CN104209559B - 一种基于临界切削厚度的微细刀具刃口强化方法 - Google Patents

一种基于临界切削厚度的微细刀具刃口强化方法 Download PDF

Info

Publication number
CN104209559B
CN104209559B CN201410333712.5A CN201410333712A CN104209559B CN 104209559 B CN104209559 B CN 104209559B CN 201410333712 A CN201410333712 A CN 201410333712A CN 104209559 B CN104209559 B CN 104209559B
Authority
CN
China
Prior art keywords
cutting
edge
critical thickness
cutting edge
fine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201410333712.5A
Other languages
English (en)
Other versions
CN104209559A (zh
Inventor
陈明
郑小虎
魏莹莹
于德栋
董大鹏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Jiaotong University
Ninth Peoples Hospital Shanghai Jiaotong University School of Medicine
Original Assignee
Shanghai Jiaotong University
Ninth Peoples Hospital Shanghai Jiaotong University School of Medicine
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Jiaotong University, Ninth Peoples Hospital Shanghai Jiaotong University School of Medicine filed Critical Shanghai Jiaotong University
Priority to CN201410333712.5A priority Critical patent/CN104209559B/zh
Publication of CN104209559A publication Critical patent/CN104209559A/zh
Application granted granted Critical
Publication of CN104209559B publication Critical patent/CN104209559B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B51/00Tools for drilling machines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C99/00Subject matter not provided for in other groups of this subclass
    • B81C99/0005Apparatus specially adapted for the manufacture or treatment of microstructural devices or systems, or methods for manufacturing the same
    • B81C99/001Apparatus specially adapted for the manufacture or treatment of microstructural devices or systems, or methods for manufacturing the same for cutting, cleaving or grinding

Abstract

一种基于临界切削厚度的微细刀具刃口强化方法,将微细刀具的刃口区域分成主刃外缘区、中间过渡区和近横刃区,依据不同被加工材料的临界切削厚度分别确定并修整三个刃口区域各自的刃口半径,以增强刃口强度和优化切削性能;其包括:1)通过正交切削实验或切削有限元仿真确定被加工材料的临界切削厚度;2)将微细刀具的刃口区域分成主刃外缘区、中间过渡区和近横刃区;3)依据被加工材料的临界切削厚度分别确定三区域的刃口半径;4)使用聚焦离子束对主刃外缘区、中间过渡区和近横刃区的刃口分别进行微米级修整,逐步将刃口修整到确定的刃口半径。本发明现实可行,提高了刃口强度,改善了切削状态,延长了刀具寿命,适用所有微细刀具。

