CN104221166A - 利用无Na基板的CIGS系薄膜太阳能电池的制造方法及由此制造的太阳能电池 - Google Patents

利用无Na基板的CIGS系薄膜太阳能电池的制造方法及由此制造的太阳能电池 Download PDF

Info

Publication number
CN104221166A
CN104221166A CN201380000966.9A CN201380000966A CN104221166A CN 104221166 A CN104221166 A CN 104221166A CN 201380000966 A CN201380000966 A CN 201380000966A CN 104221166 A CN104221166 A CN 104221166A
Authority
CN
China
Prior art keywords
cigs
substrate
film
film solar
source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201380000966.9A
Other languages
English (en)
Inventor
鱼英柱
尹庆勋
安世镇
郭智惠
尹载浩
赵雅拉
申基植
安承奎
赵俊植
柳镇洙
朴相炫
朴柱炯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KOREA ENERGY TECHNOLOGY INST
Korea Institute of Energy Research KIER
Original Assignee
KOREA ENERGY TECHNOLOGY INST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KOREA ENERGY TECHNOLOGY INST filed Critical KOREA ENERGY TECHNOLOGY INST
Publication of CN104221166A publication Critical patent/CN104221166A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • H01L31/0322Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312 comprising only AIBIIICVI chalcopyrite compounds, e.g. Cu In Se2, Cu Ga Se2, Cu In Ga Se2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN heterojunction type
    • H01L31/0749Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN heterojunction type including a AIBIIICVI compound, e.g. CdS/CulnSe2 [CIS] heterojunction solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0392Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate
    • H01L31/03923Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate including AIBIIICVI compound materials, e.g. CIS, CIGS
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/541CuInSe2 material PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

本发明涉及CIGS系薄膜太阳能电池的制造方法及由此制造的太阳能电池,更具体的说,本发明涉及在形成CIGS系前驱体薄膜之前,在形成有钼电极的无Na基板表面的一部分形成Na供应源薄膜,由此可以提高太阳能电池光吸收层CIGS系薄膜电性能的CIGS系薄膜太阳能电池的制造方法及由此制造的太阳能电池。根据本发明,使用无Na基板以防止基板内存在的Na成分的任意扩散,通过单独的Na供应源向太阳能电池的光吸收层CIGS薄膜内提供Na成分,具有提高太阳能电池效率的效果。

