷酸序列,所述多肽包括功能性(R)-2-羟基己二酸脱氢酶,其中所述多核苷酸是SEQ ID NO:1、3、5、7、9、11、13、15、17、19、21,或其简并、同源或密码子优化的变体中的任一个;
(b)多核苷酸,其包含编码多肽的核苷酸序列,所述核苷酸序列能够与(a)的互补物在杂交条件下杂交,所述杂交条件包括于60℃7%十二烷基硫酸钠、0.5M Na2HPO4、1mM EDTA,于65℃1×SSC、0.1%SDS中洗涤,所述多肽包括功能性(R)-2-羟基己二酸脱氢酶;
(c)包括功能性(R)-2-羟基己二酸脱氢酶的包含氨基酸序列的多肽,其中所述多肽是SEQ ID NO:2、4、6、8、10、12、14、16、18、20、22、35–153或其简并、同源的变体中的任一个;
(d)包含(a)或(b)或能够表达(c)的载体;或
(e)用(d)转化的有机体;以及
其条件是所述(R)-2-羟基己二酸脱氢酶具有与位于酿酒酵母高异柠檬酸脱氢酶(ScHIDH)SEQ ID NO:2的V111、R114、R115、R124、R143或Y150同功的位置的活性位点的一个或多个突变;以及
其中所述(R)-2-羟基己二酸脱氢酶在NADH的存在下催化将2-氧代己二酸转换成(R)-2-羟基己二酸,或其逆反应。
18.一种多核苷酸,其包含编码多肽的核苷酸序列,所述多肽包括功能性(R)-2-羟基己二酸脱氢酶,该酶用于将2-氧代己二酸转换成(R)-2-羟基己二酸或其逆反应,其中所述多核苷酸序列如SEQ ID NO:11或13中所示。
19.一种包括功能性(R)-2-羟基己二酸脱氢酶的多肽,该酶用于将2-氧代己二酸转换成(R)-2-羟基己二酸或其逆反应,其中所述多肽序列如SEQ ID NO:12或14中所示。
20.一种用于包括(R)-2-羟基己二酸脱氢酶的以酶法将2-氧代己二酸转换成(R)-2-羟基己二酸或其逆反应的方法,包括:
(a)多核苷酸,其包含编码多肽的核苷酸序列,所述多肽包括功能性(R)-2-羟基己二酸脱氢酶,其中所述多核苷酸是SEQ ID NO:11或13;
(b)多核苷酸,其包含编码多肽的核苷酸序列,所述核苷酸序列能够与(a)的互补物在杂交条件下杂交,所述杂交条件包括于60℃7%十二烷基硫酸钠、0.5M Na2HPO4、1mM EDTA,于65℃1×SSC、0.1%SDS中洗涤,所述多肽包括功能性(R)-2-羟基己二酸脱氢酶;
(c)包括功能性(R)-2-羟基己二酸脱氢酶的包含氨基酸序列的多肽,其中所述多肽是SEQ ID NO:12或14;
(d)包含(a)或(b)或能够表达(c)的载体;或
(e)用(d)转化的有机体;以及
其中所述(R)-2-羟基己二酸脱氢酶在NADH的存在下催化将2-氧代己二酸转换成(R)-2-羟基己二酸,或其逆反应。
21.(R)-2-羟基己二酸脱氢酶将2-氧代己二酸转换成(R)-2-羟基己二酸或其逆反应的用途,包括:
(a)多核苷酸,其包含编码多肽的核苷酸序列,所述多肽包括功能性(R)-2-羟基己二酸脱氢酶,其中所述多核苷酸是SEQ ID NO:11或13;
(b)多核苷酸,其包含编码多肽的核苷酸序列,所述核苷酸序列能够与(a)的互补物在杂交条件下杂交,所述杂交条件包括于60℃7%十二烷基硫酸钠、0.5M Na2HPO4、1mM EDTA,于65℃1×SSC、0.1%SDS中洗涤,所述多肽包括功能性(R)-2-羟基己二酸脱氢酶;
(c)包括功能性(R)-2-羟基己二酸脱氢酶的包含氨基酸序列的多肽,其中所述多肽是SEQ ID NO:12或14;
(d)包含(a)或(b)或能够表达(c)的载体;或
(e)用(d)转化的有机体;以及
其中所述(R)-2-羟基己二酸脱氢酶在NADH的存在下催化将2-氧代己二酸转换成(R)-2-羟基己二酸,或其逆反应。
22.一种当供应2-氧代己二酸和NADH,或者己二酸和NAD+以及其它合适的辅因子或原料时,以酶法将2-氧代己二酸转换成己二酸或其逆反应的方法,包括非天然有机体,其包括以外源性核酸转化的微生物有机体,所述外源性核酸编码:
(a)(R)-2-羟基己二酸脱氢酶(生产(R)-2-羟基己二酸);
(b)己二酸Co-A转移酶(生产(R)-羟基己二酰-CoA);
(c)羟基己二酰-CoA脱水酶(生产(E)-2-己烯二酰-CoA);
(d)己二酸Co-A转移酶(生产(E)-2-己烯二酸);
(e)2-己烯二酸脱氢酶(生产己二酸);
其中(a)-(e)包括催化将2-氧代己二酸转换成己二酸或其逆反应的酶。
23.一种当供应2-氧代己二酸和NADH,或者(E)-2-己烯二酸和NAD+以及其它合适的辅因子或原料时,以酶法将2-氧代己二酸转换成(E)-2-己烯二酸或其逆反应的方法,包括非天然有机体,其包括以外源性核酸转化的微生物有机体,所述外源性核酸编码:
(a)(R)-2-羟基己二酸脱氢酶(生产(R)-2-羟基己二酸);
(b)己二酸Co-A转移酶(生产(R)-2-羟基己二酰-CoA);
(c)羟基己二酰-CoA脱水酶(生产(E)-2-己烯二酰-CoA);
(d)己二酸Co-A转移酶(生产(E)-2-己烯二酸);
其中(a)-(d)包括催化将2-氧代己二酸转换成(E)-2-己烯二酸或其逆反应的酶。
24.一种当供应2-氧代戊二酸和NADH,或者戊烯二酸和NAD+以及其它合适的辅因子或原料时,以酶法将2-氧代戊二酸转换成戊二酸或其逆反应的方法,包括非天然有机体,其包括以外源性核酸转化的微生物有机体,所述外源性核酸编码:
(a)(R)-2-羟基戊二酸脱氢酶(生产(R)-2-羟基戊二酸);
(b)戊烯二酸Co-A转移酶(生产(R)-2-羟基戊二酰-CoA);
(c)羟基己二酰-CoA脱水酶(生产(E)-戊烯二酰-CoA);
(d)戊烯二酸Co-A转移酶(生产(E)-戊烯二酸,即(E)-戊烯二酸;
(e)戊烯二酸脱氢酶(生产戊二酸,即戊二酸);
其中(a)-(e)包括催化将2-氧代戊二酸转换成戊二酸或其逆反应的酶。
25.一种当供应2-氧代己二酸和NADH,或者己二酸和NAD+以及其它合适的辅因子或原料时,以酶法将2-氧代己二酸转换成己二酸或其逆反应的方法,包括非天然有机体,其包括微生物有机体,所述微生物有机体包括:
(a)编码包括SEQ ID NO:155(HIDH)的(R)-2-羟基戊二酸脱氢酶(生产(R)-2-羟基己二酸)的SEQ ID NO:154(Lys12);
(b)编码包括SEQ ID NO:158(gctA)和161(gctB)的己二酸Co-A转移酶(生产(R)-羟基己二酰-CoA)的SEQ ID NO:156或157(gctA)和SEQ ID NO:159或160(gctB);
