CN104218127A - 一种与等离子体激元耦合的高效GaN基LED及其制作方法 - Google Patents

一种与等离子体激元耦合的高效GaN基LED及其制作方法 Download PDF

Info

Publication number
CN104218127A
CN104218127A CN201410448536.XA CN201410448536A CN104218127A CN 104218127 A CN104218127 A CN 104218127A CN 201410448536 A CN201410448536 A CN 201410448536A CN 104218127 A CN104218127 A CN 104218127A
Authority
CN
China
Prior art keywords
gan
layer
photonic crystal
thickness
type gan
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201410448536.XA
Other languages
English (en)
Inventor
刘宏伟
刘春影
杨华
杨广华
阚强
陈弘达
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tianjin Polytechnic University
Original Assignee
Tianjin Polytechnic University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tianjin Polytechnic University filed Critical Tianjin Polytechnic University
Priority to CN201410448536.XA priority Critical patent/CN104218127A/zh
Publication of CN104218127A publication Critical patent/CN104218127A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0062Processes for devices with an active region comprising only III-V compounds
    • H01L33/0075Processes for devices with an active region comprising only III-V compounds comprising nitride compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/04Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction
    • H01L33/06Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction within the light emitting region, e.g. quantum confinement structure or tunnel barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/26Materials of the light emitting region
    • H01L33/30Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table
    • H01L33/32Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table containing nitrogen
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0033Processes relating to semiconductor body packages
    • H01L2933/0066Processes relating to semiconductor body packages relating to arrangements for conducting electric current to or from the semiconductor body

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Led Devices (AREA)

Abstract

本发明属于微电子与光电子技术领域,涉及一种与等离子体激元耦合的高效GaN基LED及其制作方法,该LED由下向上依次包括蓝宝石衬底,GaN成核层一层,GaN无掺杂层一层,n型GaN一层,InGaN/GaN多量子阱,p型GaN欧姆接触层一层,Ag光子晶体一层,p型GaN填充Ag光子晶体的空隙,p型GaN掺杂层一层,P电极和N电极各一个。本发明利用金属有机化学气相沉积(MOCVD)技术和微纳加工技术制备,还利用金属光子晶体的SPP泄露模式和近场局域耦合增强器件发光效率。