Description

利用无Na基板的CIGS系薄膜太阳能电池的制造方法及由此制造的太阳能电池
技术领域
本发明涉及CIGS系薄膜太阳能电池的制造方法及由此制造的太阳能电池,更具体的说,本发明涉及在形成CIGS系前驱体薄膜之前,在形成有钼电极的无Na基板表面的一部分提供Na供应源薄膜后,通过热处理使Na成分扩散于形成的CIGS系薄膜内,由此可以提高太阳能电池光吸收层CIGS系薄膜电性能的CIGS系薄膜太阳能电池的制造方法及由此制造的太阳能电池。
背景技术
太阳能电池根据光吸收层使用的物质分成许多种类,目前用的最多的是利用硅的硅太阳能电池。但最近由于硅的供应不足而价格大涨,所以对薄膜型太阳能电池的关心逐渐增加。而且薄膜型太阳能电池制造的厚度薄,材料的消耗少,重量又轻,因此其应用范围广大。针对此种薄膜型太阳能电池的材料,目前对非晶质硅、CdTe、CIS或CIGS积极地进行研究。
CIS薄膜或CIGS薄膜是I-III-VI化合物半导体中的一种,在实验室制造的薄膜太阳能电池中记录着最高的转换效率(20.3%)。尤其在10微米以下的厚度可以制造,也在长时间使用时具有稳定的特性,其期待成可取代硅的低价高效率太阳能电池。
CIGS系薄膜是为了改进CIS薄膜的低开路电压将部分In用Ga代替或将S用Se代替而开发的材料。如图1所示,目前CIGS系薄膜通常是在钠钙玻璃基板上形成钼电极,再其上形成CIGS系前驱体薄膜后,在执行硒化工序来制造。此时,在细化工序中在钠钙玻璃内存在的Na离子向CIGS薄膜内扩散,已证实对元件的电性能有助益。可是从钠钙玻璃供应的Na扩散不能调整。为了调整Na的扩散,要不是使用防止扩散膜来防止Na的扩散,或是涂布增加单独的Na供应源。
对太阳能电池的光吸收层供应Na的多种研究正在进行。例如,在韩国注册专利第743,923号掲示在鉬金属电极添加Na向CIGS薄膜供应的技术内容。然而,对鉬金属内部掺杂Na时,能掺杂的Na含量有限,并且随着Na的添加鉬的电性能(导电性)降低,所以不能称为较好的方法。
另外,在韩国注册专利第1,062,180号掲示光吸收层形成后,供应包含Na成分的水溶液,经过干燥在光吸收层的表面形成含有Na成分的涂布膜,再通过热处理向光吸收层扩散Na成分的技术内容。可是,形成光吸收层后供应Na成分,不能在光吸收层内部均匀地扩散Na浓度,并需要额外的热处理工序,具有制作工序时间变长的缺点。
[先行技术文献]
1.韩国注册专利第743,923号
2.韩国注册专利第1,062,180号
发明内容
发明需要解决的技术课题
本发明的目的是,对太阳能电池的光吸收层CIGS薄膜提供Na成分的方面,提供容易调整Na含量的简易工序,即,形成CIGS系前驱体薄膜之前,在形成钼电极的无Na基板表面的一部分提供Na供应源后,通过热处理方式使Na成分扩散于形成的CIGS系薄膜内,最终提高包含此的太阳能电池的效率。
解决课题的技术方案
用于完成所述目的的本发明的CIGS系薄膜太阳能电池的制造方法,其特征是包含:在无Na基板上形成钼电极的步骤(S1步骤);在所述形成有钼电极的基板表面的一部分形成Na供应源薄膜的步骤(S2步骤);在所述被提供Na供应源薄膜的基板上形成CIGS系前驱体薄膜的步骤(S3步骤);以及通过硒化热处理使Na供应源内的Na成分向CIGS系薄膜内扩散的步骤(S4步骤)。
本发明的S1步骤中的无Na基板可以是由聚酰亚胺(PI)、聚对苯二甲酸乙二酯(PET)、聚萘二甲酸乙二醇酯(PEN)、聚醚砜(PES)及芳香族聚醚(液晶聚合物)所形成的群中选择的高分子基板、不锈钢(STS)基板、如Corning7059Glass或Corning1737Glass等的无Na(Na-free)玻璃基板或陶瓷基板。