(c)编码包括SEQ ID NO:164(hgdA)、167(hgdB)和170(hgdc)的羟基己二酰-CoA脱水酶的SEQ ID NO:162或163(hgdA)和SEQ ID NO:162或163(hgdB)和SEQ ID NO:168或169(hgdc)(生产(E)-2-己烯二酰-CoA);
(d)编码包括SEQ ID NO:158(gctA)和161(gctB)的己二酸Co-A转移酶(生产(E)-2-己烯二酸)的SEQ ID NO:156或157(gctA)和SEQ ID NO:159或160(gctB);
(e)编码包括SEQ ID NO:173(gdh)的2-己烯二酸脱氢酶(生产己二酸)的SEQ ID NO:171或172(gdh);
其中(a)-(e)包括催化将2-氧代己二酸转换成己二酸或其逆反应的酶。
26.一种当供应2-氧代己二酸和NADH,或者(E)-2-己烯二酸和NAD+以及其它合适的辅因子或原料时以酶法将2-氧代己二酸转换成(E)-2-己烯二酸或其逆反应的方法,包括非天然有机体,其包括以外源性核酸转化的微生物有机体,所述外源性核酸编码:
(a)编码包括SEQ ID NO:155(HIDH)的(R)-2-羟基己二酸脱氢酶(生产(R)-2-羟基己二酸)的SEQ ID NO:154(Lys12);
(b)编码包括SEQ ID NO:158(gctA)和161(gctB)的己二酸Co-A转移酶(生产(R)-羟基己二酰-CoA)的SEQ ID NO:156或157(gctA)和SEQ ID NO:159或160(gctB);
(c)编码包括SEQ ID NO:164(hgdA)、167(hgdB)和170(hgdc)的羟基己二酰-CoA脱水酶(生产(E)-2-己烯二酰-CoA)的SEQ ID NO:162或163(hgdA)和SEQ ID NO:162或163(hgdB)和SEQ ID NO:168或169(hgdc);
(d)编码包括SEQ ID NO:158(gctA)和161(gctB)的己二酸Co-A转移酶(生产(E)-2-己烯二酸)的SEQ ID NO:156或157(gctA)和SEQ ID NO:159或160(gctB);
其中(a)-(d)包括催化将2-氧代己二酸转换成(E)-2-己烯二酸或其逆反应的酶。
27.一种当供应2-氧代己二酸和NADH,或者己二酸和NAD+以及其它合适的辅因子或原料时,以酶法将2-氧代己二酸转换成己二酸或其逆反应的方法,包括非天然有机体,其包括:
(a)编码包括SEQ ID NO:155(HIDH)的(R)-2-羟基戊二酸脱氢酶(生产(R)-2-羟基己二酸)的SEQ ID NO:154(Lys12);
(b)编码包括SEQ ID NO:158(gctA)和161(gctB)的己二酸Co-A转移酶(生产(R)-羟基己二酰-CoA)的SEQ ID NO:156或157(gctA)和SEQ ID NO:159或160(gctB);
(c)编码包括SEQ ID NO:164(hgdA)、167(hgdB)和170(hgdc)的羟基己二酰-CoA脱水酶(生产(E)-2-己烯二酰-CoA)的SEQ ID NO:162或163(hgdA)和SEQ ID NO:162或163(hgdB)和SEQ ID NO:168或169(hgdc);
(d)编码包括SEQ ID NO:173(gdh)的2-己烯二酸脱氢酶(生产己二酰-CoA)的SEQ ID NO:171或172(gdh);
(e)编码包括SEQ ID NO:158(gctA)和161(gctB)的己二酸Co-A转移酶(生产己二酸)的SEQ ID NO:156或157(gctA)和SEQ ID NO:159或160(gctB);
其中(a)-(e)包括催化将2-氧代己二酸转换成己二酸或其逆反应的酶。
28.一种多核苷酸,其包含编码多肽的核苷酸序列,所述多肽包括功能性(R)-2-羟基戊二酸脱氢酶,其用于催化将2-氧代戊二酸转换成(R)-2-羟基戊二酸或其逆反应,其中所述多核苷酸是SEQ ID NO:3,5,7,9,11,13,17,21,25,29或33,或其简并、同源或密码子优化的变体中的任一个。
29.一种多核苷酸,其包含编码多肽的核苷酸序列,所述多肽包括功能性(R)-2-羟基戊二酸脱氢酶,其用于催化将2-氧代戊二酸转换成(R)-2-羟基戊二酸或其逆反应,其中所述多肽是SEQ ID NO:4,6,8,10,12,14,16,18,22,26,30,34或35–153,或其简并或同源的变体中的任一个。
30.一种多核苷酸,其包含编码多肽的核苷酸序列,所述多肽包括功能性(R)-2-羟基戊二酸脱氢酶,其用于催化将2-氧代戊二酸转换成(R)-2-羟基戊二酸或其逆反应,其中所述多核苷酸是与SEQ ID NO:1、3、5、7、9、11、13、17、21、25、29或33中所示的多核苷酸序列具有至少90%同一性;
其条件是所编码的多肽具有位于SEQ ID NO:2的V111、R114、R115、R124、R143或Y150位置的活性位点的至少一个或多个突变;
其中所述一个或多个突变破坏氧化脱羧作用但不破坏氧化还原酶活性。
31.一种多核苷酸,其包含编码多肽的核苷酸序列,所述多肽包括功能性(R)-2-羟基戊二酸脱氢酶,其用于催化将2-氧代戊二酸转换成(R)-2-羟基戊二酸或其逆反应,其中所述多核苷酸是显示于SEQ IDNO:1、3、5、7、9、11、13、17、21、25、29或33中带有不超过120个核苷酸取代的序列;
其条件是所编码的多肽具有与位于SEQ ID NO:2的V111、R114、R115、R124、R143或Y150同功的位置的活性位点的至少一个或多个突变;
其中所述一个或多个突变破坏氧化脱羧作用但不破坏氧化还原酶活性。
32.一种载体,其包含权利要求28-31任一项所述的多核苷酸。
33.一种培养的细胞,其包含权利要求32的任意所述载体。
34.一种包括功能性(R)-2-羟基戊二酸脱氢酶的多肽,该酶用于催化将2-氧代戊二酸转换成(R)-2-羟基戊二酸或其逆反应,其中所述多肽是与SEQ ID NO:2、4、6、8、10、12、14、16、18、20、22、24、26、28、30、32、34或35–153中所示的多肽序列具有至少90%同一性;
其条件是所述多肽具有位于SEQ ID NO:2的V111、R114、R115、R124、R143或Y150位置的活性位点的至少一个或多个突变;