Description

一种基于临界切削厚度的微细刀具刃口强化方法
技术领域
本发明涉及用于微细加工的微细刀具,尤其涉及一种基于临界切削厚度的微细刀具刃口强化方法,属于微细加工技术领域。
背景技术
微小型系统是微小尺度范围内光、机、电、液、磁等高度集成的一类系统,微小型结构件是其中连接及支撑功能部件、承受载荷、执行运动或输出动力的纯机械或机电一体的零部件。微小型结构件在对象尺度、构件材料和结构形式方面具有以下特点:(1)特指整体尺度在毫米级、特征尺度在微米级的零件和结构;(2)主要由金属、合金、金属基复合材料等非硅材料制成,强度硬度高,机械特性好,具有一定的耐磨损、耐腐蚀、耐高温或抗过载能力,能够服役于高温、高压、高速旋转、高频率/高g值冲击、强酸碱盐、膛压发射、核辐射等恶劣工况条件;(3)包括座体、框架、腔体、薄壁、窄槽、轴、孔、轮系等多种三维或准三维的结构形式,零件之间以连接、装配或传动的方式构成微系统,因而对于其形状精度和位置精度的要求较高。微小型系统及其相关产品的应用包括有陀螺仪等惯性器件、微型注塑成型模具、微小卫星、微型机器人以及微机电引信等。
微小型结构件的结构与材料特点对于相应的加工技术提出了较高要求。硅基MEMS技术和LIGA技术是目前比较成熟的微细加工技术,但并不能完全满足微小型结构件的加工需求。以直接去除材料为主要特征的微细切削技术在三维加工能力、加工柔性、加工效率和加工成本等方面具有一定的综合优势,是发展微系统技术所必须突破的关键技术之一。
微细切削是指对毫米级总体尺度结构进行微米级切削层去除的切削加工。通常通过线度尺寸微小的实体刀具对微细切削层的挤压、变形、切离、摩擦作用实现材料的微量去除。微细切削中所用的微细切削刀具不是传统切削刀具在整体尺度或局部特征尺度上的简单缩小,而是基于微细切削的特点与加工机理,面向多种材料微小零件或结构具体加工需求的一类特种切削刀具。
美国、德国、日本等工业发达国家对于微细切削刀具的基础研究与技术开发比较重视,相继研制出一系列微细切削刀具,但是由于各种原因,关于微细刀具的刃口设计并没有非常精确,目前还只是集中在对刀具的几何形状的设计和研究上。一般的刀具刃口半径都在几十微米至几微米之间,在一般的加工中,切削厚度比刃口半径大很多,因此不考虑尺寸效应。而在微细切削中,切削厚度与刃口半径相近,甚至小于刃口半径,这样切削刃承受的法向应力迅速增加,从而容易导致切削刃因承受过大的应力而发生崩刃。现有微细刀具的刃口半径在全切削刃区域上都是一样的,因而有必要开发一种变刃口半径的微细刀具,以改善微细刀具刃口区的切削状况,提高刀具寿命。
临界切削厚度因被加工材料而异。现有的研究已经表明,在切削深度大于临界切削厚度的一般切削中,工件材料去除过程以剪切滑移为主,如图1所示,在此过程中能够产生连续的切屑,因而切削过程是平稳而顺利的。当切削厚度小于临界切削厚度时,工件材料的去除过程以耕犁和滑擦为主,剪切情况变少,甚至完全是耕犁和滑擦,材料的去除完全靠刃口对工件材料的挤压和剥离,材料先在刃口区域堆积,然后被刃口去除,这样加工表面往往是存在缺陷的。如图2所示,一般切削(右)过程中不存在负前角,而当切削厚度小于刃口半径的微细切削时,实际的工作前角是负的(γ<0),这样不利于未定切削状态(剪切滑移)的形成,这种现象就是尺寸效应。
被加工材料的临界切削厚度的确定可以通过正交切削实验或切削有限元仿真的方法来实现。通过分析实验或仿真中主切削力和进给方向切削力的大小来判断切削状态何时是耕犁,何时是剪切。当主切削力大于进给力时切削状态以剪切滑移为主,反之则以耕犁和滑擦为主。
以常见的麻花钻来说,其主切削刃上不同位置处的切削状况是不同的。如图3所示,在靠近横刃处(图3c)是负前角切削(γ<0),在外缘处(图3a)是正前角切削(γ>0),在这中间的位置(图3b)则是由正前角切削逐渐过渡到负前角切削。在微细钻削中每转进给量都非常小的情况下(即切削厚度很小),尺寸效应的影响就会出现,如果此时主切削刃上的刃口半径还是处处相等的话,靠近横刃区的切削状况就会进一步恶化。
目前微细刀具的刃口半径在全区域上都是均匀一致的,并没有考虑到被加工材料的临界切削厚度,也没有考虑到切削刃不同区域的切削状况,因此有必要寻找一种考虑到不同加工材料临界切削厚度,同时根据切削刃不同部位切削状况不同而变化的一种刃口强化方法。以前,刃口半径控制主要靠精密磨削,不能实现分段磨削,近年来随着技术的进步,控制刃口钝圆半径的方法日渐成熟。聚焦式离子束(FIB)加工技术已经在微细刀具的制备中得到应用,聚焦式离子束技术是利用静电透镜将离子束聚焦成非常小尺寸的显微切割技术,使用聚焦离子束可以对微细钻头的底刃进行修整,因此,微细刀具的刃口钝圆半径的控制完全可以借助聚焦式离子束(FIB)加工技术得以实现。
发明内容