本发明的S2步骤是可由将Na供应源溶解于溶剂的溶液选择性的涂布后干燥的方式来执行。此时,选择性的涂布是可由喷涂法、喷墨印刷方法或使用掩膜的旋涂法来执行。
本发明的S2步骤是可由在真空腔内使用掩膜在基板表面的一部分形成Na供应源薄膜的方式来执行。此时,在真空腔内可由溅镀法、电子束或气相沉积法来形成Na供应源薄膜。
本发明的S2步骤中的Na供应源可以是卤化钠、钠硫属化合物或钠复合化合物。
本发明的卤化钠可从NaF、NaCl、NaBr及NaI所形成的群中选择。
本发明的钠硫属化合物可从Na2O、Na2O2、Na2S、Na2Se及Na2Te所形成的群中选择。
本发明的Na复合化合物可从NaNbO3、NaO3V、NaO4Re、Na2O3S、Na2O3S2、NaO3S2·5H2O、Na2O3Se、Na2O3Se·5H2O、Na2O3Si、Na2O3Si·9H2O、Na2O3Sn、Na2O3Sn·3H2O、Na2O3Te、Na2O4S、Na2O4S·10H2O、Na2O4S2、Na2O4Se、Na2O4Se·10H2O、Na2O4W·2H2O、Na2O5S2、Na2O7Ti3、Na2O8S2、Na2S-9H2O、Na2S、Na2S·xH2O、Na3O3PS·xH2O、Na3O4P、Na3O4P·12H2O、Na3O4V、Na3O9P3、Na3O40PW12·xH2O、Na4O7P2、Na4O7P2·10H2O、Na5O10P3及Na6O39W12·xH2O所形成的群中选择。
本发明的S3步骤可从喷涂法、超声波喷涂法、旋涂法、刮刀法、丝网印刷法及喷墨印刷方法所形成的群中选择的任一个非真空涂布法来执行,或溅镀法、共溅镀法及气相沉积法所形成的群中选择的任一个真空涂布法来执行。
本发明的S4步骤的硒化热处理是在硒的气氛下,在250~600℃的温度进行热处理30分到120分钟。
另外,本发明提供由无Na基板;在所述无Na基板上形成的钼电极;包含在形成有钼电极的基板表面的一部分形成的Na供应源薄膜中扩散出的Na成分,并形成在所述钼电极上包含Na成分的CIGS系薄膜;在所述CIGS系薄膜上形成的缓冲层;在所述缓冲层上形成的前电极;以及在所述前电极上形成的金属补助电极所构成的CIGS系薄膜太阳能电池。
所述包含Na成分的CIGS系薄膜包含在形成有钼电极的基板表面的一部分形成的Na供应源薄膜中扩散出的Na成分。
另外,本发明提供具备复数个由无Na基板;在所述无Na基板上形成的钼电极;包含在形成有钼电极的基板表面的一部分形成的Na供应源薄膜中扩散出的Na成分,并形成在所述钼电极上包含Na成分的CIGS系薄膜;在所述CIGS系薄膜上形成的缓冲层;在所述缓冲层上形成的前电极;以及在所述前电极上形成的金属补助电极所构成的CIGS系薄膜太阳能电池的CIGS系薄膜太阳能电池模块。
有益效果
本发明的CIGS系薄膜太能电池的制造方法是使用无Na基板以防止基板内存在的Na成分的任意扩散,通过单独的Na供应源向太阳能电池的光吸收层CIGS薄膜内提供Na成分,具有提高太阳能电池效率的效果。
附图说明
图1是现有技术CIGS系薄膜制造方法的概念图。
图2是根据本发明的CIGS系薄膜太阳能电池制造方法的概念流程图。
图3是根据本发明一实施例的CIGS系薄膜制造方法的概念图。
附图标记
100:钠钙玻璃基板                   300:无Na基板
110,310:Mo电极
120,320:CIGS前驱体
130,330:CIGS薄膜
150,350:Na粒子                    340:Na供应源
190:热处理(硒化工序)
具体实施方式