其中所述一个或多个突变破坏氧化脱羧作用但不破坏氧化还原酶活性。
35.一种包括功能性(R)-2-羟基戊二酸脱氢酶的多肽,该酶用于催化将2-氧代戊二酸转换成(R)-2-羟基戊二酸或其逆反应,其中所述多肽是显示于SEQ ID NO:2、4、6、8、10、12、14、16、18、20、22、24、26、28、30、32、34或35–153中带有不超过40个氨基酸取代的序列;
其条件是所述多肽具有与位于SEQ ID NO:2的V111、R114、R115、R124、R143或Y150同功的位置的活性位点的至少一个或多个突变;
其中所述一个或多个突变破坏氧化脱羧作用但不破坏氧化还原酶活性。
36.一种用于催化将2-氧代戊二酸转换成(R)-2-羟基戊二酸或其逆反应的组合物,包括:
(a)多核苷酸,其包含编码多肽的核苷酸序列,所述多肽包括功能性(R)-2-羟基戊二酸脱氢酶;
(b)多核苷酸,其包含编码多肽的核苷酸序列,所述核苷酸序列能够与(a)的互补物在杂交条件下杂交,所述杂交条件包括于60℃7%十二烷基硫酸钠、0.5M Na2HPO4、1mM EDTA,于60℃1×SSC、0.1%SDS中洗涤,所述多肽包括功能性(R)-2-羟基戊二酸脱氢酶;
(c)包括功能性氧化还原酶的包含氨基酸序列的多肽;
(d)包含(a)或(b)或能够表达(c)的载体;或
(e)用(d)转化的有机体;以及
其条件是所述多肽具有与位于酿酒酵母高异柠檬酸脱氢酶(ScHIDH)即SEQ ID NO:2的V111、R114、R115、R124、R143或Y150同功的位置的活性位点的一个或多个突变;并且
其中所述多肽在NADH的存在下催化将2-氧代戊二酸转换成(R)-2-羟基戊二酸。
37.根据权利要求36所述的组合物,其中所述多核苷酸是SEQ IDNO:1、3、5、7、9、11、13、15、17、19、21、23、25、27、29、31、33,或其简并、同源或密码子优化的变体中的任一个。
38.根据权利要求36所述的组合物,其中所述多肽是SEQ ID NO:2、4、6、8、10、12、14、16、18、20、22、24、26、28、30、32、34、35–153,或其简并或同源的变体中的任一个。
39.根据权利要求36所述的组合物,其中所述多核苷酸是SEQ IDNO:11、13、17,或其简并、同源或密码子优化的变体中的任一个。
40.根据权利要求36所述的组合物,其中所述多肽是SEQ ID NO:12、14、18,或其简并或同源的变体中的任一个。
41.根据权利要求36所述的组合物,其中所述有机体是大肠杆菌、酿酒酵母、巴斯德毕赤酵母、白地霉、白色念珠菌、深红酵母或红东孢藻。
42.一种用于包括(R)-2-羟基戊二酸脱氢酶的以酶法将2-氧代戊二酸转换成(R)-2-羟基戊二酸或其逆反应的方法,包括:
(a)多核苷酸,其包含编码多肽的核苷酸序列,所述多肽包括功能性(R)-2-羟基戊二酸脱氢酶,其中所述多核苷酸是SEQ ID NO:1、3、5、7、9、11、13、15、17、19、21,或其简并、同源或密码子优化的变体中的任一个;
(b)多核苷酸,其包含编码多肽的核苷酸序列,所述核苷酸序列能够与(a)的互补物在杂交条件下杂交,所述杂交条件包括于60℃7%十二烷基硫酸钠、0.5M Na2HPO4、1mM EDTA和65℃1×SSC、0.1%SDS中洗涤,所述多肽包括功能性(R)-2-羟基戊二酸脱氢酶;
(c)包括功能性(R)-2-羟基戊二酸脱氢酶的包含氨基酸序列的多肽,其中所述多肽是SEQ ID NO:2、4、6、8、10、12、14、16、18、20、22、35–153或其简并或同源的变体中的任一个;
(d)包含(a)或(b)或能够表达(c)的载体;或
(e)用(d)转化的有机体;以及
其条件是所述(R)-2-羟基戊二酸脱氢酶具有与位于酿酒酵母高异柠檬酸脱氢酶(ScHIDH)SEQ ID NO:2的V111、R114、R115、R124、R143或Y150同功的位置的活性位点的至少一个或多个突变;并且
其中所述(R)-2-羟基戊二酸脱氢酶在NADH的存在下催化将2-氧代戊二酸转换成(R)-2-羟基戊二酸,或其逆反应。
43.一种用于包括(R)-2-羟基戊二酸脱氢酶的以酶法将2-氧代戊二酸转换成(R)-2-羟基戊二酸或其逆反应的方法,包括:
(a)选择多肽2、4、6、8、10、12、14、16、18、20、22、24、26、28、30、32、34、或35–153;
(b)将活性位点中一个或多个精氨酸残基突变成选自以下组的氨基酸:His、Lys、Gln、Asn、Leu、Ile、Val、Tyr、Phe、Trp、Cys、Ser、Thr、Met、Glu、Asp、Ala、Gly和Pro;其条件是所述多肽具有与位于酿酒酵母高异柠檬酸脱氢酶(ScHIDH)SEQ ID NO:2的R114、R115、R124、或R143同功的位置的活性位点的一个或多个突变;以及
(c)分析氧化还原酶的酶活;
其中所述多肽在NADH的存在下催化将2-氧代戊二酸转换成(R)-2-羟基戊二酸,或其逆反应。
44.(R)-2-羟基戊二酸脱氢酶将2-氧代戊二酸转换成(R)-2-羟基戊二酸或其逆反应的用途,包括:
(a)多核苷酸,其包含编码多肽的核苷酸序列,所述多肽包括功能性(R)-2-羟基戊二酸脱氢酶,其中所述多核苷酸是SEQ ID NO:1、3、5、7、9、11、13、15、17、19、21,或其简并、同源或密码子优化的变体中的任一个;
(b)多核苷酸,其包含编码多肽的核苷酸序列,所述核苷酸序列能够与(a)的互补物在杂交条件下杂交,所述杂交条件包括于60℃7%十二烷基硫酸钠、0.5M Na2HPO4、1mM EDTA和65℃1×SSC、0.1%SDS中洗涤,所述多肽包括功能性(R)-2-羟基戊二酸脱氢酶;
(c)包括功能性(R)-2-羟基戊二酸脱氢酶的包含氨基酸序列的多肽,其中所述多肽是SEQ ID NO:2、4、6、8、10、12、14、16、18、20、22、35–153或其简并或同源的变体中的任一个;
(d)包含(a)或(b)或能够表达(c)的载体;或
(e)用(d)转化的有机体;以及
其条件是所述(R)-2-羟基戊二酸脱氢酶具有与位于酿酒酵母高异柠檬酸脱氢酶(ScHIDH)SEQ ID NO:2的V111、R114、R115、R124、R143或Y150同功的位置的活性位点的一个或多个突变;并且
其中所述(R)-2-羟基戊二酸脱氢酶在NADH的存在下催化将2-氧代戊二酸转换成(R)-2-羟基戊二酸,或其逆反应。