Description

一种与等离子体激元耦合的高效GaN基LED及其制作方法
技术领域
本发明涉及微电子与光电子技术领域,特别涉及一种高光电转换效率的GaN基LED及其制作方法。本发明利用二维金属Ag光子晶体的等离子体激元(Surface Plasmon Polaritcn,SPP)模式耦合增强GaN基发光二极管的发光效率。
背景技术
III-V族化合物半导体材料广泛应用在发光领域,GaN已经被认定是制作高效发光二极管的最佳材料之一。随着半导体照明产业的快速发展,高光效LED芯片需求持续增长,进一步提高GaN-LED的发光效率仍然是科学界研究的热点问题。在众多的增强LED发光效率的方法中,利用表面等离子体激元耦合提高发光器件发光效率是增强器件发光的有效途径。
表面等离子体激元,是在金属与介质交界面振荡的一种电磁波,能够在金属表面形成强烈的局域场。在LED器件中,当表面等离子体激元与GaN光辐射模式波矢量相近或完全相同时,且两类波能量穿透深度范围有交叠时,会产生能量耦合,可以通过这一方式提高GaN量子阱光子态密度,提高GaN-LED增强内量子效率。同时让更多的光子能量转移为表面等离子体波,然后再由表面微结构破坏SPP传输模式,使其转化为辐射模式,被有效提取,从而提高GaN-LED的发光效率。
2006年,Koichi Okamoto的研究小组提出了LED量子阱和金属薄膜的SPP耦合的结构,通过背向散射光泵浦方式观察到LED发光强度最高增强14倍(Ag薄膜增强)。但该结构与实际应用器件存在较大差距,金属薄膜和量子阱之间的GaN隔离层厚度为10nm,在电注入发光器件结构中不能提供足够的载流子在有源区复合,且该结构中不能完全排除金属反射对发光增强的影响。
2012年,Lee-Woon Jang等人在距离InGaN/GaN量子阱10nm的位置制作了以Ag为核、SiO2为壳的纳米颗粒。实验结果表明,带有Ag/SiO2纳米颗粒的GaN-LED样品可增强内量子效率30.5%。但是,利用金属纳米颗粒增强GaN-LED发光效率的缺陷在于该方法受到金属纳米颗粒尺寸、颗粒分布、颗粒形状、颗粒体积分数等因素的影响。相比于金属纳米颗粒结构,金属周期性结构更容易控制LED光辐射和SPP的调制。
综合所述,二维金属光子晶体产生的表面等离子体激元能够高效耦合GaN基LED光辐射,表现在两方面:二维金属光子晶体表面形成的强局域场,有利于提高LED内量子效率;同时光子晶体周期和占空比可以调制使表面等离子体波与GaN光辐射传播常数相近,从而耦合出光能量,并且金属表面等离子体波被有效提取,进而增强GaN基LED的出光效率。
发明内容
本发明的目的是提出一种GaN基高效电致发光LED及其制作方法。本发明利用金属光子晶体的SPP泄露模式和近场局域耦合增强器件发光效率。本发明的技术方案如下:
一种与等离子体激元耦合的高效GaN基LED,由下向上依次包括蓝宝石衬底,GaN成核层一层,GaN无掺杂层一层,n型GaN一层,InGaN/GaN多量子阱,p型GaN欧姆接触层一层、Ag光子晶体一层,p型GaN填充Ag光子晶体的空隙,p型GaN掺杂层一层,P电极和N电极各一个。
作为本发明的优选实施方式,所述的p型GaN欧姆接触层的厚度在27nm-33nm之间,隔离金属Ag光子晶体和多量子阱发光区域,避免SPP波金属淬灭。
作为本发明的优选实施方式,把Ag层蚀刻成周期为300nm,直径为100nm的正方形晶格金属光子晶体。
一种制备与等离子体激元耦合的高效GaN基LED的方法,包括以下步骤:
(1)在550℃的环境下,在蓝宝石衬底上生长厚度为23nm-27nm之间的GaN成核层;
(2)将温度升高到1020℃,分别生长厚度为1900nm-2100nm之间的GaN无掺杂层和n型GaN层;
(3)将温度降低至770℃,再生长InGaN/GaN多量子阱,周期数为4-6;
(4)将温度升高到970℃,再生长p型GaN欧姆接触层一层,其厚度在27nm-33nm之间;
(5)在p型GaN上,利用电子束蒸发工艺,制备Ag层,其厚度在48nm-52nm之间;
(6)利用电子束曝光技术,蚀刻金属光子晶体;
(7)在800℃的环境下,生长p型GaN填充光子晶体的空隙;
(8)将温度升高至970℃,生长p型GaN掺杂层,其厚度在140nm-160nm之间;
(9)制作p-电极和n-电极。
本发明具有下面优点:
(1)利用微纳加工手段制作金属Ag光子晶体,调制金属Ag的SPP波,金属光子晶体的SPP耦合结构可以避免以往研究工作中金属膜颗粒结构的尺寸、分布、形状等不规则情况对SPP波有效激发的影响,具有更好的SPP波长激发一致性和可控性。
(2)利用金属光子晶体SPP泄露模式与GaN基光辐射模式耦合,利用SPP泄露模式提高GaN基发光器件外量子光效率。
(3)利用光子晶体倒格矢降低金属等离子体激元频率,实现与GaN基发光器件光辐射波长的匹配,提高金属SPP波近场耦合效率,进而提高器件内量子效率。
(4)在PN结和金属光子晶体之间生长了p型GaN,隔离金属光子晶体和发光区域,避免了SPP波金属淬灭。
附图说明
附图1为与等离子体激元耦合的高效GaN基LED侧切面示意图。
图中1-蓝宝石衬底 2-GaN成核层 3-GaN无掺杂层 4-n型GaN 5-InGaN/GaN多量子阱 6-p型GaN欧姆接触层 7-金属Ag光子晶体 8-p型GaN填充Ag光子晶体 9-p型GaN掺杂层 10-p-电极 11-n-电极
附图2为金属Ag光子晶体俯视示意图。
具体实施方式
为了达到上述目的,本发明采用的技术方案为:
一种与等离子体激元耦合的高效GaN基LED(如附图1所示),其制作方法具体包括下面步骤:
(1)该GaN基LED利用金属有机化学气相沉积生长在蓝宝石衬底上;
(2)在550℃的环境下,在蓝宝石衬底上生长厚度为23nm-27nm之间的GaN成核层;
(3)将温度升高到1020℃,分别生长厚度为1900nm-2100nm之间的GaN无掺杂层和n型GaN层;
(4)将温度降低至770℃,再生长InGaN/GaN多量子阱,周期数为4-6;
(5)将温度升高到970℃,再生长p型GaN欧姆接触层一层,其厚度在27nm-33nm之间;
(6)在p型GaN上,利用电子束蒸发工艺,制备Ag层,其厚度在48nm-52nm之间;
(7)依次进行如下的操作,蚀刻金属Ag光子晶体(金属Ag光子晶体如附图2所示):
1)在Ag的表面,利用等离子体增强化学气相沉积工艺制备SiO2一层;
2)在SiO2层的表面,涂覆光刻胶(Zip520或者PMMA);
3)光刻光子晶体掩膜板,采用氧等离子体打胶30秒,制备周期为300nm,直径为100nm的正方晶格光子晶体光刻胶掩膜;
4)以光刻胶光子晶体为掩膜,利用反应离子刻蚀工艺刻蚀SiO2掩膜,刻蚀时间3+3+3=9分钟,每刻蚀三分钟停顿20分钟,待刻蚀样品降温后重新刻蚀;
5)利用丙酮超声去胶;
6)以SiO2为掩膜,利用感应耦合等离子体刻蚀法刻蚀Ag光子晶体图形,刻蚀气体比可以为BCl3∶Cl2∶Ar=6∶3∶20;
7)用BOE溶液去除SiO2层;
(8)在800℃的环境下,生长p型GaN填充光子晶体的空隙;
(9)将温度升高至970℃,生长p型GaN掺杂层,其厚度在140nm-160nm之间;
(10)利用干法刻蚀技术,腐蚀LED的一个角,为制作n-电极提供空间;
(11)制作p-电极和n-电极。