本发明是为了防止向钼电极及光吸收层的Na的任意扩散,使用无Na基板取代钠钙玻璃,在形成有钼电极的基板表面的一部分形成单独的Na供应源薄膜,在其上形成CIGS系前驱体薄膜后,通过硒化热处理形成CIGS系薄膜的同时,使Na成分向CIGS薄膜扩散,由此可以制得提高电性能的CIGS系薄膜太阳能电池。
以下,结合图2对本发明的CIGS系薄膜太阳能电池的制造方法进行说明。本发明的CIGS系薄膜太阳能电池的制造方法必须包含共4个步骤。
首先,在无Na基板上形成钼电极(S1步骤)。在基板上形成钼电极的方法可以使用在本技术领域中已公知的方法,并不受任何限制。根据本发明的‘无Na基板’是Na含量不满0.3%的基板,较好是Na含量0%的基板。本发明的无Na基板可以使用聚酰亚胺(PI)、聚对苯二甲酸乙二酯(PET)、聚萘二甲酸乙二醇酯(PEN)、聚醚砜(PES)及芳香族聚醚(液晶聚合物)所形成的群中选择的高分子基板、不锈钢(STS)基板、如Corning7059Glass或Corning1737Glass等的无Na(Na-free)玻璃基板或陶瓷基板。优选地使用不锈钢基板。
接着,在所述形成有钼电极的基板表面的一部分形成Na供应源薄膜(S2步骤)。如图3所述,主要的是在形成有钼电极的基板表面的一部分形成Na供应源薄膜。若Na供应源薄膜覆盖整个钼电极,则CIGS系薄膜和钼电极之间的接触不好,可能会影响元件的电性能。
本步骤是将Na供应源溶解于溶剂的溶液选择性的涂布后干燥的方式,即可以执行湿式工序。例如,以不使用掩膜的喷涂法或喷墨印刷方法等将溶液选择性的涂布在基板后干燥,由此在基板表面的一部分可以形成Na供应源薄膜,或是以使用掩膜的旋涂法等将溶液选择性的涂布在基板后干燥,由此在基板表面的一部分可以形成Na供应源薄膜。但并不受限于此种涂布法,亦可适用其它能选择性涂布的涂布法。
另外,本步骤是在真空腔内使用掩膜在基板表面的一部分形成Na供应源薄膜的方式,即可以执行干式工序。例如,在真空腔内以溅镀法、电子束或气相沉积法等在基板表面的一部分可以形成Na供应源薄膜。但并不受限于所述沉积法,可以适用其它所有沉积法。
如上所述,根据Na供应源的种类通常的技术人员可以适当地选择湿式工序或干式工序来执行。
根据本发明的Na供应源可以是卤化钠、钠硫属化合物或钠复合化合物。所述卤化钠可以列举NaF、NaCl、NaBr或NaI,所述钠硫属化合物可以列举Na2O、Na2O2、Na2S、Na2Se或Na2Te。所述钠复合化合物可以列举NaNbO3、NaO3V、NaO4Re、Na2O3S、Na2O3S2、NaO3S2·5H2O、Na2O3Se、Na2O3Se·5H2O、Na2O3Si、Na2O3Si·9H2O、Na2O3Sn、Na2O3Sn·3H2O、Na2O3Te、Na2O4S、Na2O4S·10H2O、Na2O4S2、Na2O4Se、Na2O4Se·10H2O、Na2O4W·2H2O、Na2O5S2、Na2O7Ti3、Na2O8S2、Na2S-9H2O、Na2S、Na2S·xH2O、Na3O3PS·xH2O、Na3O4P、Na3O4P·12H2O、Na3O4V、Na3O9P3、Na3O40PW12·xH2O、Na4O7P2、Na4O7P2·10H2O、Na5O10P3或Na6O39W12·xH2O。根据本发明的Na供应源较好使用Na2O4Se。
然后,在被提供Na供应源薄膜的基板上形成CIGS系前驱体薄膜(S3步骤)。形成CIGS系前驱体薄膜的方法可以使用在本技术领域中已公知的所有方法,并不特别限制。例如,可以由喷涂法、超声波喷涂法、旋涂法、刮刀法、丝网印刷法及喷墨印刷方法所形成的群中选择任一个非真空涂布法;或是由溅镀法、共溅镀法及气相沉积法所形成的群中选择任一个真空涂布法来执行。