45.一种多核苷酸,其包含编码多肽的核苷酸序列,所述多肽包括功能性(R)-2-羟基戊二酸脱氢酶,该酶用于将2-氧代戊二酸转换成(R)-2-羟基戊二酸或其逆反应,其中所述多核苷酸序列如SEQ ID NO:11或13中所示。
46.一种包括功能性(R)-2-羟基戊二酸脱氢酶的多肽,该酶用于将2-氧代戊二酸转换成(R)-2-羟基戊二酸或其逆反应,其中所述多肽如SEQ ID NO:12或14中所示。
47.一种用于包括(R)-2-羟基戊二酸脱氢酶的以酶法将2-氧代戊二酸转换成(R)-2-羟基戊二酸或其逆反应的方法,包括:
(a)多核苷酸,其包含编码多肽的核苷酸序列,所述多肽包括功能性(R)-2-羟基戊二酸脱氢酶,其中所述多核苷酸是SEQ ID NO:11或13;
(b)多核苷酸,其包含编码多肽的核苷酸序列,所述核苷酸序列能够与(a)的互补物在杂交条件下杂交,所述杂交条件包括于60℃7%十二烷基硫酸钠、0.5M Na2HPO4、1mM EDTA和65℃1×SSC、0.1%SDS中洗涤,所述多肽包括功能性(R)-2-羟基戊二酸脱氢酶;
(c)包括功能性(R)-2-羟基戊二酸脱氢酶的包含氨基酸序列的多肽,其中所述多肽是SEQ ID NO:12或14;
(d)包含(a)或(b)或能够表达(c)的载体;或
(e)用(d)转化的有机体;以及
其中所述(R)-2-羟基戊二酸脱氢酶在NADH的存在下催化将2-氧代戊二酸转换成(R)-2-羟基戊二酸,或其逆反应。
48.(R)-2-羟基戊二酸脱氢酶的将2-氧代戊二酸转换成(R)-2-羟基戊二酸或其逆反应的用途,包括:
(a)多核苷酸,其包含编码多肽的核苷酸序列,所述多肽包括功能性(R)-2-羟基戊二酸脱氢酶,其中所述多核苷酸是SEQ ID NO:11或13;
(b)多核苷酸,其包含编码多肽的核苷酸序列,所述核苷酸序列能够与(a)的互补物在杂交条件下杂交,所述杂交条件包括于60℃7%十二烷基硫酸钠、0.5M Na2HPO4、1mM EDTA和65℃1×SSC、0.1%SDS中洗涤,所述多肽包括功能性(R)-2-羟基戊二酸脱氢酶;
(c)包含氨基酸序列的多肽,所述氨基酸序列包括功能性(R)-2-羟基戊二酸脱氢酶,其中所述多肽是SEQ ID NO:12或14;
(d)包含(a)或(b)或能够表达(c)的载体;或
(e)用(d)转化的有机体;以及
其中所述(R)-2-羟基戊二酸脱氢酶在NADH的存在下催化将2-氧代戊二酸转换成(R)-2-羟基戊二酸,或其逆反应。
49.一种多核苷酸,其包含编码多肽的核苷酸序列,所述多肽包括功能性氧化还原酶(即,(R)-2-羟基酸脱氢酶),该酶能够以酶法将1-羧基-2-酮酸(即,1-羧基-2-氧代酸,α-酮羧酸,α-氧代酸)转换成1-羧基-(R)-2-羟基酸(即,1-羧基-羧基-D-2-羟基羧酸,(R)-α-羟基羧酸),或其逆反应,其中所述多核苷酸是SEQ ID NO:1、3、5、7、9、11、13、15、17、19、21、23、25、27、29、31、33,或其简并、同源或密码子优化的变体中的任一个。
50.一种包括功能性氧化还原酶的多肽,该酶能够以酶法将1-羧基-2-酮酸转换成1-羧基-(R)-2-羟基酸,其中所述多肽是SEQ ID NO:2、4、6、8、10、12、14、16、18、20、22、24、26、28、30、32、34,或其简并或同源的变体中的任一个。
51.一种包括功能性氧化还原酶的多肽,该酶能够以酶法将1-羧基-2-酮酸转换成1-羧基-(R)-2-羟基酸,其中所述多肽是SEQ ID NO:35–153或其简并或同源的变体中的任一个。
52.一种包括编码多肽的包含核苷酸序列的多核苷酸的载体,所述多肽包括能够以酶法将1-羧基-2-酮酸转换成1-羧基-(R)-2-羟基酸的功能性氧化还原酶,其中所述多核苷酸是SEQ ID NO:1、3、5、7、9、11、13、15、17、19、21、23、25、27、29、31、33,或其简并、同源或密码子优化的变体中的任一个。
53.一种载体,其包含多核苷酸,所述多核苷酸包含编码多肽的核苷酸序列,所述多肽包括能够以酶法将1-羧基-2-酮酸转换成1-羧基-(R)-2-羟基酸的功能性氧化还原酶,其中所述多肽是SEQ ID NO:2、4、6、8、10、12、14、16、18、20、22、24、26、28、30、32、34或35-153,或其简并、同源或密码子优化的变体中的任一个。
54.一种培养的细胞,其包含权利要求52或53所述的载体。
55.一种多核苷酸,其包含编码多肽的核苷酸序列,所述多肽包括能够以酶法将1-羧基-2-酮酸转换成1-羧基-(R)-2-羟基酸的功能性氧化还原酶,其中所述核苷酸序列是与SEQ ID NO:1,3,5,7,9,11,13,15,17,19,21,23,25,27,29,31或33中所示的多核苷酸序列具有至少90%同一性;
其条件是所编码的多肽具有与位于酿酒酵母高异柠檬酸脱氢酶(ScHIDH)即SEQ ID NO:2的V111、R114、R115、R124、R143或Y150同功的位置的活性位点的至少一个或多个突变;
其中所述一个或多个突变破坏氧化脱羧作用但不破坏氧化还原酶活性。
56.一种多核苷酸,其包含编码多肽的核苷酸序列,所述多肽包括能够以酶法将1-羧基-2-酮酸转换成1-羧基-(R)-2-羟基酸的功能性氧化还原酶,其中所述核苷酸序列是与SEQ ID NO:1,3,5,7,9,11,13,15,17,19,21,23,25,27,29,31或33中所示的序列之一,具有不多于120个核苷酸取代;
其条件是所编码的多肽具有与位于酿酒酵母高异柠檬酸脱氢酶(ScHIDH)即SEQ ID NO:2的V111、R114、R115、R124、R143或Y150同功的位置的活性位点的至少一个或多个突变;
其中所述一个或多个突变破坏氧化脱羧作用但不破坏氧化还原酶活性。
57.一种多核苷酸,其包含编码多肽的核苷酸序列,所述多肽包括能够以酶法将1-羧基-2-酮酸转换成1-羧基-(R)-2-羟基酸的功能性氧化还原酶,其中所编码的多肽是与SEQ ID NO:2、4、6、8、10、12、14、16、18、20、22、24、26、28、30、32、34或35–153中所示的多肽序列具有至少90%同一性;
其条件是所编码的多肽具有与位于酿酒酵母高异柠檬酸脱氢酶(ScHIDH)即SEQ ID NO:2的V111、R114、R115、R124、R143或Y150同功的位置的活性位点的至少一个或多个突变;
其中所述一个或多个突变破坏氧化脱羧作用但不破坏氧化还原酶活性。