Claims (4)

1.一种与等离子体激元耦合的高效GaN基LED,由下向上依次包括蓝宝石衬底,GaN成核层一层,GaN无掺杂层一层,n型GaN一层,InGaN/GaN多量子阱,p型GaN欧姆接触层一层,Ag光子晶体一层,p型GaN填充Ag光子晶体的空隙,p型GaN掺杂层一层,P电极和N电极各一个。
2.根据权利要求1所述的LED,其特征在于:所述的GaN成核层的厚度在23nm-27nm之间,所述的GaN无掺杂层的厚度在1900nm-2100nm之间,所述的n型GaN层的厚度在1900nm-2100nm之间,所述的InGaN/GaN多量子阱,周期数为4-6,所述的p型GaN欧姆接触层的厚度在27nm-33nm之间,所述的Ag光子晶体的厚度在48nm-52nm之间,所述的p型GaN掺杂层的厚度在140nm-160nm之间。
3.根据权利要求1所述的Ag光子晶体,其特征在于:Ag光子晶体是若干个100nm为直径的Ag圆柱以300nm为周期排列的阵列。
4.一种与等离子体激元耦合的高效GaN基LED的制备方法,包括以下步骤:
(1)在550℃的环境下,在蓝宝石衬底上生长厚度为23nm-27nm之间的GaN成核层;
(2)将温度升高到1020℃,分别生长厚度为1900nm-2100nm之间的GaN无掺杂层和n型GaN层;
(3)将温度降低至770℃,再生长InGaN/GaN多量子阱,周期数为4-6;
(4)将温度升高到970℃,再生长p型GaN欧姆接触层一层,其厚度在27nm-33nm之间;
(5)在p型GaN上,利用电子束蒸发工艺,制备Ag层,其厚度在48nm-52nm之间;
(6)利用电子束曝光技术,蚀刻金属光子晶体;
(7)在800℃的环境下,生长p型GaN填充光子晶体的空隙;
(8)将温度升高至970℃,生长p型GaN掺杂层,其厚度在140nm-160nm之间;
(9)制作p-电极和n-电极。
CN201410448536.XA 2014-09-01 2014-09-01 一种与等离子体激元耦合的高效GaN基LED及其制作方法 Pending CN104218127A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410448536.XA CN104218127A (zh) 2014-09-01 2014-09-01 一种与等离子体激元耦合的高效GaN基LED及其制作方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410448536.XA CN104218127A (zh) 2014-09-01 2014-09-01 一种与等离子体激元耦合的高效GaN基LED及其制作方法

Publications (1)

Publication Number Publication Date
CN104218127A true CN104218127A (zh) 2014-12-17