本发明的CIGS系薄膜可能是Cu-In-Ga-Se的4元素化合物薄膜;Cu-In-Ga-Se-(S,Se)及Cu-In-Al-Ga-(S,Se)形成的群中包含至少一个的5元素化合物薄膜;或Cu-In-Al-Ga-Se-S的6元素化合物薄膜。根据所述组成可以决定在本步骤使用的前驱体组成。
接着,通过硒化热处理使Na供应源的Na成分向CIGS薄膜扩散(S4步骤)。在本步骤通过硒化热处理从CIGS系前驱体薄膜形成CIGS系薄膜的同时,在CIGS系薄膜内可以扩散Na成分。本步骤的硒化热处理可由供应对硒固体加热蒸发形成的硒蒸汽,并同时提高形成所述薄膜的基板温度来执行。优选地,在硒的气氛下,在250~600℃的温度可以进行热处理30分到120分钟。在所述温度范围内进行硒化热处理时充分完成结晶化而生成的CIGS膜具有其性能被改善的效果。
然后,根据需要可以进行多种步骤。例如,由于光吸收层和前电极之间的晶格常数和禁带宽度相差很大,为了光吸收层和前电极之间的良好电性接合,可以进行形成禁带宽度位于光吸收层和前电极中间的缓冲层的步骤。此种情形,缓冲层可以利用硫化镉层,其可以用化学池沉积法(CBD:chemicalbath deposition)形成。当然,除此之外亦可利用InxSey等做缓冲层。另外,可以用如ZnO、ITO、IZO或In2O3等的高透光率物质形成前电极,但不仅是单层还可以形成多层结构。根据需要有时掺杂铝或硼来降低其阻抗。此种前电极可以用溅镀等的方法形成。形成前电极后根据需要可以再加形成用于收集电流的补助电极。此种补助电极可以用铝及/或镍等形成,但补助电极以栅形配置在前电极上面,可以使光通过前电极到达光吸收层。
通过本发明的较佳实施例对本发明进行更详细的说明。
[实施例1]
在无Na基板STS基板上将Mo电极以溅镀法成膜。然后,在Mo电极上附着间距(pitch)1mm、缐宽500μm的阴影掩膜后,使用热蒸镀机(thermalevaporator)将NaF部分成膜。利用阴影掩膜,使NaF成膜区域500μmum和不成膜区域500μm相邻并有规则地反复形成。成膜的NaF厚度固定为50nm。
形成NaF膜后,消除阴影掩膜,在沉积NaF的Mo基板上以非真空方式制造CIGS薄膜,测定了Cell的性能。
没有NaF成膜的Mo基板作为比较组,在其上以同样的方式制造CIGS Cell,且测定的性能表示在下表1,其图形显示在图4。
【表1】
区分 Voc(V) Jsc(mA/cm2) FF(%) 效率(%)
单纯Mo 0.67 24.25 40.97 6.72
NaFMo 0.63 19.10 62.53 7.58
从表1及图3,可以确认本发明沉积NaF的基板上的CIGS电池的效率较高。
根据本发明的制造方法制造的CIGS系太阳能电池,其特征是由无Na基板;在所述无Na基板上形成的钼电极;包含在形成有钼电极的基板表面的一部分形成的Na供应源薄膜中扩散出的Na成分,并形成在所述钼电极上包含Na成分的CIGS系薄膜;在所述CIGS系薄膜上形成的缓冲层;在所述缓冲层上形成的前电极;以及在所述前电极上形成的金属补助电极所构成。
另外,本发明提供具备复数个由无Na基板;在所述无Na基板上形成的钼电极;包含在形成有钼电极的基板表面的一部分形成的Na供应源薄膜中扩散出的Na成分,并形成在所述钼电极上包含Na成分的CIGS系薄膜;在所述CIGS系薄膜上形成的缓冲层;在所述缓冲层上形成的前电极;以及在所述前电极上形成的金属补助电极所构成的CIGS系薄膜太阳能电池的CIGS系薄膜太阳能电池模块。
在本发明的技术领域凡是具有通常知识的技术人员在不脱离本发明的技术思想下均可实施多种变形。因此,本发明的权利范围应该由记载的权利要求书来定义。