本发明所要解决的问题是,克服传统微细刀具刃口半径一致引起的切削状况恶劣、容易崩刃的不足,提供一种现实可行的基于临界切削厚度的微细刀具刃口强化方法,以及采用该强化方法制备的微细钻头,以改善刃口区域的切削状况,提高加工精度,延长刀具寿命。
为解决上述问题,本发明提出如下技术方案:
一种基于临界切削厚度的微细刀具刃口强化方法,将所述微细刀具的刃口区域分成主刃外缘区、中间过渡区和近横刃区,依据不同被加工材料的临界切削厚度分别确定并修整该主刃外缘区、中间过渡区和近横刃区各自的刃口半径,以增强所述微细刀具的刃口强度和优化切削性能。
作为进一步改进,所述强化方法的具体步骤包括:
1)通过正交切削实验或切削有限元仿真确定被加工材料的临界切削厚度;
2)将所述微细刀具的刃口区域分成主刃外缘区、中间过渡区和近横刃区;
3)依据步骤1)得到的被加工材料的临界切削厚度分别确定所述主刃外缘区、中间过渡区和近横刃区各自的刃口半径;
4)使用聚焦离子束对所述主刃外缘区、中间过渡区和近横刃区的刃口分别进行微米级修整,将离子束聚焦在所述刃口的后刀面上,移动聚焦离子束,将多余的刀具材料去除,使钝圆半径逐渐减小,逐步将所述刃口修整到步骤3)确定的刃口半径。
作为进一步改进,所述的主刃外缘区的刃口半径确定为被加工材料的临界切削厚度的2/3,以增强该外缘区的刃口强度,所述中间过渡区的刃口半径确定为被加工材料的临界切削厚度的1/2,以保证切削状态稳定,所述近横刃区的刃口半径确定为被加工材料的临界切削厚度的1/3,以改善该近横刃区的切削状况,减少所述微细刀具对被加工材料的挤压。
作为进一步改进,所述微细刀具的材料为硬质合金、高速钢或聚晶金刚石。
本发明的另一种技术方案是,一种采用上述基于临界切削厚度的微细刀具刃口强化方法制备的微细钻头,其直径为1mm以下。
本发明具有以下优点:
一、改善了微细刀具刃口区域的切削状况,提高了加工精度;
二、刃口修整采用聚焦式离子束(FIB)加工技术,现实可靠,便于实施;
三、所述强化方法适用于所有微细刀具,如用于端面加工或孔加工的直径1mm以下的微细钻头,刀具材料可以是硬质合金、高速钢、聚晶金刚石(PCD)等。
附图说明
图1为一般切削的的剪切滑移示意图。
图2为微细切削(左)与一般切削的对比示意图。
图3为本发明微细钻头主切削刃上不同部位的前角分布示意图。
图4为本发明微细钻头各刃口区域的刃口半径分布示意图。
图5为聚焦离子束修整刃口原理图。
具体实施方式
本发明涉及一种微细刀具的刃口强化技术,该技术可以提高微细刀具的刃口强度,改善微细刀具刃口区域的切削负荷分布,并改善切削状态,提高切削性能;其主要靠改变刃口区域的钝圆半径分布,而改变的依据是被加工材料的临界切削厚度和刀具刃口区域的加工状况,使刀具的主切削刃在不同部位的刃口都可以在最合理的情况下进行切削。
下面结合附图对本发明的实施例作详细说明,以下实施例在以本发明技术方案为前提,给出了详细的实施方式和具体的操作过程,但本发明的保护范围不限于下述的实施例。
本发明所述基于临界切削厚度的微细刀具刃口强化方法,将所述微细刀具的刃口区域分成主刃外缘区、中间过渡区和近横刃区,依据不同被加工材料的临界切削厚度分别确定并修整该主刃外缘区、中间过渡区和近横刃区各自的刃口半径,以增强所述微细刀具的刃口强度和优化切削性能。所述微细刀具的材料为硬质合金、高速钢或聚晶金刚石。
现结合微细钻头的制备进一步说明所述强化方法的具体步骤,请参阅图4:
1)通过正交切削实验或切削有限元仿真确定被加工材料的临界切削厚度。
2)将所述微细钻头主切削刃的刃口区域从外缘向中心依次分成主刃外缘区、中间过渡区和近横刃区,该微细钻头的材料为硬质合金、高速钢或聚晶金刚石,直径为1mm以下。
3)依据步骤1)得到的被加工材料的临界切削厚度分别确定所述主刃外缘区、中间过渡区和近横刃区各自的刃口半径r3、r2和r1;所述微细钻头主切削刃的外缘部分,尤其是主切削刃外缘转角处的切削速度最大,磨损很快,为了提高这一区域的刃口强度,将这一区域的刃口钝圆半径r3(图中A-A)确定为临界切削厚度的2/3(较钝);在中间过渡区,刃口钝圆半径r2(图中B-B)确定为临界切削厚度的1/2,以保证切削状态稳定;将接近横刃区域的刃口钝圆半径r1(图中C-C)控制在临界切削厚度的1/3倍(较锋利),使横刃附近的切削状况改善,尤其是减少微细钻头钻心区域对被加工材料的挤压,使切削状况得以改善。
4)使用聚焦离子束对所述主刃外缘区、中间过渡区和近横刃区的刃口分别进行微米级修整,如图5所示,将离子束聚焦在所述刃口的后刀面上,移动聚焦离子束,将不同部位的多余的刀具材料去除,使钝圆半径逐渐减小,逐步将所述微细钻头刃口的主刃外缘区、中间过渡区和近横刃区各自修整到步骤3)确定的刃口半径r3、r2和r1。
本发明所述刃口强化方法可以用于所有微细刀具,尤其是端面加工或孔加工用的微细钻头的底刃上。
以上是本发明的一种实施例,凡是按照本发明所述的刃口强化方法而制作的微细刀具,均属于本专利的保护范围。