Family

ID=52099432

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410448536.XA Pending CN104218127A (zh) 2014-09-01 2014-09-01 一种与等离子体激元耦合的高效GaN基LED及其制作方法

Country Status (1)

Country Link
CN (1) CN104218127A (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104993026A (zh) * 2015-05-19 2015-10-21 西安交通大学 一种单芯片颜色可调的GaN基LED结构的制备方法
CN105023984A (zh) * 2015-06-23 2015-11-04 北京大学 一种基于GaN厚膜的垂直结构LED芯片及其制备方法
CN108615797A (zh) * 2018-04-28 2018-10-02 南京大学 具有表面等离激元圆台纳米阵列的AlGaN基紫外LED器件及其制备方法
CN109037267A (zh) * 2018-06-29 2018-12-18 天津工业大学 金属光子晶体耦合增强nano-LED阵列及制造方法
CN110838538A (zh) * 2018-08-17 2020-02-25 安徽三安光电有限公司 一种发光二极管元件及其制备方法

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104993026A (zh) * 2015-05-19 2015-10-21 西安交通大学 一种单芯片颜色可调的GaN基LED结构的制备方法
CN104993026B (zh) * 2015-05-19 2017-10-20 西安交通大学 一种单芯片颜色可调的GaN基LED结构的制备方法
CN105023984A (zh) * 2015-06-23 2015-11-04 北京大学 一种基于GaN厚膜的垂直结构LED芯片及其制备方法
CN105023984B (zh) * 2015-06-23 2018-06-08 北京大学 一种基于GaN厚膜的垂直结构LED芯片的制备方法
CN108615797A (zh) * 2018-04-28 2018-10-02 南京大学 具有表面等离激元圆台纳米阵列的AlGaN基紫外LED器件及其制备方法
CN108615797B (zh) * 2018-04-28 2019-07-02 南京大学 具有表面等离激元圆台纳米阵列的AlGaN基紫外LED器件及其制备方法
CN109037267A (zh) * 2018-06-29 2018-12-18 天津工业大学 金属光子晶体耦合增强nano-LED阵列及制造方法
CN109037267B (zh) * 2018-06-29 2021-09-14 天津工业大学 金属光子晶体耦合增强nano-LED阵列及制造方法
CN110838538A (zh) * 2018-08-17 2020-02-25 安徽三安光电有限公司 一种发光二极管元件及其制备方法

Similar Documents

Publication Publication Date Title
CN102169930B (zh) 一种金属纳米颗粒辅助实现发光二极管表面粗化的方法
US11101406B2 (en) Efficient wide bandgap GaN-based LED chip based on surface plasmon effect and manufacturing method therefor
TWI433351B (zh) 可受表面電漿子強化之發光二極體
CN105185883A (zh) 侧壁粗化的AlGaInP基LED及其制造方法
JP2007214260A (ja) 半導体発光素子およびその製造方法
CN104218127A (zh) 一种与等离子体激元耦合的高效GaN基LED及其制作方法
CN102856446B (zh) 具有纳米结构的磊晶基板及发光二极管的制作方法
CN103928579A (zh) 一种紫外发光二极管
CN103681996A (zh) 一种紫外发光二极管及其制备方法
CN103219442A (zh) 局域表面等离子体增强型垂直结构led结构及制造方法
CN102800771A (zh) 发光二极管表面金属亚波长嵌入式光栅结构及制备方法
TWI483427B (zh) 發光二極體之製備方法
CN102255010B (zh) 一种氮化镓发光二极管的制作方法
CN204991747U (zh) 侧壁粗化的AlGaInP基LED
CN103560192A (zh) 金属等离子体激元耦合发光增强硅基led及其制作方法
CN204289497U (zh) 一种与等离子体激元耦合的高效GaN基LED
CN105048284A (zh) 一种多重耦合的单光子发光体及其制作方法
CN104241492A (zh) 具有金属介质组合光栅结构的led芯片
TWI476954B (zh) 半導體結構
Wu et al. Enhanced light extraction of high-voltage light emitting diodes using a sidewall chamfer structure
KR101136521B1 (ko) 발광 다이오드 및 그 제조방법
CN203631588U (zh) 金属等离子体激元耦合发光增强硅基led
TWI407594B (zh) 發光二極體晶粒的製作方法
TWI540757B (zh) 光學對稱發光二極體
Tripathy et al. Light extraction from GaN‐based LED structures on silicon‐on‐insulator substrates

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20141217