Claims (15)

1.一种CIGS系薄膜太阳能电池的制造方法,其特征是包含:
在无Na基板上形成钼电极的步骤(S1步骤);
在所述形成有钼电极的基板表面的一部分形成Na供应源薄膜的步骤(S2步骤);
在所述被提供Na供应源薄膜的基板上形成CIGS系前驱体薄膜的步骤(S3步骤);以及
通过硒化热处理使Na供应源内的Na成分向CIGS系薄膜内扩散的步骤(S4步骤)。
2.根据权利要求1所述的CIGS系薄膜太阳能电池的制造方法,其特征是所述S1步骤中的无Na基板是由聚酰亚胺(PI)、聚对苯二甲酸乙二酯(PET)、聚萘二甲酸乙二醇酯(PEN)、聚醚砜(PES)及芳香族聚醚所形成的群中选择的高分子基板、不锈钢(STS)基板、无Na(Na-free)玻璃基板或陶瓷基板。
3.根据权利要求1所述的CIGS系薄膜太阳能电池的制造方法,其特征是所述S2步骤是将Na供应源溶解于溶剂的溶液选择性的涂布后干燥。
4.根据权利要求3所述的CIGS系薄膜太阳能电池的制造方法,其特征是所述选择性的涂布是由喷涂法、喷墨印刷方法或使用掩膜的旋涂法来执行。
5.根据权利要求1所述的CIGS系薄膜太阳能电池的制造方法,其特征是所述S2步骤是在真空腔内使用掩膜在基板表面的一部分形成Na供应源薄膜。
6.根据权利要求5所述的CIGS系薄膜太阳能电池的制造方法,其特征是所述S2步骤是在真空腔内由溅镀法、电子束或气相沉积法来形成Na供应源薄膜。
7.根据权利要求1所述的CIGS系薄膜太阳能电池的制造方法,其特征是所述S2步骤中的Na供应源是卤化钠、钠硫属化合物或钠复合化合物。
8.根据权利要求7所述的CIGS系薄膜太阳能电池的制造方法,其特征是所述卤化钠是从NaF、NaCl、NaBr及NaI所形成的群中选择。
9.根据权利要求7所述的CIGS系薄膜太阳能电池的制造方法,其特征是所述钠硫属化合物是从Na2O、Na2O2、Na2S、Na2Se及Na2Te所形成的群中选择。
10.根据权利要求7所述的CIGS系薄膜太阳能电池的制造方法,其特征是所述Na复合化合物是从NaNbO3、NaO3V、NaO4Re、Na2O3S、Na2O3S2、NaO3S2·5H2O、Na2O3Se、Na2O3Se·5H2O、Na2O3Si、Na2O3Si·9H2O、Na2O3Sn、Na2O3Sn·3H2O、Na2O3Te、Na2O4S、Na2O4S·10H2O、Na2O4S2、Na2O4Se、Na2O4Se·10H2O、Na2O4W·2H2O、Na2O5S2、Na2O7Ti3、Na2O8S2、Na2S-9H2O、Na2S、Na2S·xH2O、Na3O3PS·xH2O、Na3O4P、Na3O4P·12H2O、Na3O4V、Na3O9P3、Na3O40PW12·xH2O、Na4O7P2、Na4O7P2·10H2O、Na5O10P3及Na6O39W12·xH2O所形成的群中选择。
11.根据权利要求1所述的CIGS系薄膜太阳能电池的制造方法,其特征是所述S3步骤是从喷涂法、超声波喷涂法、旋涂法、刮刀法、丝网印刷法及喷墨印刷方法所形成的群中选择的任一个非真空涂布法来执行。
12.根据权利要求1所述的CIGS系薄膜太阳能电池的制造方法,其特征是所述S3步骤是从溅镀法、共溅镀法及气相沉积法所形成的群中选择的任一个真空涂布法来执行。
13.根据权利要求1所述的CIGS系薄膜太阳能电池的制造方法,其特征是所述S4步骤的硒化热处理是在硒的气氛下,在250~600℃的温度进行热处理30分到120分钟。
14.一种CIGS系薄膜太阳能电池,其特征是由
无Na基板;
在所述无Na基板上形成的钼电极;
包含在形成有钼电极的基板表面的一部分形成的Na供应源薄膜中扩散出的Na成分,并形成在所述钼电极上包含Na成分的CIGS系薄膜;
在所述CIGS系薄膜上形成的缓冲层;
在所述缓冲层上形成的前电极;以及
在所述前电极上形成的金属补助电极所构成。
15.一种CIGS系薄膜太阳能电池模块,其特征是具备复数个由
无Na基板;
在所述无Na基板上形成的钼电极;
包含在形成有钼电极的基板表面的一部分形成的Na供应源薄膜中扩散出的Na成分,并形成在所述钼电极上包含Na成分的CIGS系薄膜;
在所述CIGS系薄膜上形成的缓冲层;
在所述缓冲层上形成的前电极;以及
在所述前电极上形成的金属补助电极所构成的CIGS系薄膜太阳能电池。
CN201380000966.9A 2012-03-12 2013-03-06 利用无Na基板的CIGS系薄膜太阳能电池的制造方法及由此制造的太阳能电池 Pending CN104221166A (zh)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
KR10-2012-0025153 2012-03-12
KR20120025153 2012-03-12
KR1020130009174A KR20130105325A (ko) 2012-03-12 2013-01-28 Na 무함유 기판을 이용한 CIGS계 박막 태양전지의 제조방법 및 이에 따라 제조된 태양전지
KR10-2013-0009174 2013-01-28
PCT/KR2013/001808 WO2013137587A1 (ko) 2012-03-12 2013-03-06 Na 무함유 기판을 이용한 cigs계 박막 태양전지의 제조방법 및 이에 따라 제조된 태양전지

Publications (1)

Publication Number Publication Date
CN104221166A true CN104221166A (zh) 2014-12-17

Family

ID=49453963

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201380000966.9A Pending CN104221166A (zh) 2012-03-12 2013-03-06 利用无Na基板的CIGS系薄膜太阳能电池的制造方法及由此制造的太阳能电池

Country Status (4)

Country Link
EP (1) EP2693496B1 (zh)
KR (1) KR20130105325A (zh)
CN (1) CN104221166A (zh)
WO (1) WO2013137587A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106653898A (zh) * 2016-11-04 2017-05-10 中利腾晖光伏科技有限公司 一种czts太阳能电池

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101521803B1 (ko) 2013-09-03 2015-05-21 한국전자통신연구원 모바일 애플리케이션의 보안성 검증을 위한 이벤트 발현 장치 및 그 방법
CN103872154B (zh) * 2014-03-28 2016-08-17 厦门大学 一种含钠钼膜及其制备方法和应用
KR20180034248A (ko) * 2016-09-27 2018-04-04 재단법인대구경북과학기술원 수산화나트륨을 이용한 유연 czts계 박막태양전지 및 이의 제조방법

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5626688A (en) * 1994-12-01 1997-05-06 Siemens Aktiengesellschaft Solar cell with chalcopyrite absorber layer
JP2004047860A (ja) * 2002-07-15 2004-02-12 Matsushita Electric Ind Co Ltd 薄膜太陽電池およびその製造方法
CN101589472A (zh) * 2006-12-08 2009-11-25 索罗能源公司 用于ibiiiavia族化合物层的掺杂技术

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003069684A1 (fr) * 2002-02-14 2003-08-21 Honda Giken Kogyo Kabushiki Kaisha Procédé de formation de couche absorbant la lumière
JP4110515B2 (ja) * 2002-04-18 2008-07-02 本田技研工業株式会社 薄膜太陽電池およびその製造方法
KR100743923B1 (ko) 2006-02-08 2007-07-30 한국에너지기술연구원 씨아이예스계 화합물 박막 태양 전지의 후면 전극
US8613973B2 (en) * 2007-12-06 2013-12-24 International Business Machines Corporation Photovoltaic device with solution-processed chalcogenide absorber layer
DE102009013903A1 (de) * 2009-03-19 2010-09-23 Clariant International Limited Solarzellen mit einer Barriereschicht auf Basis von Polysilazan
KR101172952B1 (ko) * 2009-12-11 2012-08-10 심포니에너지주식회사 황화나트륨을 이용한 유연 cigss 박막태양전지 제조 및 제조방법
KR101062180B1 (ko) 2010-11-12 2011-09-05 영남대학교 산학협력단 태양전지 제조방법 및 이에 따라 제조된 태양전지