Claims (4)

1.一种基于临界切削厚度的微细刀具刃口强化方法,其特征在于,将所述微细刀具的刃口区域分成主刃外缘区、中间过渡区和近横刃区,依据不同被加工材料的临界切削厚度分别确定并修整该主刃外缘区、中间过渡区和近横刃区各自的刃口半径,以增强所述微细刀具的刃口强度和优化切削性能,所述强化方法的具体步骤包括:
1)通过正交切削实验或切削有限元仿真确定被加工材料的临界切削厚度;
2)将所述微细刀具的刃口区域分成主刃外缘区、中间过渡区和近横刃区;
3)依据步骤1)得到的被加工材料的临界切削厚度分别确定所述主刃外缘区、中间过渡区和近横刃区各自的刃口半径;
4)使用聚焦离子束对所述主刃外缘区、中间过渡区和近横刃区的刃口分别进行微米级修整,将离子束聚焦在所述刃口的后刀面上,移动聚焦离子束,将多余的刀具材料去除,使钝圆半径逐渐减小,逐步将所述刃口修整到步骤3)确定的刃口半径。
2.如权利要求1所述的基于临界切削厚度的微细刀具刃口强化方法,其特征在于,所述的主刃外缘区的刃口半径确定为被加工材料的临界切削厚度的2/3,以增强该外缘区的刃口强度,所述中间过渡区的刃口半径确定为被加工材料的临界切削厚度的1/2,以保证切削状态稳定,所述近横刃区的刃口半径确定为被加工材料的临界切削厚度的1/3,以改善该近横刃区的切削状况,减少所述微细刀具对被加工材料的挤压。
3.如权利要求1所述的基于临界切削厚度的微细刀具刃口强化方法,其特征在于,所述微细刀具的材料为硬质合金、高速钢或聚晶金刚石。
4.一种采用权利要求1所述基于临界切削厚度的微细刀具刃口强化方法制备的微细钻头,其特征在于,所述微细钻头的直径为1mm以下。
CN201410333712.5A 2014-07-14 2014-07-14 一种基于临界切削厚度的微细刀具刃口强化方法 Active CN104209559B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410333712.5A CN104209559B (zh) 2014-07-14 2014-07-14 一种基于临界切削厚度的微细刀具刃口强化方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410333712.5A CN104209559B (zh) 2014-07-14 2014-07-14 一种基于临界切削厚度的微细刀具刃口强化方法

Publications (2)

Publication Number Publication Date
CN104209559A CN104209559A (zh) 2014-12-17
CN104209559B true CN104209559B (zh) 2016-09-21

Family

ID=52091686

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410333712.5A Active CN104209559B (zh) 2014-07-14 2014-07-14 一种基于临界切削厚度的微细刀具刃口强化方法

Country Status (1)