58.一种多核苷酸,其包含编码多肽的核苷酸序列,所述多肽包括能够以酶法将1-羧基-2-酮酸转换成1-羧基-(R)-2-羟基酸的功能性氧化还原酶,其中所述多肽是与SEQ ID NO:2、4、6、8、10、12、14、16、18、20、22、24、26、28、30、32、34或35–153中所示的多肽序列之一具有不多于40个氨基酸取代;
其条件是所编码的多肽具有与位于酿酒酵母高异柠檬酸脱氢酶(ScHIDH)即SEQ ID NO:2的V111、R114、R115、R124、R143或Y150同功的位置的活性位点的至少一个或多个突变;
其中所述一个或多个突变破坏氧化脱羧作用但不破坏氧化还原酶活性。
59.一种载体,其包含权利要求55-58任一项所述的多核苷酸。
60.一种培养的细胞,其包含权利要求59的任意所述载体。
61.一种包括能够以酶法将1-羧基-2-酮酸转换成1-羧基-(R)-2-羟基酸的功能性氧化还原酶的多肽,其中所述多肽是与SEQ ID NO:2、4、6、8、10、12、14、16、18、20、22、24、26、28、30、32、34或35–153中所示的多肽序列具有至少90%同一性;
其条件是所述多肽具有与位于酿酒酵母高异柠檬酸脱氢酶(ScHIDH)即SEQ ID NO:2的V111、R114、R115、R124、R143或Y150同功的位置的活性位点的至少一个或多个突变;
其中所述一个或多个突变破坏氧化脱羧作用但不破坏氧化还原酶活性。
62.一种包括能够以酶法将1-羧基-2-酮酸转换成1-羧基-(R)-2-羟基酸的功能性氧化还原酶的多肽,其中所述多肽是与SEQ ID NO:2、4、6、8、10、12、14、16、18、20、22、24、26、28、30、32、34或35–153中所示的多肽序列之一具有不多于40个氨基酸取代;
其条件是所述多肽具有与位于酿酒酵母高异柠檬酸脱氢酶(ScHIDH)即SEQ ID NO:2的V111、R114、R115、R124、R143或Y150同功的位置的活性位点的至少一个或多个突变;
其中所述一个或多个突变破坏氧化脱羧作用但不破坏氧化还原酶活性。
63.一种多核苷酸,其包含编码多肽的核苷酸序列,所述多肽包括功能性(R)-2-羟基酸脱氢酶,其用于催化将1-羧基-2-酮酸对映选择性转换成1-羧基-(R)-2-羟基酸或其逆反应,其中所述多核苷酸是SEQID NO:3、5、7、9、11、13、17、21、25、29或33,或其简并、同源或密码子优化的变体中的任一个。
64.一种多核苷酸,其包含编码多肽的核苷酸序列,所述多肽包括功能性(R)-2-羟基酸脱氢酶,其用于催化将1-羧基-2-酮酸对映选择性转换成1-羧基-(R)-2-羟基酸或其逆反应,其中所述多肽是SEQ IDNO:4、6、8、10、12、14、16、18、22、26、30、34或35–153,或其简并、同源的变体中的任一个。
65.一种多核苷酸,其包含编码多肽的核苷酸序列,所述多肽包括功能性(R)-2-羟基酸脱氢酶,其用于催化将1-羧基-2-酮酸对映选择性转换成1-羧基-(R)-2-羟基酸或其逆反应,其中所述多核苷酸是与SEQ ID NO:1、3、5、7、9、11、13、17、21、25、29或33中所示的多核苷酸序列具有至少90%同一性;
其条件是所编码的多肽具有位于SEQ ID NO:2的V111、R114、R115、R124、R143或Y150位置的活性位点的至少一个或多个突变;
其中所述一个或多个突变破坏氧化脱羧作用但不破坏氧化还原酶活性。
66.一种多核苷酸,其包含编码多肽的核苷酸序列,所述多肽包括功能性(R)-2-羟基酸脱氢酶,其用于催化将1-羧基-2-酮酸对映选择性转换成1-羧基-(R)-2-羟基酸或其逆反应,其中所述多核苷酸是与SEQ ID NO:1、3、5、7、9、11、13、17、21、25、29或33中所示带有不超过120个核苷酸取代的序列;
其条件是所编码的多肽具有与位于SEQ ID NO:2的V111、R114、R115、R124、R143或Y150同功的位置的活性位点的至少一个或多个突变;
其中所述一个或多个突变破坏氧化脱羧作用但不破坏氧化还原酶活性。
67.一种载体,其包含权利要求63-66任一项所述的多核苷酸。
68.一种培养的细胞,其包含权利要求67的任意所述载体。
69.一种包括功能性(R)-2-羟基酸脱氢酶的多肽,该酶用于催化将1-羧基-2-酮酸对映选择性转换成1-羧基-(R)-2-羟基酸或其逆反应,其中所述多肽是与SEQ ID NO:2、4、6、8、10、12、14、16、18、20、22、24、26、28、30、32、34或35–153中所示的多肽序列具有至少90%同一性;
其条件是所述多肽具有位于SEQ ID NO:2的V111、R114、R115、R124、R143或Y150位置的活性位点的至少一个或多个突变;
其中所述一个或多个突变破坏氧化脱羧作用但不破坏氧化还原酶活性。
70.一种包括功能性(R)-2-羟基酸脱氢酶的多肽,该酶用于催化将1-羧基-2-酮酸对映选择性转换成1-羧基-(R)-2-羟基酸或其逆反应,其中所述多肽是SEQ ID NO:2、4、6、8、10、12、14、16、18、20、22、24、26、28、30、32、34或35–153中所示的多肽序列具有不多于40个氨基酸取代;
其条件是所述多肽具有位于SEQ ID NO:2的V111、R114、R115、R124、R143或Y150同功的位置的活性位点的至少一个或多个突变;
其中所述一个或多个突变破坏氧化脱羧作用但不破坏氧化还原酶活性。
71.一种用于催化将1-羧基-2-酮酸转换成1-羧基-(R)-2-羟基酸或其逆反应的组合物,包括:
(a)多核苷酸,其包含编码多肽的核苷酸序列,所述多肽包括功能性(R)-2-羟基酸脱氢酶;
(b)多核苷酸,其包含编码多肽的核苷酸序列,所述核苷酸序列能够与(a)的互补物在杂交条件下杂交,所述杂交条件包括于60℃7%十二烷基硫酸钠、0.5M Na2HPO4、1mM EDTA,于60℃1×SSC、0.1%SDS中洗涤,所述多肽包括功能性(R)-2-羟基戊二酸脱氢酶;
(c)包括功能性氧化还原酶的包含氨基酸序列的多肽,;
(d)包含(a)或(b)或能够表达(c)的载体;或
(e)用(d)转化的有机体;以及
其条件是所述多肽具有与位于酿酒酵母高异柠檬酸脱氢酶(ScHIDH)即SEQ ID NO:2的V111、R114、R115、R124、R143或Y150同功的位置的活性位点的一个或多个突变;并且
其中所述多肽在NADH的存在下催化将1-羧基-2-酮酸转换成1-羧基-(R)-2-羟基酸。