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5626688A (en) * 1994-12-01 1997-05-06 Siemens Aktiengesellschaft Solar cell with chalcopyrite absorber layer
JP2004047860A (ja) * 2002-07-15 2004-02-12 Matsushita Electric Ind Co Ltd 薄膜太陽電池およびその製造方法
CN101589472A (zh) * 2006-12-08 2009-11-25 索罗能源公司 用于ibiiiavia族化合物层的掺杂技术

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106653898A (zh) * 2016-11-04 2017-05-10 中利腾晖光伏科技有限公司 一种czts太阳能电池
CN106653898B (zh) * 2016-11-04 2019-06-11 苏州腾晖光伏技术有限公司 一种czts太阳能电池

Also Published As

Publication number Publication date
WO2013137587A1 (ko) 2013-09-19
KR20130105325A (ko) 2013-09-25
EP2693496A4 (en) 2014-08-27
EP2693496A1 (en) 2014-02-05
EP2693496B1 (en) 2017-08-02

Similar Documents

Publication Publication Date Title
Yuan et al. Optimization of CIGS-based PV device through antimony doping
US20110232758A1 (en) Thin film photovoltaic cell
CN104659123A (zh) 化合物薄膜太阳能电池及其制备方法
US20160284882A1 (en) Solar Cell
US9461187B2 (en) Solar cell apparatus and method for manufacturing the same
CN104221166A (zh) 利用无Na基板的CIGS系薄膜太阳能电池的制造方法及由此制造的太阳能电池
US10395845B2 (en) Flexible Ti—In—Zn—O transparent electrode for dye-sensitized solar cell, and metal-inserted three-layer transparent electrode with high conductivity using same and manufacturing method therefor
US9224903B2 (en) Method for manufacturing photoelectric converter
KR100995394B1 (ko) 박막 태양전지의 박막 형성장치
Bandara et al. Transparent and conductive F-Doped SnO 2 nanostructured thin films by sequential nebulizer spray pyrolysis
JP5621804B2 (ja) 太陽電池及びその製造方法
CN102544213B (zh) 制造硫化镉层的方法
CN101807612B (zh) 薄膜太阳能电池及其制造方法
CN104716229A (zh) 铜锌锡硒薄膜太阳电池的制备方法
Krawczak et al. Electrical properties of aluminum contacts deposited by DC sputtering method for photovoltaic applications
KR20190084454A (ko) 플렉시블 박막태양전지용 스테인레스 박판의 절연막 형성방법 및 그에 따라 제조된 태양전지
RU2682836C1 (ru) Способ изготовления светопроницаемого тонкопленочного солнечного модуля на основе халькопирита
KR101306459B1 (ko) 태양광 발전장치 및 이의 제조방법
US9548407B2 (en) Solar cell and method for fabricating the same
Son et al. Low resistivity molybdenum thin film towards the back contact of dye-sensitized solar cell
KR101967275B1 (ko) 플렉시블 박막태양전지를 위한 Na 공급방법 및 그에 따라 제조된 태양전지
JP5710368B2 (ja) 光電変換素子および太陽電池
US20140290741A1 (en) Photoelectric conversion apparatus
Marín et al. Au/Cu 2 Te/CdTe/CdS/TCO/Glass Solar Cells with CdIn 2 O 4 Obtained by Sol-Gel as TCO.
KR20150118605A (ko) 태양 전지 및 이의 제조방법

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20141217

RJ01 Rejection of invention patent application after publication