Country Link
CN (1) CN104209559B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018123133A1 (ja) 2016-12-26 2018-07-05 住友電工ハードメタル株式会社 切削工具及びその製造方法
CN110757263B (zh) * 2019-11-07 2021-01-29 中国工程物理研究院机械制造工艺研究所 一种基于机械研磨法的微圆弧刃金刚石刀具微豁控制方法
CN112207292B (zh) * 2020-09-30 2021-10-19 上海交通大学 棱边毛刺去除的金刚石刀具刃口优化实现方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6660133B2 (en) * 2002-03-14 2003-12-09 Kennametal Inc. Nanolayered coated cutting tool and method for making the same
JP4876977B2 (ja) * 2007-03-02 2012-02-15 三菱マテリアル株式会社 切削インサートおよびインサート着脱式転削工具
BRPI0811903A2 (pt) * 2007-05-24 2014-11-18 Ceramtec Ag Placa de corte reversível com faceta de dois lados estabilizadora
EP2409798B1 (en) * 2009-03-18 2017-04-19 Mitsubishi Materials Corporation Surface-coated cutting tool
GB0908375D0 (en) * 2009-05-15 2009-06-24 Element Six Ltd A super-hard cutter element
CN101791717B (zh) * 2010-03-22 2011-07-27 深圳市金洲精工科技股份有限公司 一种微型钻头及加工此微型钻头的方法
CN102049559B (zh) * 2010-11-09 2012-03-14 中国电子科技集团公司第十四研究所 一种数控铣削刀具的快速优选方法
KR20120105791A (ko) * 2011-03-16 2012-09-26 대구텍 유한회사 웨이브 엔드밀

Also Published As

Publication number Publication date
CN104209559A (zh) 2014-12-17

Similar Documents

Publication Publication Date Title
Kim et al. Experimental analysis of chip formation in micro-milling
Wu et al. Investigation on the burr formation mechanism in micro cutting
Friedrich et al. Development of the micromilling process for high-aspect-ratio microstructures
Egashira et al. Micro-drilling of monocrystalline silicon using a cutting tool
CN104597838B (zh) 一种高温合金整体叶轮环形深窄槽车加工方法
CN104209559B (zh) 一种基于临界切削厚度的微细刀具刃口强化方法
CN103862346B (zh) 一种微细铣刀螺旋曲面的无瞬心包络磨削方法
CN101543901A (zh) 基于聚焦离子束技术的微刀具制备方法
CN101716691B (zh) 主动型断屑钻头
Chen et al. The design and optimization of micro polycrystalline diamond ball end mill for repairing micro-defects on the surface of KDP crystal
CN102107295A (zh) 一种大直径三元叶轮的铣制方法
CN109175905A (zh) 一种双侧台阶孔零件单面装夹制孔方法
CN102762328A (zh) 铣刀和使用方法
Ren et al. Study on micro-grinding quality in micro-grinding tool for single crystal silicon
Gong et al. Experimental study on forming consistent accuracy and tool electrode wear involved in fabricating array microelectrodes and array micro holes using electrical discharge machining
CN204545588U (zh) 高精密成型铰刀
CN202824774U (zh) 钻孔切槽刮面复合刀
CN102248357B (zh) 百万千瓦超超临界汽轮机组低压转子的制造方法
CN201483087U (zh) 加工气门导管孔的枪铰刀
CN102335775A (zh) 一种适用于数控加工的高精度微孔钻削加工方法
CN104942349A (zh) 淬硬钢铣刀的优选方法、车门铣削方法及凸曲面试件
Luo et al. On the machinability and surface finish of superalloy GH909 under dry cutting conditions
KR100902863B1 (ko) 임펠러의 황삭가공을 위한 공구조합 선정방법
CN214557699U (zh) Pcd高光仿形圆弧刀具
Luan et al. Comprehensive effects of tool paths on energy consumption, machining efficiency, and surface integrity in the milling of alloy cast Iron

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
EE01 Entry into force of recordation of patent licensing contract

Application publication date: 20141217

Assignee: CHANGZHOU HAILI TOOL CO., LTD.

Assignor: Shanghai Jiao Tong University

Contract record no.: 2018320000216

Denomination of invention: Method for reinforcing cutting edge of micro-cutting tool based on critical cutting thickness

Granted publication date: 20160921

License type: Common License

Record date: 20181022

EE01 Entry into force of recordation of patent licensing contract