72.根据权利要求71所述的组合物,其中所述多核苷酸是SEQ IDNO:1、3、5、7、9、11、13、15、17、19、21、23、25、27、29、31、33,或其简并、同源或密码子优化的变体中的任一个。
73.根据权利要求71所述的组合物,其中所述多肽是SEQ ID NO:2、4、6、8、10、12、14、16、18、20、22、24、26、28、30、32、34,35–153,或其简并或同源的变体中的任一个。
74.根据权利要求71所述的组合物,其中所述多核苷酸是SEQ IDNO:11、13、17,或其简并、同源或密码子优化的变体中的任一个。
75.根据权利要求71所述的组合物,其中所述多肽是SEQ ID NO:12、14、18,或其简并或同源的变体中的任一个。
76.根据权利要求71所述的组合物,其中所述有机体是大肠杆菌、酿酒酵母、巴斯德毕赤酵母、白地霉、白色念珠菌、深红酵母或红东孢藻。
77.一种用于包括(R)-2-羟基酸脱氢酶的以酶法将1-羧基-2-酮酸转换成1-羧基-(R)-2-羟基酸或其逆反应的方法,包括:
(a)多核苷酸,其包含编码多肽的核苷酸序列,所述多肽包括功能性(R)-2-羟基酸脱氢酶,其中所述多核苷酸是SEQ ID NO:1、3、5、7、9、11、13、15、17、19、21或其简并、同源或密码子优化的变体中的任一个;
(b)多核苷酸,其包含编码多肽的核苷酸序列,所述核苷酸序列能够与(a)的互补物在杂交条件下杂交,所述杂交条件包括于60℃7%十二烷基硫酸钠、0.5M Na2HPO4、1mM EDTA,于65℃1×SSC、0.1%SDS中洗涤,所述多肽包括功能性(R)-2-羟基酸脱氢酶;
(c)包括功能性(R)-2-羟基羧酸脱氢酶的包含氨基酸序列的多肽,其中所述多肽是SEQ ID NO:2,4,6,8,10,12,14,16,18,20,22,35–153或其简并或同源的变体中的任一个;
(d)包含(a)或(b)或能够表达(c)的载体;或
(e)用(d)转化的有机体;以及
其条件是所述(R)-2-羟基酸脱氢酶具有与位于酿酒酵母高异柠檬酸脱氢酶(ScHIDH)SEQ ID NO:2的V111、R114、R115、R124、R143或Y150同功的位置的活性位点的一个或多个突变;并且
其中所述(R)-2-羟基酸脱氢酶在NADH的存在下催化将1-羧基-2-酮酸转换成1-羧基-(R)-2-羟基酸,或其逆反应。
78.一种用于包括(R)-2-羟基酸脱氢酶的以酶法将1-羧基-2-酮酸转换成1-羧基-(R)-2-羟基酸或其逆反应的方法,包括:
(a)选择多肽2、4、6、8、10、12、14、16、18、20、22、24、26、28、30、32、34或35–153;
(b)将活性位点中一个或多个精氨酸残基突变成选自以下组的氨基酸:His、Lys、Gln、Asn、Leu、Ile、Val、Tyr、Phe、Trp、Cys、Ser、Thr、Met、Glu、Asp、Ala、Gly和Pro;其条件是所述多肽具有与位于酿酒酵母高异柠檬酸脱氢酶(ScHIDH)SEQ ID NO:2的R114、R115、R124、或R143同功的位置的活性位点的一个或多个突变;以及
(c)分析氧化还原酶的酶活;
其中所述多肽在NADH的存在下催化将1-羧基-2-酮酸转换成1-羧基-(R)-2-羟基酸,或其逆反应。
79.(R)-2-羟基酸脱氢酶将1-羧基-2-酮酸转换成1-羧基-(R)-2-羟基酸或其逆反应的用途,包括:
(a)多核苷酸,其包含编码多肽的核苷酸序列,所述多肽包括功能性(R)-2-羟基酸脱氢酶,其中所述多核苷酸是SEQ ID NO:1、3、5、7、9、11、13、15、17、19、21,或其简并、同源或密码子优化的变体中的任一个;
(b)包括能够与(a)的互补物在杂交条件下杂交的核苷酸序列的多核苷酸,所述杂交条件包括于60℃7%十二烷基硫酸钠、0.5MNa2HPO4、1mM EDTA和65℃1×SSC、0.1%SDS中洗涤,其编码包括功能性(R)-2-羟基酸脱氢酶的多肽;
(c)包括功能性(R)-2-羟基羧酸脱氢酶的包含氨基酸序列的多肽,其中所述多肽是SEQ ID NO:2、4、6、8、10、12、14、16、18、20、22、35–153或其简并或同源的变体中的任一个;
(d)包含(a)或(b)或能够表达(c)的载体;或
(e)用(d)转化的有机体;以及
其条件是所述(R)-2-羟基酸脱氢酶具有与位于酿酒酵母高异柠檬酸脱氢酶(ScHIDH)SEQ ID NO:2的V111、R114、R115、R124、R143或Y150同功的位置的活性位点的一个或多个突变;并且
其中所述(R)-2-羟基酸脱氢酶在NADH的存在下催化将1-羧基-2-酮酸转换成1-羧基-(R)-2-羟基酸,或其逆反应。
80.一种多核苷酸,其包含编码多肽的核苷酸序列,所述多肽包括功能性(R)-2-羟基酸脱氢酶,该酶用于将2-氧代戊二酸转换成(R)-2-羟基戊二酸或其逆反应,其中所述多核苷酸序列如SEQ ID NO:11或13中所示。
81.一种包括功能性(R)-2-羟基酸脱氢酶的多肽,该酶用于将1-羧基-2-酮酸转换成1-羧基-(R)-2-羟基酸或其逆反应,其中所述多肽如SEQ ID NO:12或14中所示。
82.一种用于包括(R)-2-羟基酸脱氢酶的以酶法将1-羧基-2-酮酸转换成1-羧基-(R)-2-羟基酸或其逆反应的方法,包括:
(a)多核苷酸,其包含编码多肽的核苷酸序列,所述多肽包括功能性(R)-2-羟基酸脱氢酶,其中所述多核苷酸是SEQ ID NO:11或13;
(b)多核苷酸,其包含编码多肽的核苷酸序列,所述核苷酸序列能够与(a)的互补物在杂交条件下杂交,所述杂交条件包括于60℃7%十二烷基硫酸钠、0.5M Na2HPO4、1mM EDTA,于65℃1×SSC、0.1%SDS中洗涤,所述多肽包括功能性(R)-2-羟基酸脱氢酶;
(c)包括功能性(R)-2-羟基羧酸脱氢酶的包含氨基酸序列的多肽,其中所述多肽是SEQ ID NO:12或14;
(d)包含(a)或(b)或能够表达(c)的载体;或
(e)用(d)转化的有机体;以及
其中所述(R)-2-羟基酸脱氢酶在NADH的存在下催化将1-羧基-2-酮酸转换成1-羧基-(R)-2-羟基酸,或其逆反应。
83.(R)-2-羟基酸脱氢酶的将1-羧基-2-酮酸转换成1-羧基-(R)-2-羟基酸或其逆反应的用途,包括:
(a)多核苷酸,其包含编码多肽的核苷酸序列,所述多肽包括功能性(R)-2-羟基酸脱氢酶,其中所述多核苷酸是SEQ ID NO:11或13;
(b)多核苷酸,其包含编码多肽的核苷酸序列,所述核苷酸序列能够与(a)的互补物在杂交条件下杂交,所述杂交条件包括于60℃7%十二烷基硫酸钠、0.5M Na2HPO4、1mM EDTA,于65℃1×SSC、0.1%SDS中洗涤,所述多肽包括功能性(R)-2-羟基酸脱氢酶;
(c)包括功能性(R)-2-羟基羧酸脱氢酶的包含氨基酸序列的多肽,其中所述多肽是SEQ ID NO:12或14;
(d)包含(a)或(b)或能够表达(c)的载体;或
(e)用(d)转化的有机体;以及
其中所述(R)-2-羟基酸脱氢酶在NADH的存在下催化将1-羧基-2-酮酸转换成1-羧基-(R)-2-羟基酸,或其逆反应。
84.一种多核苷酸,其包含编码多肽的核苷酸序列,所述多肽包括功能性氧化还原酶,其中所述多核苷酸是SEQ ID NO:1、3、5、7、9、11、13、15、17、19、21、23、25、27、29、31、33,或其简并、同源或密码子优化的变体中的任一个。
85.一种包括功能性氧化还原酶的多肽,其中所述多肽是SEQ IDNO:2、4、6、8、10、12、14、16、18、20、22、24、26、28、30、32、34,或其简并或同源的变体中的任一个。
86.一种包括功能性氧化还原酶的多肽,其中所述多肽是SEQ IDNO:35–153或其简并或同源的变体中的任一个。
87.一种载体,其包含多核苷酸,所述多核苷酸包含编码多肽的核苷酸序列,所述多肽包括功能性氧化还原酶,其中所述多核苷酸是SEQ ID NO:1、3、5、7、9、11、13、15、17、19、21、23、25、27、29、31、33,或其简并、同源或密码子优化的变体中的任一个。
88.一种载体,其包含多核苷酸,所述多核苷酸包含编码多肽的核苷酸序列,所述多肽包括功能性氧化还原酶,其中所编码的多肽是SEQ ID NO:2、4、6、8、10、12、14、16、18、20、22、24、26、28、30、32、34或35–153或其简并或同源的变体中的任一个。
89.一种培养的细胞,其包含权利要求87或88所述的载体。
90.一种多核苷酸,其包含编码多肽的核苷酸序列,所述多肽包括功能性氧化还原酶,其中所述核苷酸序列是与SEQ ID NO:1、3、5、7、9、11、13、15、17、19、21、23、25、27、29、31或33中所示的多核苷酸序列具有至少90%同一性;
其条件是所编码的多肽具有与位于酿酒酵母高异柠檬酸脱氢酶(ScHIDH)即SEQ ID NO:2的V111、R114、R115、R124、R143或Y150同功的位置的活性位点的至少一个或多个突变;
其中所述一个或多个突变破坏氧化脱羧作用但不破坏氧化还原酶活性。
91.一种多核苷酸,其包含编码多肽的核苷酸序列,所述多肽包括功能性氧化还原酶,其中所述核苷酸序列是与SEQ ID NO:1、3、5、7、9、11、13、15、17、19、21、23、25、27、29、31或33中所示的序列之一具有不多于120个核苷酸取代;
其条件是所编码的多肽具有与位于酿酒酵母高异柠檬酸脱氢酶(ScHIDH)即SEQ ID NO:2的V111、R114、R115、R124、R143或Y150同功的位置的活性位点的至少一个或多个突变;
其中所述一个或多个突变破坏氧化脱羧作用但不破坏氧化还原酶活性。
92.一种多核苷酸,其包含编码多肽的核苷酸序列,所述多肽包括功能性氧化还原酶,其中所编码的多肽是与SEQ ID NO:2、4、6、8、10、12、14、16、18、20、22、24、26、28、30、32、34或35–153中所示的多肽序列具有至少90%同一性;
其条件是所编码的多肽具有与位于酿酒酵母高异柠檬酸脱氢酶(ScHIDH)即SEQ ID NO:2的V111、R114、R115、R124、R143或Y150同功的位置的活性位点的至少一个或多个突变;
其中所述一个或多个突变破坏氧化脱羧作用但不破坏氧化还原酶活性。
93.一种多核苷酸,其包含编码多肽的核苷酸序列,所述多肽包括功能性氧化还原酶,其中所编码的多肽是与SEQ ID NO:2、4、6、8、10、12、14、16、18、20、22、24、26、28、30、32、34或35–153中所示的多肽序列之一具有不多于40个氨基酸取代;
其条件是多肽具有与位于酿酒酵母高异柠檬酸脱氢酶(ScHIDH)即SEQ ID NO:2的V111、R114、R115、R124、R143或Y150同功的位置的活性位点的至少一个或多个突变;
其中所述一个或多个突变破坏氧化脱羧作用但不破坏氧化还原酶活性。
94.一种载体,其包含权利要求90-93任一项所述的多核苷酸。
95.一种培养的细胞,其包含权利要求94的任意所述载体。
96.一种包括功能性氧化还原酶的多肽,其中所述多肽是与SEQID NO:2、4、6、8、10、12、14、16、18、20、22、24、26、28、30、32、34或35–153中所示的多肽序列具有至少90%同一性;
其条件是所述多肽具有与位于酿酒酵母高异柠檬酸脱氢酶(ScHIDH)即SEQ ID NO:2的V111、R114、R115、R124、R143或Y150同功的位置的活性位点的至少一个或多个突变;
其中所述一个或多个突变破坏氧化脱羧作用但不破坏氧化还原酶活性。
97.一种包括功能性氧化还原酶的多肽,其中所编码的多肽是与SEQ ID NO:2、4、6、8、10、12、14、16、18、20、22、24、26、28、30、32、34或35–153中所示的多肽序列之一具有不多于40个氨基酸取代;
其条件是所述多肽具有与位于酿酒酵母高异柠檬酸脱氢酶(ScHIDH)即SEQ ID NO:2的V111、R114、R115、R124、R143或Y150同功的位置的活性位点的至少一个或多个突变;
其中所述一个或多个突变破坏氧化脱羧作用但不破坏氧化还原酶活性。
CN201380019231.0A 2012-02-29 2013-02-27 用于对映选择性反应的新的氧化还原酶 Active CN104245947B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201261604630P 2012-02-29 2012-02-29
US61/604,630 2012-02-29
PCT/US2013/027836 WO2013130487A2 (en) 2012-02-29 2013-02-27 Novel oxidoreductases for enantioselective reactions

Publications (2)

Publication Number Publication Date
CN104245947A true CN104245947A (zh) 2014-12-24
CN104245947B CN104245947B (zh) 2018-01-05

Family

ID=49083436

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201380019231.0A Active CN104245947B (zh) 2012-02-29 2013-02-27 用于对映选择性反应的新的氧化还原酶

Country Status (4)

Country Link
US (1) US8691960B2 (zh)
EP (1) EP2820141B1 (zh)
CN (1) CN104245947B (zh)
WO (1) WO2013130487A2 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107614692A (zh) * 2015-06-10 2018-01-19 东丽株式会社 α‑氢化己二烯二酸的制造方法
CN114752575A (zh) * 2022-04-07 2022-07-15 内蒙古工业大学 一种nad+依赖性脱氢酶基因及其在提高辅酶q10产量中的应用
CN115261293A (zh) * 2021-04-29 2022-11-01 北京化工大学 一种产羟基己二酸的基因工程菌

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104120113B (zh) * 2014-06-30 2016-08-24 浙江工业大学 冬虫夏草3-异丙基苹果酸脱氢酶c、编码基因及其应用

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009151728A2 (en) * 2008-03-27 2009-12-17 Genomatica, Inc. Microorganisms for the production of adipic acid and other compounds

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4652639A (en) 1982-05-06 1987-03-24 Amgen Manufacture and expression of structural genes
US5487987A (en) 1993-09-16 1996-01-30 Purdue Research Foundation Synthesis of adipic acid from biomass-derived carbon sources
US6312893B1 (en) 1996-01-23 2001-11-06 Qiagen Genomics, Inc. Methods and compositions for determining the sequence of nucleic acid molecules
US6613508B1 (en) 1996-01-23 2003-09-02 Qiagen Genomics, Inc. Methods and compositions for analyzing nucleic acid molecules utilizing sizing techniques
DE69739304D1 (de) 1996-01-23 2009-04-23 Operon Biotechnologies Inc Verfahren und Zusammensetzungen zur Bestimmung von Sequenzen von Nukleinsäure-Molekülen
HUP0002518A3 (en) 1997-07-22 2003-01-28 Qiagen Genomics Inc Computer method and system for correlating sequencing data by ms
US6365376B1 (en) 1999-02-19 2002-04-02 E. I. Du Pont De Nemours And Company Genes and enzymes for the production of adipic acid intermediates
AU2001275091A1 (en) 2000-06-02 2001-12-17 Blue Heron Biotechnology, Inc. Methods for improving the sequence fidelity of synthetic double-stranded oligonucleotides
WO2003054232A2 (en) 2001-12-13 2003-07-03 Blue Heron Biotechnology, Inc. Methods for removal of double-stranded oligonucleotides containing sequence errors using mismatch recognition proteins
US7314974B2 (en) 2002-02-21 2008-01-01 Monsanto Technology, Llc Expression of microbial proteins in plants for production of plants with improved properties
AU2008308477A1 (en) * 2007-10-04 2009-04-09 Bio Architecture Lab, Inc. Biofuel production
WO2009111513A1 (en) * 2008-03-03 2009-09-11 Joule Biotechnologies, Inc. Engineered co2 fixing microorganisms producing carbon-based products of interest
CN102027125B (zh) 2008-03-11 2018-09-18 基因组股份公司 己二酸酯或硫代酯合成
WO2010068944A2 (en) 2008-12-12 2010-06-17 Celexion, Llc Biological synthesis of difunctional alkanes from carbohydrate feedstocks
WO2010081885A2 (en) 2009-01-15 2010-07-22 Basf Se Method for the production of glutaconate
JP2012520069A (ja) * 2009-03-11 2012-09-06 ディーエスエム アイピー アセッツ ビー.ブイ. α−ケトピメリン酸の製造
SI2427544T1 (sl) 2009-05-07 2019-11-29 Genomatica Inc Mikroorganizmi in metode za biosintezo adipata, heksametilendiamina in 6-aminokaprojske kisline

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009151728A2 (en) * 2008-03-27 2009-12-17 Genomatica, Inc. Microorganisms for the production of adipic acid and other compounds

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
PATRICK S. WARD ET AL: "The common feature of leukemia-associated IDH1 and IDH2 mutations is a neomorphic enzymatic activity that converts α-ketoglutarate to 2-hydroxyglutarate", 《CANCER CELL》 *
YING LIN ET AL: "Site-Directed Mutagenesis as a Probe of the Acid-Base Catalytic Mechanism of Homoisocitrate Dehydrogenase from Saccharomyces cerevisiae", 《BIOCHEMISTRY》 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107614692A (zh) * 2015-06-10 2018-01-19 东丽株式会社 α‑氢化己二烯二酸的制造方法
CN107614692B (zh) * 2015-06-10 2022-04-19 东丽株式会社 α-氢化己二烯二酸的制造方法
CN115261293A (zh) * 2021-04-29 2022-11-01 北京化工大学 一种产羟基己二酸的基因工程菌
CN115261293B (zh) * 2021-04-29 2024-02-02 北京化工大学 一种产羟基己二酸的基因工程菌
CN114752575A (zh) * 2022-04-07 2022-07-15 内蒙古工业大学 一种nad+依赖性脱氢酶基因及其在提高辅酶q10产量中的应用
CN114752575B (zh) * 2022-04-07 2023-06-13 内蒙古工业大学 一种nad+依赖性脱氢酶基因及其在提高辅酶q10产量中的应用

Also Published As

Publication number Publication date
US8691960B2 (en) 2014-04-08
EP2820141B1 (en) 2018-04-11
WO2013130487A2 (en) 2013-09-06
CN104245947B (zh) 2018-01-05
WO2013130487A3 (en) 2013-10-24
US20130266998A1 (en) 2013-10-10
EP2820141A4 (en) 2016-01-27
EP2820141A2 (en) 2015-01-07

Similar Documents

Publication Publication Date Title
AU2019250216B2 (en) Expression constructs and methods of genetically engineering methylotrophic yeast
Savakis et al. Synthesis of 2, 3-butanediol by Synechocystis sp. PCC6803 via heterologous expression of a catabolic pathway from lactic acid-and enterobacteria
US7785837B2 (en) Production of 3-hydroxypropionic acid using beta-alanine/pyruvate aminotransferase
AU2006300688B2 (en) Yeast and method of producing L-lactic acid
KR19990088053A (ko) 이소프레노이드의향상된생산방법
US11965167B2 (en) Materials and methods for protein production
KR101771266B1 (ko) 발효에 의한 생화학물질의 생산을 위한 돌연변이체 메틸글리옥살 신타제 (mgs)
CN112176000A (zh) 用于生产芳香醇的方法
EP3140409A1 (en) Drimenol synthases and method for producing drimenol
CN104245947A (zh) 用于对映选择性反应的新的氧化还原酶
US20220282227A1 (en) Recombinant heme thiolate oxygenases
CN107267474B (zh) 一种二氢硫辛酰胺脱氢酶突变体蛋白及其制备方法和应用
WO2022003144A1 (en) Bacterial cells and methods for production of 2-fluoro-cis,cis-muconate
CN114806913A (zh) 具有线粒体定位还原tca途径的高产琥珀酸酵母工程菌株及其构建方法和应用
CA3179180A1 (en) Methods and compositions for the production of xylitol from xylose utilizing dynamic metabolic control
EP1231266B1 (en) Arabidopsis-origin gdp-4-keto-6-deoxy-d-mannose-3,5-epimerase-4-reductase gene
Hassing et al. Elimination of aromatic fusel alcohols as by-products of Saccharomyces cerevisiae strains engineered for phenylpropanoid production by 2-oxo-acid decarboxylase replacement
US20230183757A1 (en) Methods and compositions for the production of xylitol from xylose utilizing dynamic metabolic control
EP2970869A2 (en) Low-phosphate repressible promoter
KR20200023450A (ko) 기능적 dna 서열의 안정화된 카피 수를 갖는 미생물 및 관련 방법
KR102067475B1 (ko) 3-히드록시프로피온산 반응 전사인자를 이용한 3-하이드록시프로피온산 선택성 유전자회로 및 이를 이용한 3-히드록시프로피온산 생산 균주의 스크리닝 방법
KR101582261B1 (ko) D―갈락토네이트를 생산하는 대장균 균주 ewg4 및 이의 용도
WO2024010785A1 (en) Ketoreductase enzymes for the synthesis of 1,3-diol substituted indanes
EA013412B1 (ru) Новый ген sms 27

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant