CN104204989B - 用于选择向量计算的元素的装置和方法 - Google Patents

用于选择向量计算的元素的装置和方法 Download PDF

Info

Publication number
CN104204989B
CN104204989B CN201280072063.7A CN201280072063A CN104204989B CN 104204989 B CN104204989 B CN 104204989B CN 201280072063 A CN201280072063 A CN 201280072063A CN 104204989 B CN104204989 B CN 104204989B
Authority
CN
China
Prior art keywords
instruction
vector
register
field
processor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201280072063.7A
Other languages
English (en)
Other versions
CN104204989A (zh
Inventor
V·W·李
J·巴拉德瓦杰
D·金
N·万苏德范
T-F·奈
A·哈特诺
S·巴格索克希
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Intel Corp
Original Assignee
Intel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Intel Corp filed Critical Intel Corp
Publication of CN104204989A publication Critical patent/CN104204989A/zh
Application granted granted Critical
Publication of CN104204989B publication Critical patent/CN104204989B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F7/00Methods or arrangements for processing data by operating upon the order or content of the data handled
    • G06F7/38Methods or arrangements for performing computations using exclusively denominational number representation, e.g. using binary, ternary, decimal representation
    • G06F7/48Methods or arrangements for performing computations using exclusively denominational number representation, e.g. using binary, ternary, decimal representation using non-contact-making devices, e.g. tube, solid state device; using unspecified devices
    • G06F7/544Methods or arrangements for performing computations using exclusively denominational number representation, e.g. using binary, ternary, decimal representation using non-contact-making devices, e.g. tube, solid state device; using unspecified devices for evaluating functions by calculation
    • G06F7/548Trigonometric functions; Co-ordinate transformations
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F9/00Arrangements for program control, e.g. control units
    • G06F9/06Arrangements for program control, e.g. control units using stored programs, i.e. using an internal store of processing equipment to receive or retain programs
    • G06F9/30Arrangements for executing machine instructions, e.g. instruction decode
    • G06F9/30003Arrangements for executing specific machine instructions
    • G06F9/30007Arrangements for executing specific machine instructions to perform operations on data operands
    • G06F9/3001Arithmetic instructions
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F9/00Arrangements for program control, e.g. control units
    • G06F9/06Arrangements for program control, e.g. control units using stored programs, i.e. using an internal store of processing equipment to receive or retain programs
    • G06F9/30Arrangements for executing machine instructions, e.g. instruction decode
    • G06F9/30003Arrangements for executing specific machine instructions
    • G06F9/30007Arrangements for executing specific machine instructions to perform operations on data operands
    • G06F9/30018Bit or string instructions
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F9/00Arrangements for program control, e.g. control units
    • G06F9/06Arrangements for program control, e.g. control units using stored programs, i.e. using an internal store of processing equipment to receive or retain programs
    • G06F9/30Arrangements for executing machine instructions, e.g. instruction decode
    • G06F9/30003Arrangements for executing specific machine instructions
    • G06F9/30007Arrangements for executing specific machine instructions to perform operations on data operands
    • G06F9/30036Instructions to perform operations on packed data, e.g. vector, tile or matrix operations
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F9/00Arrangements for program control, e.g. control units
    • G06F9/06Arrangements for program control, e.g. control units using stored programs, i.e. using an internal store of processing equipment to receive or retain programs
    • G06F9/30Arrangements for executing machine instructions, e.g. instruction decode
    • G06F9/30003Arrangements for executing specific machine instructions
    • G06F9/30007Arrangements for executing specific machine instructions to perform operations on data operands
    • G06F9/30036Instructions to perform operations on packed data, e.g. vector, tile or matrix operations
    • G06F9/30038Instructions to perform operations on packed data, e.g. vector, tile or matrix operations using a mask
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F9/00Arrangements for program control, e.g. control units
    • G06F9/06Arrangements for program control, e.g. control units using stored programs, i.e. using an internal store of processing equipment to receive or retain programs
    • G06F9/30Arrangements for executing machine instructions, e.g. instruction decode
    • G06F9/30145Instruction analysis, e.g. decoding, instruction word fields
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F9/00Arrangements for program control, e.g. control units
    • G06F9/06Arrangements for program control, e.g. control units using stored programs, i.e. using an internal store of processing equipment to receive or retain programs
    • G06F9/30Arrangements for executing machine instructions, e.g. instruction decode
    • G06F9/38Concurrent instruction execution, e.g. pipeline or look ahead
    • G06F9/3877Concurrent instruction execution, e.g. pipeline or look ahead using a slave processor, e.g. coprocessor
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F9/00Arrangements for program control, e.g. control units
    • G06F9/06Arrangements for program control, e.g. control units using stored programs, i.e. using an internal store of processing equipment to receive or retain programs
    • G06F9/30Arrangements for executing machine instructions, e.g. instruction decode
    • G06F9/38Concurrent instruction execution, e.g. pipeline or look ahead
    • G06F9/3885Concurrent instruction execution, e.g. pipeline or look ahead using a plurality of independent parallel functional units
    • G06F9/3893Concurrent instruction execution, e.g. pipeline or look ahead using a plurality of independent parallel functional units controlled in tandem, e.g. multiplier-accumulator
    • G06F9/3895Concurrent instruction execution, e.g. pipeline or look ahead using a plurality of independent parallel functional units controlled in tandem, e.g. multiplier-accumulator for complex operations, e.g. multidimensional or interleaved address generators, macros

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Software Systems (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Mathematical Analysis (AREA)
  • Mathematical Optimization (AREA)
  • Pure & Applied Mathematics (AREA)
  • Computational Mathematics (AREA)
  • Computing Systems (AREA)
  • Advance Control (AREA)

Abstract

描述了用于执行向量精简的装置和方法。例如,根据一个实施例的方法,装置包括:精简逻辑树,包括N‑1个精简逻辑块的集合,用于在N个向量元素的单个操作循环中执行精简;通信耦合到所述精简逻辑块的集合的存储第一输入向量的第一输入向量寄存器;通信耦合到所述精简逻辑块的集合的存储第二输入向量的第二输入向量寄存器;存储掩码值的掩码寄存器,所述掩码值控制一个或多个复用器的集合,所述复用器的集合中的每一个选择直接来自第一输入向量寄存器的值或来自精简逻辑块之一的包含经处理的值的输出;一级耦合到一个或多个复用器的输出的输出向量寄存器,用于响应于控制信号接收由每个所述复用器传递的值输出。

Description

用于选择向量计算的元素的装置和方法
发明领域
本发明的实施例一般涉及计算机系统的领域。更具体地,本发明的实施例涉及用于选择向量计算的元素的装置和方法。
背景技术
一般背景
指令集、或指令集架构(ISA)是涉及编程的计算机架构的一部分,并且可包括原生数据类型、指令、寄存器架构、寻址模式、存储器架构、中断和异常处理、以及外部输入和输出(I/O)。术语指令在本申请中一般表示宏指令,宏指令是被提供给处理器(或指令转换器,该指令转换器(利用静态二进制转换、包括动态编译的动态二进制转换)转换、变形、仿真或以其他方式将指令转换成将由处理器处理的一个或多个其他指令)以供执行的指令——作为对比,微指令或微操作(微操作)是处理器的解码器解码宏指令的结果。
ISA与微架构不同,微架构是实现该指令集的处理器的内部设计。具有不同微架构的处理器可共享共同的指令集。例如,奔腾四(Pentium 4)处理器、酷睿(CoreTM)处理器、以及来自加利福尼亚州桑尼威尔(Sunnyvale)的超微半导体有限公司(Advanced Micro Devices,Inc.)的诸多处理器执行几乎相同版本的x86指令集(在更新的版本中加入了一些扩展),但具有不同的内部设计。例如,ISA的相同寄存器架构可以在不同的微架构中使用公知的技术以不同方法来实现,公知的技术包括专用物理寄存器、使用寄存器重命名机制(例如,使用寄存器别名表(RAT)、重排序缓冲器(ROB)、以及引退寄存器组;使用多个寄存器映射和寄存器池)的一个或多个动态分配物理寄存器,等等。除非另行指出,术语寄存器架构、寄存器组和寄存器在本文中用于指代对软件/编程者可见的寄存器以及指令指定寄存器的方式。在需要特殊性的场合,将使用定语逻辑的、架构的或软件可见的来指示寄存器架构中的寄存器/寄存器组,同时不同的定语将用于指示给定微架构中的寄存器(例如物理寄存器、重排序缓冲器、引退寄存器、寄存器池)。
指令集包括一个或多个指令格式。给定指令格式定义多个字段(位的数量、位的位置等)以指定将要被执行的操作(操作码)以及该操作将要执行的操作数等等。通过定义指令模板(或子格式),一些指令格式被进一步分解。例如,可将给定指令格式的指令模板定义成具有该指令格式的字段的不同子集(所包括的字段通常是相同顺序,但至少一些由于包括更少的字段而具有不同的位位置)和/或定义成对给定字段的解释不同。因此,利用给定指令格式(而且如果定义,则按照该指令格式的指令模板中的给定一个模板)来表达ISA的每个指令,并且ISA的每个指令包括用于指定其操作和操作数的字段。例如,示例性的ADD(加法)指令具有特定的操作码和指令格式,该指令格式包括用于指定该操作码的操作码字段和用于选择操作数(源1/目的地和源2)的操作数字段;并且该ADD指令在指令流中的出现将具有在操作数字段中的特定内容,该特定内容选择特定操作数。
科学应用、金融应用、自动向量化通用应用、RMS(识别、挖掘和合成)应用以及视觉和多媒体应用(诸如,2D/3D图形、图像处理、视频压缩/解压缩、语音识别算法和音频处理)通常需要对大量数据项执行相同的操作(被称为“数据并行性”)。单指令多数据(SIMD)指的是使得处理器对多个数据项执行一操作的一种类型的指令。SIMD技术尤其适用于将寄存器中的多个位逻辑地划分成多个固定大小的数据元素的处理器,其中每个数据元素表示单独的值。例如,可将256位寄存器中的位指定为要进行操作的源操作数,作为4个单独的64位打包数据元素(四字(Q)尺寸数据元素)、8个单独的32位打包数据元素(双字(D)尺寸数据元素)、16个单独的16位打包数据元素(字(W)尺寸数据元素)、或32个单独的8位数据元素(字节(B)尺寸数据元素)。该数据类型可被称为打包数据类型或向量数据类型,并且该数据类型的操作数被称为打包数据操作数或向量操作数。换句话说,打包数据项或向量指的是打包数据元素的序列,而打包数据操作数或向量操作数是SIMD指令(或称为打包数据指令或向量指令)的源操作数或目的地操作数。
作为示例,一种类型的SIMD指令指定了将要以纵向方式对两个源向量操作数执行的单个向量操作,用于生成具有相同尺寸的、具有相同数量的数据元素并且按照相同数据元素次序的目的地向量操作数(也被称为结果向量操作数)。源向量操作数中的数据元素被称为源数据元素,而目的地向量操作数中的数据元素被称为目的地或结果数据元素。这些源向量操作数具有相同尺寸并且包含相同宽度的数据元素,因此它们包含相同数量的数据元素。两个源向量操作数中的相同位位置中的源数据元素形成数据元素对(也称为对应的数据元素;即,每个源操作数的数据元素位置0中的数据元素相对应,每个源操作数中的数据元素位置1中的数据元素相对应,以此类推)。对这些源数据元素对中的每一个分别执行该SIMD指令指定的操作,以产生匹配数量的结果数据元素,并且因此每一对源数据元素具有相应的结果数据元素。由于该操作是纵向的,且由于结果向量操作数是相同尺寸、具有相同数量的数据元素并且结果数据元素按照与源向量操作数相同的数据元素顺序被存储,所以结果数据元素处于结果向量操作数中与它们在源向量操作数中的相应源数据元素对相同的位位置中。除了这种示例性类型的SIMD指令之外,存在各种各样其他类型的SIMD指令(例如仅具有一个源向量操作数或具有超过两个源向量操作数、以横向方式操作、产生不同尺寸的结果向量操作数、具有不同尺寸的数据元素和/或具有不同的数据元素次序的SIMD指令)。应当理解,术语目的地向量操作数(或目的地操作数)被定义为执行由指令指定的操作的直接结果,包括将该目的地操作数存储在一位置处(可以是由该指令指定的寄存器或存储器地址处),使得它可作为源操作数由另一指令访问(通过该另一指令指定同一位置)。
诸如具有包括x86、MMXTM、流式SIMD扩展(SSE)、SSE2、SSE3、SSE4.1以及SSE4.2指令的指令集的CoreTM处理器所采用的SIMD技术之类的SIMD技术已经实现了应用性能的重大改进。已经推出和/或发布了被称为高级向量扩展(AVX)(AVX1和AVX2)和利用向量扩展(VEX)编码方案的附加的SIMD扩展集(参见例如2011年10月的64和IA-32架构软件开发者手册;以及参见2011年6月的高级向量扩展编程参考)。
与本发明的实施例有关的背景
向量可被视为一列数据元素或存储在存储器或寄存器中的预定位置中的其它指定数据。处理向量的数据处理应用通常需要使用有效的硬件实现用于执行“向量精简”。向量精简操作可以是例如向量元素的加法或乘法,得到向量的所有数据元素之和或乘积的结果。向量精简操作还可包括(除加法和乘法之外)用于确定向量的最大或最小元素的逻辑操作和比较。
附图简述
图1A是示出根据本发明的实施例的示例性有序流水线以及示例性寄存器重命名的无序发布/执行流水线两者的框图;
图1B是示出根据本发明的各实施例的要包括在处理器中的有序架构核的示例性实施例和示例性的寄存器重命名的无序发布/执行架构核的框图。
图2是根据本发明的实施例的具有集成的存储器控制器和图形器件的单核处理器和多核处理器的框图。
图3示出根据本发明一个实施例的系统的框图;
图4示出了根据本发明的实施例的第二系统的框图;
图5示出了根据本发明的实施例的第三系统的框图;
图6示出了根据本发明的实施例的片上系统(SoC)的框图;
图7是根据本发明的实施例的对照使用软件指令转换器将源指令集中的二进制指令转换成目标指令集中的二进制指令的框图。
图8示出用于执行向量精简的本发明的一个实施例;
图9示出用于执行向量精简的装置的本发明的另一个实施例;
图10A和10B是示出根据本发明的实施例的通用向量友好指令格式及其指令模板的框图;
图11A-D是示出根据本发明的实施例的示例性专用向量友好指令格式的框图。
图12是根据本发明的一个实施例的寄存器架构的框图;
图13A是根据本发明的实施例的单个处理器核以及它与管芯上互连网络的连接及其二级(L2)高速缓存的本地子集的框图。
图13B是根据本发明的实施例的图13A中处理器核的一部分的展开图。
详细描述
示例性处理器架构和数据类型
图1A是示出根据本发明的实施例的示例性有序流水线和示例性的寄存器重命名的无序发布/执行流水线的框图。图1B是示出根据本发明的各实施例的要包括在处理器中的有序架构核的示例性实施例和示例性的寄存器重命名的无序发布/执行架构核的框图。图1A-B中的实线框示出了有序流水线和有序核,而可选增加的虚线框示出了寄存器重命名的、无序发布/执行流水线和核。给定有序方面是无序方面的子集的情况下,将描述无序方面。
在图1A中,处理器流水线100包括取出级102、长度解码级104、解码级106、分配级108、重命名级110、调度(也称为分派或发布)级112、寄存器读取/存储器读取级114、执行级116、写回/存储器写入级118、异常处理级122和提交级124。
图1B示出了包括耦合到执行引擎单元150的前端单元130的处理器核190,且执行引擎单元和前端单元两者都耦合到存储器单元170。核190可以是精简指令集计算(RISC)核、复杂指令集计算(CISC)核、超长指令字(VLIW)核或混合或替代核类型。作为又一选项,核190可以是专用核,诸如例如网络或通信核、压缩引擎、协处理器核、通用计算图形处理器单元(GPGPU)核、或图形核等等。
前端单元130包括耦合到指令高速缓存单元134的分支预测单元132,该指令高速缓存单元耦合到指令转换后备缓冲器(TLB)136,该指令转换后备缓冲器耦合到指令取出单元138,指令取出单元耦合到解码单元140。解码单元140(或解码器)可解码指令,并生成从原始指令解码出的、或以其他方式反映原始指令的、或从原始指令导出的一个或多个微操作、微代码进入点、微指令、其他指令、或其他控制信号作为输出。解码单元140可使用各种不同的机制来实现。合适的机制的示例包括但不限于查找表、硬件实现、可编程逻辑阵列(PLA)、微代码只读存储器(ROM)等。在一个实施例中,核190包括(例如,在解码单元140中或否则在前端单元130内的)用于存储某些宏指令的微代码的微代码ROM或其他介质。解码单元140耦合至执行引擎单元150中的重命名/分配器单元152。
执行引擎单元150包括重命名/分配器单元152,该重命名/分配器单元152耦合至引退单元154和一个或多个调度器单元156的集合。调度器单元156表示任何数目的不同调度器,包括预留站、中央指令窗等。调度器单元156耦合到物理寄存器组单元158。每个物理寄存器组单元158表示一个或多个物理寄存器组,其中不同的物理寄存器组存储一种或多种不同的数据类型,诸如标量整数、标量浮点、打包整数、打包浮点、向量整数、向量浮点、状态(例如,作为要执行的下一指令的地址的指令指针)等。在一个实施例中,物理寄存器组单元158包括向量寄存器单元、写掩码寄存器单元和标量寄存器单元。这些寄存器单元可以提供架构向量寄存器、向量掩码寄存器、和通用寄存器。物理寄存器组单元158与引退单元154重叠以示出可以用来实现寄存器重命名和无序执行的各种方式(例如,使用重新排序缓冲器和引退寄存器组;使用将来的文件、历史缓冲器和引退寄存器组;使用寄存器映射和寄存器池等等)。引退单元154和物理寄存器组单元158耦合到执行群集160。执行群集160包括一个或多个执行单元162的集合和一个或多个存储器访问单元164的集合。执行单元162可以对各种类型的数据(例如,标量浮点、打包整数、打包浮点、向量整型、向量浮点)执行各种操作(例如,移位、加法、减法、乘法)。尽管一些实施例可以包括专用于特定功能或功能集合的多个执行单元,但其他实施例可包括全部执行所有功能的仅一个执行单元或多个执行单元。调度器单元156、物理寄存器组单元158和执行群集160被示为可能有多个,因为某些实施例为某些类型的数据/操作创建分开的流水线(例如,标量整型流水线、标量浮点/打包整型/打包浮点/向量整型/向量浮点流水线,和/或各自具有其自己的调度器单元、物理寄存器组单元和/或执行群集的存储器访问流水线——以及在分开的存储器访问流水线的情况下,实现其中仅该流水线的执行群集具有存储器访问单元164的某些实施例)。还应当理解,在使用分开的流水线的情况下,这些流水线中的一个或多个可以为无序发布/执行,并且其余流水线可以为有序发布/执行。
存储器访问单元164的集合耦合到存储器单元170,该存储器单元包括耦合到数据高速缓存单元174的数据TLB单元172,其中数据高速缓存单元耦合到二级(L2)高速缓存单元176。在一个示例性实施例中,存储器访问单元164可包括加载单元、存储地址单元和存储数据单元,其中的每一个均耦合至存储器单元170中的数据TLB单元172。指令高速缓存单元134还耦合到存储器单元170中的第二级(L2)高速缓存单元176。L2高速缓存单元176耦合到一个或多个其他级的高速缓存,并最终耦合到主存储器。
作为示例,示例性寄存器重命名的、无序发布/执行核架构可以如下实现流水线100:1)指令取出138执行取出和长度解码级102和104;2)解码单元140执行解码级106;3)重命名/分配器单元152执行分配级108和重命名级110;4)调度器单元156执行调度级112;5)物理寄存器组单元158和存储器单元170执行寄存器读取/存储器读取级114;执行群集160执行执行级116;6)存储器单元170和物理寄存器组单元158执行写回/存储器写入级118;7)各单元可牵涉到异常处理级122;以及8)引退单元154和物理寄存器组单元158执行提交级124。
核190可支持一个或多个指令集(例如,x86指令集(具有与较新版本一起添加的一些扩展);加利福尼亚州桑尼维尔市的MIPS技术公司的MIPS指令集;加利福尼州桑尼维尔市的ARM控股的ARM指令集(具有诸如NEON等可选附加扩展)),其中包括本文中描述的各指令。在一个实施例中,核190包括用于支持打包数据指令集扩展(例如,AVX1、AVX2和/或先前描述的一些形式的一般向量友好指令格式(U=0和/或U=1))的逻辑,从而允许很多多媒体应用使用的操作能够使用打包数据来执行。
应当理解,核可支持多线程化(执行两个或更多个并行的操作或线程的集合),并且可以按各种方式来完成该多线程化,此各种方式包括时分多线程化、同步多线程化(其中单个物理核为物理核正在同步多线程化的各线程中的每一个线程提供逻辑核)、或其组合(例如,时分取出和解码以及此后诸如用超线程化技术来同步多线程化)。
尽管在无序执行的上下文中描述了寄存器重命名,但应当理解,可以在有序架构中使用寄存器重命名。尽管所示出的处理器的实施例还包括分开的指令和数据高速缓存单元134/174以及共享L2高速缓存单元176,但替代实施例可以具有用于指令和数据两者的单个内部高速缓存,诸如例如一级(L1)内部高速缓存或多个级别的内部高速缓存。在一些实施例中,该系统可包括内部高速缓存和在核和/或处理器外部的外部高速缓存的组合。或者,所有高速缓存都可以在核和/或处理器的外部。
图2是根据本发明的各实施例可能具有一个以上核、可能具有集成存储器控制器、以及可能具有集成图形器件的处理器200的框图。图2中的实线框示出具有单个核202A、系统代理210、一个或多个总线控制器单元216的集合的处理器200,而虚线框的可选附加示出具有多个核202A-N、系统代理单元210中的一个或多个集成存储器控制器单元214的集合以及专用逻辑208的替代处理器200。
因此,处理器200的不同实现可包括:1)CPU,其中专用逻辑208是集成图形和/或科学(吞吐量)逻辑(其可包括一个或多个核),并且核202A-N是一个或多个通用核(例如,通用的有序核、通用的无序核、这两者的组合);2)协处理器,其中核202A-N是旨在主要用于图形和/或科学(吞吐量)的多个专用核;以及3)协处理器,其中核202A-N是多个通用有序核。因此,处理器200可以是通用处理器、协处理器或专用处理器,诸如例如网络或通信处理器、压缩引擎、图形处理器、GPGPU(通用图形处理单元)、高吞吐量的集成众核(MIC)协处理器(包括30个或更多核)、或嵌入式处理器等。该处理器可以被实现在一个或多个芯片上。处理器200可以是一个或多个衬底的一部分,和/或可以使用诸如例如BiCMOS、CMOS或NMOS等的多个加工技术中的任何一个技术将处理器200实现在一个或多个衬底上。
存储器层次结构包括在各核内的一个或多个级别的高速缓存、一个或多个共享高速缓存单元206的集合、以及耦合至集成存储器控制器单元214的集合的外部存储器(未示出)。该共享高速缓存单元206的集合可以包括一个或多个中间级高速缓存,诸如二级(L2)、三级(L3)、四级(L4)或其他级别的高速缓存、末级高速缓存(LLC)、和/或其组合。尽管在一个实施例中,基于环的互连单元212将集成图形逻辑208、共享高速缓存单元206的集合以及系统代理单元210/集成存储器控制器单元214互连,但替代实施例可使用任何数量的公知技术来将这些单元互连。在一个实施例中,可以维护一个或多个高速缓存单元206和核202A-N之间的一致性(coherency)。
在一些实施例中,核202A-N中的一个或多个核能够多线程化。系统代理210包括协调和操作核202A-N的那些组件。系统代理单元210可包括例如功率控制单元(PCU)和显示单元。PCU可以是或包括用于调整核202A-N和集成图形逻辑208的功率状态所需的逻辑和组件。显示单元用于驱动一个或多个外部连接的显示器。
核202A-N在架构指令集方面可以是同构的或异构的;即,这些核202A-N中的两个或更多个核可能能够执行相同的指令集,而其他核可能能够执行该指令集的仅仅子集或不同的指令集。
图3-6是示例性计算机架构的框图。本领域已知的对膝上型设备、台式机、手持PC、个人数字助理、工程工作站、服务器、网络设备、网络集线器、交换机、嵌入式处理器、数字信号处理器(DSP)、图形设备、视频游戏设备、机顶盒、微控制器、蜂窝电话、便携式媒体播放器、手持设备以及各种其他电子设备的其他系统设计和配置也是合适的。一般地,能够包含本文中所公开的处理器和/或其它执行逻辑的多个系统和电子设备一般都是合适的。
现在参考图3,所示出的是根据本发明一个实施例的系统300的框图。系统300可以包括一个或多个处理器310、315,这些处理器耦合到控制器中枢320。在一个实施例中,控制器中枢320包括图形存储器控制器中枢(GMCH)390和输入/输出中枢(IOH)350(其可以在分开的芯片上);GMCH 390包括存储器和图形控制器,存储器340和协处理器345耦合到该存储器和图形控制器;IOH 350将输入/输出(I/O)设备360耦合到GMCH390。或者,存储器和图形控制器中的一个或两者可以被集成在处理器内(如本文中所描述的),存储器340和协处理器345直接耦合到处理器310以及控制器中枢320,控制器中枢320与IOH 350处于单个芯片中。
附加处理器315的任选性质用虚线表示在图3中。每一处理器310、315可包括本文中描述的处理核中的一个或多个,并且可以是处理器200的某一版本。
存储器340可以是例如动态随机存取存储器(DRAM)、相变存储器(PCM)或这两者的组合。对于至少一个实施例,控制器中枢320经由诸如前端总线(FSB)之类的多分支总线、诸如快速通道互连(QPI)之类的点对点接口、或者类似的连接395与处理器310、315进行通信。
在一个实施例中,协处理器345是专用处理器,诸如例如高吞吐量MIC处理器、网络或通信处理器、压缩引擎、图形处理器、GPGPU、或嵌入式处理器等等。在一个实施例中,控制器中枢320可以包括集成图形加速器。
在物理资源310、1315之间可以存在包括架构、微架构、热、和功耗特征等的一系列品质度量方面的各种差异。
在一个实施例中,处理器310执行控制一般类型的数据处理操作的指令。协处理器指令可嵌入在这些指令中。处理器310将这些协处理器指令识别为应当由附连的协处理器345执行的类型。因此,处理器310在协处理器总线或者其他互连上将这些协处理器指令(或者表示协处理器指令的控制信号)发布到协处理器345。协处理器345接受并执行所接收的协处理器指令。
现在参考图4,所示为根据本发明的一实施例的更具体的第一示例性系统400的框图。如图4所示,多处理器系统400是点对点互连系统,并包括经由点对点互连450耦合的第一处理器470和第二处理器480。处理器470和480中的每一个都可以是处理器200的某一版本。在本发明的一个实施例中,处理器470和480分别是处理器310和315,而协处理器438是协处理器345。在另一实施例中,处理器470和480分别是处理器310和协处理器345。
处理器470和480被示为分别包括集成存储器控制器(IMC)单元472和482。处理器470还包括作为其总线控制器单元的一部分的点对点(P-P)接口476和478;类似地,第二处理器480包括点对点接口486和488。处理器470、480可以使用点对点(P-P)电路478、488经由P-P接口450来交换信息。如图4所示,IMC 472和482将各处理器耦合至相应的存储器,即存储器432和存储器434,这些存储器可以是本地附连至相应的处理器的主存储器的部分。
处理器470、480可各自经由使用点对点接口电路476、494、486、498的各个P-P接口452、454与芯片组490交换信息。芯片组490可以可选地经由高性能接口439与协处理器438交换信息。在一个实施例中,协处理器438是专用处理器,诸如例如高吞吐量MIC处理器、网络或通信处理器、压缩引擎、图形处理器、GPGPU、或嵌入式处理器等等。
共享高速缓存(未示出)可以被包括在任一处理器之内,或被包括在两个处理器外部但仍经由P-P互连与这些处理器连接,从而如果将某处理器置于低功率模式时,可将任一处理器或两个处理器的本地高速缓存信息存储在该共享高速缓存中。
芯片组490可经由接口496耦合至第一总线416。在一个实施例中,第一总线416可以是外围组件互连(PCI)总线,或诸如PCI Express总线或其它第三代I/O互连总线之类的总线,但本发明的范围并不受此限制。
如图4所示,各种I/O设备414可以连同总线桥418耦合到第一总线416,总线桥将第一总线416耦合至第二总线420。在一个实施例中,诸如协处理器、高吞吐量MIC处理器、GPGPU的处理器、加速器(诸如例如图形加速器或数字信号处理器(DSP)单元)、现场可编程门阵列或任何其他处理器的一个或多个附加处理器415耦合到第一总线416。在一个实施例中,第二总线420可以是低引脚计数(LPC)总线。各种设备可以被耦合至第二总线420,在一个实施例中这些设备包括例如键盘/鼠标422、通信设备427以及诸如可包括指令/代码和数据430的盘驱动器或其它大容量存储设备的存储单元428。此外,音频I/O 424可以被耦合至第二总线420。注意,其它架构是可能的。例如,代替图4的点对点架构,系统可以实现多分支总线或其它这类架构。
现在参考图5,所示为根据本发明的实施例的更具体的第二示例性系统500的框图。图4和图5中的相同部件用相同附图标记表示,并从图5中省去了图4中的某些方面,以避免使图5的其它方面变得模糊。
图5示出处理器470、480可分别包括集成存储器和I/O控制逻辑(“CL”)472和482。因此,CL 472、482包括集成存储器控制器单元并包括I/O控制逻辑。图5不仅示出存储器432、434耦合至CL 472、482,而且还示出I/O设备514也耦合至控制逻辑472、482。传统I/O设备515被耦合至芯片组490。
现在参照图6,所示出的是根据本发明一个实施例的SoC 600的框图。在图2中,相似的部件具有同样的附图标记。另外,虚线框是更先进的SoC的可选特征。在图6中,互连单元602被耦合至:应用处理器610,该应用处理器包括一个或多个核202A-N的集合以及共享高速缓存单元206;系统代理单元210;总线控制器单元216;集成存储器控制器单元214;一组或一个或多个协处理器620,其可包括集成图形逻辑、图像处理器、音频处理器和视频处理器;静态随机存取存储器(SRAM)单元630;直接存储器存取(DMA)单元632;以及用于耦合至一个或多个外部显示器的显示单元640。在一个实施例中,协处理器620包括专用处理器,诸如例如网络或通信处理器、压缩引擎、GPGPU、高吞吐量MIC处理器、或嵌入式处理器等等。
本文公开的机制的各实施例可以被实现在硬件、软件、固件或这些实现方法的组合中。本发明的实施例可实现为在可编程系统上执行的计算机程序或程序代码,该可编程系统包括至少一个处理器、存储系统(包括易失性和非易失性存储器和/或存储元件)、至少一个输入设备以及至少一个输出设备。
可将程序代码(诸如图4中示出的代码430)应用于输入指令,以执行本文描述的各功能并生成输出信息。可以按已知方式将输出信息应用于一个或多个输出设备。为了本申请的目的,处理系统包括具有诸如例如数字信号处理器(DSP)、微控制器、专用集成电路(ASIC)或微处理器之类的处理器的任何系统。
程序代码可以用高级程序化语言或面向对象的编程语言来实现,以便与处理系统通信。在需要时,也可用汇编语言或机器语言来实现程序代码。事实上,本文中描述的机制不限于任何特定编程语言的范围。在任一情形下,该语言可以是编译语言或解释语言。
至少一个实施例的一个或多个方面可以由存储在机器可读介质上的表示性指令来实现,指令表示处理器中的各种逻辑,指令在被机器读取时使得该机器制作用于执行本文所述的技术的逻辑。被称为“IP核”的这些表示可以被存储在有形的机器可读介质上,并被提供给多个客户或生产设施以加载到实际制造该逻辑或处理器的制造机器中。
这样的机器可读存储介质可以包括但不限于通过机器或设备制造或形成的物品的非瞬态的有形安排,其包括存储介质,诸如:硬盘;任何其它类型的盘,包括软盘、光盘、紧致盘只读存储器(CD-ROM)、紧致盘可重写(CD-RW)以及磁光盘;半导体器件,例如只读存储器(ROM)、诸如动态随机存取存储器(DRAM)和静态随机存取存储器(SRAM)之类的随机存取存储器(RAM)、可擦除可编程只读存储器(EPROM)、闪存、电可擦除可编程只读存储器(EEPROM);相变存储器(PCM);磁卡或光卡;或适于存储电子指令的任何其它类型的介质。
因此,本发明的各实施例还包括非瞬态的有形机器可读介质,该介质包含指令或包含设计数据,诸如硬件描述语言(HDL),它定义本文中描述的结构、电路、装置、处理器和/或系统特征。这些实施例也被称为程序产品。
在一些情况下,指令转换器可用来将指令从源指令集转换至目标指令集。例如,指令转换器可以变换(例如使用静态二进制变换、包括动态编译的动态二进制变换)、变形、仿真或以其它方式将指令转换成将由核来处理的一个或多个其它指令。指令转换器可以用软件、硬件、固件、或其组合实现。指令转换器可以在处理器上、在处理器外、或者部分在处理器上且部分在处理器外。
图7是根据本发明的各实施例的对照使用软件指令转换器将源指令集中的二进制指令转换成目标指令集中的二进制指令的框图。在所示的实施例中,指令转换器是软件指令转换器,但作为替代,该指令转换器可以用软件、固件、硬件或其各种组合来实现。图7示出可以使用x86编译器704来编译利用高级语言702的程序,以生成可以由具有至少一个x86指令集核的处理器716原生执行的x86二进制代码706。具有至少一个x86指令集核的处理器716表示任何处理器,这些处理器能通过兼容地执行或以其他方式处理以下内容来执行与具有至少一个x86指令集核的英特尔处理器基本相同的功能:1)英特尔x86指令集核的指令集的本质部分,或2)目标为在具有至少一个x86指令集核的英特尔处理器上运行的应用或其它程序的目标代码版本,以便取得与具有至少一个x86指令集核的英特尔处理器基本相同的结果。x86编译器704表示用于生成x86二进制代码706(例如,目标代码)的编译器,该二进制代码706可通过或不通过附加的链接处理在具有至少一个x86指令集核的处理器716上执行。类似地,图7示出可以使用替代的指令集编译器708来编译利用高级语言702的程序,以生成可以由不具有至少一个x86指令集核的处理器714(例如具有执行加利福尼亚州桑尼维尔市的MIPS技术公司的MIPS指令集、和/或执行加利福尼亚州桑尼维尔市的ARM控股公司的ARM指令集的核的处理器)原生执行的替代指令集二进制代码710。指令转换器712被用来将x86二进制代码706转换成可以由不具有x86指令集核的处理器714原生执行的代码。该转换后的代码不大可能与替代性指令集二进制代码710相同,因为能够这样做的指令转换器难以制造;然而,转换后的代码将完成一般操作并由来自替代指令集的指令构成。因此,指令转换器712通过仿真、模拟或任何其它过程来表示允许不具有x86指令集处理器或核的处理器或其它电子设备执行x86二进制代码706的软件、固件、硬件或其组合。
本发明用于执行向量精简的实施例
本发明的实施例包括在向量寄存器内执行各种形式的向量精简的一类指令。作为示例而非限制,向量精简可包括诸如按位AND和按位OR之类的逻辑操作和诸如乘法和加法(求和)之类的数学操作。
在一个实施例中,新的一类指令将从掩码寄存器读取的断言-掩码作为输入,该掩码寄存器控制精简操作的行为。提供两种形式的指令,一般称为“前”和“后”以促进编译器代码生成。两种形式区别在于它们的输出。指令的“前”形式输出“前”精简值;而指令的“后”形式输出“后”精简值(如以下更详细地描述)。
以下描述“前”和“后”指令的两种特定版本,称为vRunningPreAdd和vRunningPostAdd。然而,应当注意,本发明的底层原理不限于这些特定版本。
以下的伪代码描述该类建议指令的一般形式。以下特定的代码序列执行向量寄存器内跨向量元素的精简整数和。在本发明的范围内构想到的其它精简功能包括浮点加法、整数或浮点乘积(乘法)、按位AND、按位OR、按位XOR和其它逻辑和数学操作。
如第一行所指示的,可将向量长度(VLEN)设置为8、16、32或64。变量j和sum是整数值。在第一for循环中,来自存储在寄存器v1中的向量的元素j的值被设置为来自存储在寄存器v2中的向量的元素j的值。然后,如果掩码寄存器k1中在相应位置j处的值是真,则sum值被设置为来自寄存器v2和v3的位置j处的元素之和,并且循环退出。在下一个for循环,在元素位置j处的v1值被设置为等于在该元素位置处的sum值,并且如果掩码寄存器k1中在位位置j处的值为真,则sum值被设置为等于sum+寄存器v3中的位置j中的元素。
如第一行所指示的,可将向量长度(VLEN)设置为8、16、32或64。变量j和sum是整数值。在第一for循环中,如果掩码寄存器k1中在相应位置j处的值是真,则sum值被设置为来自寄存器v2和v3的位置j处的元素之和,该和还被存储在向量v1的元素j中,并且循环退出。否则,来自存储在寄存器v1中的向量的元素j的值被设置为等于存储在寄存器v2中的向量中的元素j的值。在下一个for循环中,如果掩码寄存器k1中在位位置j处的值是真,则sum值被设置为等于sum+寄存器v3中的位置j中的元素。最后,在最后一行中,寄存器v1中的位置j处的元素被设置为等于来自sum的在相同的元素位置处的值。
为了更清楚地理解如何使用vRunningPreAdd和vRunningPostAdd操作,考虑以下循环:
在以上的循环中,变量sum聚集数组A中的正值。在循环的每次迭代中,至此计算的部分聚集被存储在数组B和C中,区别在于在B[i]中,从索引0到i-1输入阵列A中的正条目之和,而在C[i]中,从索引0到i输入阵列A中的正条目之和。
在本发明的一个实施例中,该循环的向量化使用本文所述的本发明的实施例所提供的硬件和指令集架构支持。对于SIMD宽度8,如下所示地使该循环向量化:
为了示出该代码如何工作,假设A[]中的前16个条目是:
A[]={0,-1,1,2,1,-1,4,0,1,0,1,0,1,0,1,0}.
标量代码将以下的连续值计算到sum中:
sum={0,0,1,3,4,4,8,8,9,9,10,10,11,11,12,12}
因此,在循环执行之后,B[]和C[]将包含以下的值(示为在图8中的sum的相应值):
B[]={0,0,0,1,3,4,4,8,8,9,9,10,10,11,11,12}
C[]={0,0,1,3,4,4,8,8,9,9,10,10,11,11,12,12}
跟踪向量代码,向量vSum被初始化为如所示的全零。在向量循环的第一次迭代中,计算以下的值:
vA={0,-1,1,2,1,-1,4,0}
k={0,0,1,1,1,0,1,0}指示vA的第3元素、第4元素、第5元素和第7元素为正。
由vRunningPreAdd操作计算的vSum={0,0,0,1,3,4,4,8}。
然后B[]的前8个元素被设置成{0,0,0,1,3,4,4,8}
vRunningPostAdd操作然后计算vSum为:
vSum={0,0,1,3,4,4,8,8}
然后C[]的第一8个元素被设置成{0,0,1,3,4,4,8,8}。
在一个实施例中,因为掩码k的具有值1的最后元素是第七元素,在2011年11月23日提交的、题为“Apparatus and Method for Selecting Elements of a VectorComputation(用于选择向量计算的元素的装置和方法)”、转让给本申请的受让人的共同待审批的申请序号PCT/US11/67093中描述的操作vSelectLast将选择vSum的第七元素,即值8,并广播它。因此,在循环的末尾,vSum={8,8,8,8,8,8,8,8}。
在第二向量迭代中,计算以下的值:
vA={1,0,1,0,1,0,1,0}
k={0,0,1,1,1,0,1,0}指示vA的第1元素、第3元素、第5元素和第7元素为正。向量vSum={8,9,9,10,10,11,11,12},如由vRunningPreAdd操作所计算的。然后B[]的接下来的8个元素被设置成{8,9,9,10,10,11,11,12}。vRunningPostAdd操作然后计算vSum如下:
vSum={9,9,10,10,11,11,12,12}
然后C[]的接下来的8个元素被设置成{9,9,10,10,11,11,12,12},依次类推。
本发明的一个实施例包括用于以上伪代码的微代码。该实施例允许改变实现的灵活性,但几乎不提供性能改进。然而,微编码实现的一个优点是降低在所生成的代码序列中的寄存器压力,因为微代码可利用架构不可见的内部寄存器。
除了所提出的精简指令的软件实现,可将大量的硬件逻辑用于改进这种精简操作的性能。图9示出包括用于在N个向量元素的单个操作循环中执行精简的精简逻辑单元920的一个这样的实施例。图9假设循序实现(即,对于N个元素,它将利用N个循环完成)。该实施例的精简逻辑单元920每循环对一个元素进行操作。然而,应注意其它实施例可采用单个循环操作。
在一个实施例中,精简逻辑单元920可执行和、积、按位OR、按位AND、按位XOR等通信操作。基于由排序器950提供的信号(在一个实施例中从0至N-1的顺序)从两个输入向量寄存器901-902中的每一个读取向量元素。
输入寄存器(V3)902之一的输出直接耦合到精简逻辑920。其它输入寄存器(V2)901的输出被发送给两个不同的复用器907-908,这些复用器由来自置位/复位触发器(SRFF)单元951的输出控制,该置位/复位触发器(SRFF)单元在掩码寄存器(k1)903中检测到第一个1之后输出1。当来自掩码寄存器903的输入最初为1时,SR FF单元951将设置成1。在下次逻辑复位之前不会将其输出复位为0。因此,在第一个1之前,复用器908将输入寄存器901值提供给精简逻辑;在第一个一之后,它将提供来自临时寄存器911的值。类似地,在来自掩码寄存器的第一个1之前,复用器907将来自输入寄存器(v2)901的值输出到输出寄存器(v1)910。在第一个1之后,复用器907输出由精简逻辑单元920生成的值。因此根据以上阐述的细节填充输出寄存器。
示例性指令格式
本文中所描述的指令的实施例可以不同的格式体现。另外,在下文中详述示例性系统、架构、以及流水线。指令的实施例可在这些系统、架构、以及流水线上执行,但是不限于详述的系统、架构、以及流水线。
向量友好指令格式是适于向量指令(例如,存在专用于向量操作的特定字段)的指令格式。尽管描述了其中通过向量友好指令格式支持向量和标量操作两者的实施例,但是替代实施例仅使用通过向量友好指令格式的向量操作。
图10A-10B是示出根据本发明的实施例的通用向量友好指令格式及其指令模板的框图。图10A是示出根据本发明的实施例的通用向量友好指令格式及其A类指令模板的框图;而图10B是示出根据本发明的实施例的通用向量友好指令格式及其B类指令模板的框图。具体地,针对通用向量友好指令格式1000定义A类和B类指令模板,两者包括无存储器访问1005的指令模板和存储器访问1020的指令模板。在向量友好指令格式的上下文中的术语“通用”指不束缚于任何专用指令集的指令格式。
尽管将描述其中向量友好指令格式支持以下情况的本发明的实施例,即64字节向量操作数长度(或尺寸)与32位(4字节)或64位(8字节)数据元素宽度(或尺寸)(并且由此,64字节向量由16双字尺寸的元素或者替代地8四字尺寸的元素组成)、64字节向量操作数长度(或尺寸)与16位(2字节)或8位(1字节)数据元素宽度(或尺寸)、32字节向量操作数长度(或尺寸)与32位(4字节)、64位(8字节)、16位(2字节)、或8位(1字节)数据元素宽度(或尺寸)、以及16字节向量操作数长度(或尺寸)与32位(4字节)、64位(8字节)、16位(2字节)、或8位(1字节)数据元素宽度(或尺寸),但是替代实施例可支持更大、更小、和/或不同的向量操作数尺寸(例如,256字节向量操作数)与更大、更小或不同的数据元素宽度(例如,128位(16字节)数据元素宽度)。
图10A中的A类指令模板包括:1)在无存储器访问1005的指令模板内,示出无存储器访问的完全舍入控制型操作1010的指令模板、以及无存储器访问的数据变换型操作1015的指令模板;以及2)在存储器访问1020的指令模板内,示出存储器访问的时效性1025的指令模板和存储器访问的非时效性1030的指令模板。图10B中的B类指令模板包括:1)在无存储器访问1005的指令模板内,示出无存储器访问的写掩码控制的部分舍入控制型操作1012的指令模板以及无存储器访问的写掩码控制的vsize型操作1017的指令模板;以及2)在存储器访问1020的指令模板内,示出存储器访问的写掩码控制1027的指令模板。
通用向量友好指令格式1000包括以下列出的按照在图10A-10B中示出的顺序的如下字段。
格式字段1040-该字段中的特定值(指令格式标识符值)唯一地标识向量友好指令格式,并且由此标识指令在指令流中以向量友好指令格式出现。由此,该字段对于仅具有通用向量友好指令格式的指令集是不需要的,在这个意义上该字段是任选的。
基础操作字段1042-其内容区分不同的基础操作。
寄存器索引字段1044-其内容直接或者通过地址生成来指定源或目的地操作数在寄存器中或者在存储器中的位置。这些字段包括足够数量的位以从PxQ(例如,32x512、16x128、32x1024、64x1024)个寄存器组选择N个寄存器。尽管在一个实施例中N可高达三个源和一个目的地寄存器,但是替代实施例可支持更多或更少的源和目的地寄存器(例如,可支持高达两个源,其中这些源中的一个源还用作目的地,可支持高达三个源,其中这些源中的一个源还用作目的地,可支持高达两个源和一个目的地)。
修饰符(modifier)字段1046-其内容将指定存储器访问的以通用向量指令格式出现的指令与不指定存储器访问的以通用向量指令格式出现的指令区分开;即在无存储器访问1005的指令模板与存储器访问1020的指令模板之间进行区分。存储器访问操作读取和/或写入到存储器层次(在一些情况下,使用寄存器中的值来指定源和/或目的地地址),而非存储器访问操作不这样(例如,源和/或目的地是寄存器)。尽管在一个实施例中,该字段还在三种不同的方式之间选择以执行存储器地址计算,但是替代实施例可支持更多、更少或不同的方式来执行存储器地址计算。
扩充操作字段1050-其内容区分除基础操作以外还要执行各种不同操作中的哪一个操作。该字段是针对上下文的。在本发明的一个实施例中,该字段被分成类字段1068、α字段1052、以及β字段1054。扩充操作字段1050允许在单一指令而非2、3或4个指令中执行多组共同的操作。
比例字段1060-其内容允许用于存储器地址生成(例如,用于使用2比例*索引+基址的地址生成)的索引字段的内容的按比例缩放。
位移字段1062A-其内容用作存储器地址生成的一部分(例如,用于使用2比例*索引+基址+位移的地址生成)。
位移因数字段1062B(注意,位移字段1062A直接在位移因数字段1062B上的并置指示使用一个或另一个)-其内容用作地址生成的一部分,它指定通过存储器访问的尺寸(N)按比例缩放的位移因数,其中N是存储器访问中的字节数量(例如,用于使用2比例*索引+基址+按比例缩放的位移的地址生成)。忽略冗余的低阶位,并且因此将位移因数字段的内容乘以存储器操作数总尺寸(N)以生成在计算有效地址中使用的最终位移。N的值由处理器硬件在运行时基于完整操作码字段1074(稍后在本文中描述)和数据操纵字段1054C确定。位移字段1062A和位移因数字段1062B可以不用于无存储器访问1005的指令模板和/或不同的实施例可实现两者中的仅一个或不实现两者中的任一个,在这个意义上位移字段1062A和位移因数字段1062B是任选的。
数据元素宽度字段1064-其内容区分使用多个数据元素宽度中的哪一个(在一些实施例中用于所有指令,在其他实施例中只用于一些指令)。如果支持仅一个数据元素宽度和/或使用操作码的某一方面来支持数据元素宽度,则该字段是不需要的,在这个意义上该字段是任选的。
写掩码字段1070-其内容在每一数据元素位置的基础上控制目的地向量操作数中的数据元素位置是否反映基础操作和扩充操作的结果。A类指令模板支持合并-写掩码操作,而B类指令模板支持合并写掩码操作和归零写掩码操作两者。当合并时,向量掩码允许在执行任何操作期间保护目的地中的任何元素集免于更新(由基础操作和扩充操作指定);在另一实施例中,保持其中对应掩码位具有0的目的地的每一元素的旧值。相反,当归零时,向量掩码允许在执行任何操作期间使目的地中的任何元素集归零(由基础操作和扩充操作指定);在一个实施例中,目的地的元素在对应掩码位具有0值时被设为0。该功能的子集是控制执行的操作的向量长度的能力(即,从第一个到最后一个要修改的元素的跨度),然而,被修改的元素不一定要是连续的。由此,写掩码字段1070允许部分向量操作,这包括加载、存储、算术、逻辑等。尽管描述了其中写掩码字段1070的内容选择了多个写掩码寄存器中的包含要使用的写掩码的一个写掩码寄存器(并且由此写掩码字段1070的内容间接地标识了要执行的掩码操作)的本发明的实施例,但是替代实施例相反或另外允许掩码写字段1070的内容直接地指定要执行的掩码操作。
立即数字段1072-其内容允许对立即数的指定。该字段在实现不支持立即数的通用向量友好格式中不存在且在不使用立即数的指令中不存在,在这个意义上该字段是任选的。
类字段1068-其内容在不同类的指令之间进行区分。参考图10A-B,该字段的内容在A类和B类指令之间进行选择。在图10A-B中,圆角方形用于指示专用值存在于字段中(例如,在图10A-B中分别用于类字段1068的A类1068A和B类1068B)。
A类指令模板
在A类非存储器访问1005的指令模板的情况下,α字段1052被解释为其内容区分要执行不同扩充操作类型中的哪一种(例如,针对无存储器访问的舍入型操作1010和无存储器访问的数据变换型操作1015的指令模板分别指定舍入1052A.1和数据变换1052A.2)的RS字段1052A,而β字段1054区分要执行指定类型的操作中的哪一种。在无存储器访问1005指令模板中,比例字段1060、位移字段1062A以及位移比例字段1062B不存在。
无存储器访问的指令模板-完全舍入控制型操作
在无存储器访问的完全舍入控制型操作1010的指令模板中,β字段1054被解释为其内容提供静态舍入的舍入控制字段1054A。尽管在本发明的所述实施例中舍入控制字段1054A包括抑制所有浮点异常(SAE)字段1056和舍入操作控制字段1058,但是替代实施例可支持、可将这些概念两者都编码成相同的字段或者仅具有这些概念/字段中的一个或另一个(例如,可仅有舍入操作控制字段1058)。
SAE字段1056-其内容区分是否停用异常事件报告;当SAE字段1056的内容指示启用抑制时,给定指令不报告任何种类的浮点异常标志且不唤起任何浮点异常处理程序。
舍入操作控制字段1058-其内容区分执行一组舍入操作中的哪一个(例如,向上舍入、向下舍入、向零舍入、以及就近舍入)。由此,舍入操作控制字段1058允许在每一指令的基础上改变舍入模式。在其中处理器包括用于指定舍入模式的控制寄存器的本发明的一个实施例中,舍入操作控制字段1050的内容优先于该寄存器值。
无存储器访问的指令模板-数据变换型操作
在无存储器访问的数据变换型操作1015的指令模板中,β字段1054被解释为数据变换字段1054B,其内容区分要执行多个数据变换中的哪一个(例如,无数据变换、混合、广播)。
在A类存储器访问1020的指令模板的情况下,α字段1052被解释为驱逐提示字段1052B,其内容区分要使用驱逐提示中的哪一个(在图10A中,为存储器访问时间1025指令模板和存储器访问非时间1030的指令模板分别指定时间1052B.1和非时间1052B.2)、而β字段1054被解释为数据操纵字段1054C,其内容区分要执行大量数据操纵操作(也称为基元(primitive))中的哪一个(例如,无操纵、广播、源的向上转换、以及目的地的向下转换)。存储器访问1020的指令模板包括比例字段1060、以及任选的位移字段1062A或位移比例字段1062B。
向量存储器指令使用转换支持来执行来自存储器的向量加载并将向量存储到存储器。如同寻常的向量指令,向量存储器指令以数据元素式的方式与存储器来回传输数据,其中实际传输的元素由选为写掩码的向量掩码的内容规定。
存储器访问的指令模板-时间性的
时效性的数据是可能足够快地重新使用以从高速缓存受益的数据。然而,这是提示,且不同的处理器可以不同的方式实现它,包括完全忽略该提示。
存储器访问的指令模板-非时间性的
非时效性的数据是不可能足够快地重新使用以从第一级高速缓存中的高速缓存受益且应当被给予驱逐优先级的数据。然而,这是提示,且不同的处理器可以不同的方式实现它,包括完全忽略该提示。
B类指令模板
在B类指令模板的情况下,α字段1052被解释为写掩码控制(Z)字段1052C,其内容区分由写掩码字段1070控制的写掩码应当是合并还是归零。
在B类非存储器访问1005的指令模板的情况下,β字段1054的一部分被解释为RL字段1057A,其内容区分要执行不同扩充操作类型中的哪一种(例如,针对无存储器访问的写掩码控制部分舍入控制类型操作1012的指令模板和无存储器访问的写掩码控制VSIZE型操作1017的指令模板分别指定舍入1057A.1和向量长度(VSIZE)1057A.2),而β字段1054的其余部分区分要执行指定类型的操作中的哪一种。在无存储器访问1005指令模板中,比例字段1060、位移字段1062A以及位移比例字段1062B不存在。
在无存储器访问的写掩码控制的部分舍入控制型操作1010的指令模板中,β字段1054的其余部分被解释为舍入操作字段1059A,并且停用异常事件报告(给定指令不报告任何种类的浮点异常标志且不唤起任何浮点异常处理程序)。
舍入操作控制字段1059A-正如舍入操作控制字段1058,其内容区分执行一组舍入操作中的哪一个(例如,向上舍入、向下舍入、向零舍入、以及就近舍入)。由此,舍入操作控制字段1,059A允许在每一指令的基础上改变舍入模式。在其中处理器包括用于指定舍入模式的控制寄存器的本发明的一个实施例中,舍入操作控制字段1050的内容优先于该寄存器值。
在无存储器访问的写掩码控制VSIZE型操作1017的指令模板中,β字段1054的其余部分被解释为向量长度字段1059B,其内容区分要执行多个数据向量长度中的哪一个(例如,128字节、256字节、或512字节)。
在B类存储器访问1020的指令模板的情况下,β字段1054的一部分被解释为广播字段1057B,其内容区分是否要执行广播型数据操纵操作,而β字段1054的其余部分被解释为向量长度字段1059B。存储器访问1020的指令模板包括比例字段1060、以及任选的位移字段1062A或位移比例字段1062B。
针对通用向量友好指令格式1000,示出完整操作码字段1074包括格式字段1040、基础操作字段1042以及数据元素宽度字段1064。尽管示出了其中完整操作码字段1074包括所有这些字段的一个实施例,但是在不支持所有这些字段的实施例中,完整操作码字段1074包括少于所有的这些字段。完整操作码字段1074提供操作码(opcode)。
扩充操作字段1050、数据元素宽度字段1064以及写掩码字段1070允许在每一指令的基础上以通用向量友好指令格式指定这些特征。
写掩码字段和数据元素宽度字段的组合创建各种类型的指令,因为这些指令允许基于不同的数据元素宽度应用该掩码。
在A类和B类内出现的各种指令模板在不同的情形下是有益的。在本发明的一些实施例中,不同处理器或者处理器内的不同核可支持仅A类、仅B类、或者可支持两类。举例而言,旨在用于通用计算的高性能通用无序核可仅支持B类,旨在主要用于图形和/或科学(吞吐量)计算的核可仅支持A类,并且旨在用于两者的核可支持两者(当然,具有来自两类的模板和指令的一些混合、但是并非来自两类的所有模板和指令的核在本发明的范围内)。同样,单一处理器可包括多个核,所有核支持相同的类或者其中不同的核支持不同的类。举例而言,在具有单独的图形和通用核的处理器中,图形核中的旨在主要用于图形和/或科学计算的一个核可仅支持A类,而通用核中的一个或多个可以是具有旨在用于通用计算的仅支持B类的无序执行和寄存器重命名的高性能通用核。不具有单独的图形核的另一处理器可包括既支持A类又支持B类的一个或多个通用有序或无序核。当然,在本发明的不同实施例中,来自一类的特征也可在其他类中实现。可使以高级语言撰写的程序成为(例如,及时编译或者统计编译)各种不同的可执行形式,包括:1)仅具有用于执行的目标处理器支持的类的指令的形式;或者2)具有使用所有类的指令的不同组合而编写的替代例程且具有选择这些例程以基于由当前正在执行代码的处理器支持的指令而执行的控制流代码的形式。
图11A-D是示出根据本发明的实施例的示例性专用向量友好指令格式的框图。图11示出专用向量友好指令格式1100,其指定位置、尺寸、解释和字段的次序、以及那些字段中的一些字段的值,在这个意义上向量友好指令格式1100是专用的。专用向量友好指令格式1100可用于扩展x86指令集,并且由此一些字段类似于在现有x86指令集及其扩展(例如,AVX)中使用的那些字段或与之相同。该格式保持与具有扩展的现有x86指令集的前缀编码字段、实操作码字节字段、MOD R/M字段、SIB字段、位移字段、以及立即数字段一致。示出来自图10的字段,来自图11的字段映射到来自图10的字段。
应当理解,虽然出于说明的目的在通用矢量友好指令格式1000的上下文中,本发明的实施例参考专用矢量友好指令格式1100进行了描述,但是本发明不限于专用矢量友好指令格式1100,声明的地方除外。例如,通用向量友好指令格式1000构想各种字段的各种可能的尺寸,而专用向量友好指令格式1100被示为具有特定尺寸的字段。作为具体示例,尽管在专用向量友好指令格式1100中数据元素宽度字段1064被示为一位字段,但是本发明不限于此(即,通用向量友好指令格式1000构想数据元素宽度字段1064的其他尺寸)。
通用向量友好指令格式1000包括以下列出的按照图11A中示出的顺序的如下字段。
EVEX前缀(字节0-3)1102-以四字节形式进行编码。
格式字段1040(EVEX字节0,位[7:0])-第一字节(EVEX字节0)是格式字段1040,并且它包含0x62(在本发明的一个实施例中用于区分向量友好指令格式的唯一值)。
第二-第四字节(EVEX字节1-3)包括提供专用能力的多个位字段。
REX字段1105(EVEX字节1,位[7-5])-由EVEX.R位字段(EVEX字节1,位[7]–R)、EVEX.X位字段(EVEX字节1,位[6]–X)以及(1057BEX字节1,位[5]–B)组成。EVEX.R、EVEX.X和EVEX.B位字段提供与对应VEX位字段相同的功能,并且使用1补码的形式进行编码,即ZMM0被编码为1011B,ZMM15被编码为0000B。这些指令的其他字段对如在本领域中已知的寄存器索引的较低三个位(rrr、xxx、以及bbb)进行编码,由此可通过增加EVEX.R、EVEX.X以及EVEX.B来形成Rrrr、Xxxx以及Bbbb。
REX’字段1010-这是REX’字段1010的第一部分,并且是用于对扩展的32个寄存器集合的较高16个或较低16个寄存器进行编码的EVEX.R’位字段(EVEX字节1,位[4]–R’)。在本发明的一个实施例中,该位与以下指示的其他位一起以位反转的格式存储以(在公知x86的32位模式下)与实操作码字节是62的BOUND指令进行区分,但是在MOD R/M字段(在下文中描述)中不接受MOD字段中的值11;本发明的替代实施例不以反转的格式存储该指示的位以及其他指示的位。值1用于对较低16个寄存器进行编码。换句话说,通过组合EVEX.R’、EVEX.R、以及来自其他字段的其他RRR来形成R’Rrrr。
操作码映射字段1115(EVEX字节1,位[3:0]–mmmm)–其内容对隐含的前导操作码字节(0F、0F 38、或0F 3)进行编码。
数据元素宽度字段1164(EVEX字节2,位[7]–W)-由记号EVEX.W表示。EVEX.W用于定义数据类型(32位数据元素或64位数据元素)的粒度(尺寸)。
EVEX.vvvv 1120(EVEX字节2,位[6:3]-vvvv)-EVEX.vvvv的作用可包括如下:1)EVEX.vvvv编码第一源寄存器操作数且对具有两个或两个以上源操作数的指令有效,第一源寄存器操作数以反转(1补码)的形式被指定;2)EVEX.vvvv编码目的地寄存器操作数,目的地寄存器操作数针对特定向量位移以1补码的形式被指定;或者3)EVEX.vvvv不编码任何操作数,保留该字段,并且应当包含1111b。由此,EVEX.vvvv字段1120对以反转(1补码)的形式存储的第一源寄存器指定符的4个低阶位进行编码。取决于该指令,额外不同的EVEX位字段用于将指定符尺寸扩展到32个寄存器。
EVEX.U 1168类字段(EVEX字节2,位[2]-U)-如果EVEX.U=0,则它指示A类或EVEX.U0;如果EVEX.U=1,则它指示B类或EVEX.U1。
前缀编码字段1125(EVEX字节2,位[1:0]-pp)-提供了用于基础操作字段的附加位。除了对以EVEX前缀格式的传统SSE指令提供支持以外,这也具有压缩SIMD前缀的益处(EVEX前缀只需要2位,而不是需要字节来表达SIMD前缀)。在一个实施例中,为了支持使用以传统格式和以EVEX前缀格式的SIMD前缀(66H、F2H、F3H)的传统SSE指令,将这些传统SIMD前缀编码成SIMD前缀编码字段;并且在运行时在提供给解码器的PLA之前被扩展成传统SIMD前缀(因此PLA可执行传统和EVEX格式的这些传统指令,而无需修改)。虽然较新的指令可将EVEX前缀编码字段的内容直接作为操作码扩展,但是为了一致性,特定实施例以类似的方式扩展,但允许由这些传统SIMD前缀指定不同的含义。替代实施例可重新设计PLA以支持2位SIMD前缀编码,并且由此不需要扩展。
α字段1152(EVEX字节3,位[7]–EH,也称为EVEX.EH、EVEX.rs、EVEX.RL、EVEX.写掩码控制、以及EVEX.N,还被示为具有α)-如先前所述的,该字段是上下文专用的。
β字段1154(EVEX字节3,位[6:4]-SSS,也称为EVEX.s2-0、EVEX.r2-0、EVEX.rr1、EVEX.LL0、EVEX.LLB,还被示为具有βββ)-如先前所述的,该字段是内容专用的。
REX’字段1010-这是REX’字段的其余部分,并且是可用于对扩展的32个寄存器集合的较高16个或较低16个寄存器进行编码的EVEX.V’位字段(EVEX字节3,位[3]–V’)。该位以位反转的格式存储。值1用于对较低16个寄存器进行编码。换句话说,通过组合EVEX.V’、EVEX.vvvv来形成V’VVVV。
写掩码字段1070(EVEX字节3,位[2:0]-kkk)-其内容指定写掩码寄存器中的寄存器索引,如先前所述。在本发明的一个实施例中,特定值EVEX.kkk=000具有暗示没有写掩码用于特定指令的特殊行为(这可以各种方式实现,包括使用硬连线到所有的写掩码或者旁路掩码硬件的硬件来实现)。
实操作码字段1130(字节4)还被称为操作码字节。操作码的一部分在该字段中被指定。
MOD R/M字段1140(字节5)包括MOD字段1142、Reg字段1144、以及R/M字段1146。如先前所述的,MOD字段1142的内容将存储器访问和非存储器访问操作区分开。Reg字段1144的作用可被归结为两种情形:对目的地寄存器操作数或源寄存器操作数进行编码;或者被视为操作码扩展且不用于对任何指令操作数进行编码。R/M字段1146的作用可包括如下:对引用存储器地址的指令操作数进行编码;或者对目的地寄存器操作数或源寄存器操作数进行编码。
比例、索引、基址(SIB)字节(字节6)-如先前所述的,比例字段1050的内容用于存储器地址生成。SIB.xxx 1154和SIB.bbb 1156-先前已经针对寄存器索引Xxxx和Bbbb提及了这些字段的内容。
位移字段1062A(字节7-10)-当MOD字段1142包含10时,字节7-10是位移字段1062A,并且它与传统32位位移(disp32)一样地工作,并且以字节粒度工作。
位移因数字段1062B(字节7)-当MOD字段1142包含01时,字节7是位移因数字段1062B。该字段的位置与传统x86指令集8位位移(disp8)的位置相同,它以字节粒度工作。由于disp8是符号扩展的,因此它仅能在-128和127字节偏移量之间寻址;在64字节高速缓存行的方面,disp8使用可被设为仅四个真正有用的值-128、-64、0和64的8位;由于常常需要更大的范围,所以使用disp32;然而,disp32需要4个字节。与disp8和disp32对比,位移因数字段1062B是disp8的重新解释;当使用位移因数字段1062B时,通过将位移因数字段的内容乘以存储器操作数访问的尺寸(N)来确定实际位移。该类型的位移被称为disp8*N。这减小了平均指令长度(单个字节用于位移,但具有大得多的范围)。这种压缩位移基于有效位移是存储器访问的粒度的倍数的假设,并且由此地址偏移量的冗余低阶位不需要被编码。换句话说,位移因数字段1062B替代传统x86指令集8位位移。由此,位移因数字段1062B以与x86指令集8位位移相同的方式(因此在ModRM/SIB编码规则中没有变化)进行编码,唯一的不同在于,将disp8超载至disp8*N。换句话说,在编码规则或编码长度中没有变化,而仅在通过硬件对位移值的解释中有变化(这需要按存储器操作数的尺寸按比例缩放位移量以获得字节式地址偏移量)。
立即数字段1072如先前所述地操作。
完整操作码字段
图11B是示出根据本发明的实施例的构成完整操作码字段1074的具有专用向量友好指令格式1100的字段的框图。具体地,完整操作码字段1074包括格式字段1040、基础操作字段1042、以及数据元素宽度(W)字段1064。基础操作字段1042包括前缀编码字段1125、操作码映射字段1115以及实操作码字段1130。
寄存器索引字段
图11C是示出根据本发明的一个实施例的构成寄存器索引字段1044的具有专用向量友好指令格式1100的字段的框图。具体地,寄存器索引字段1044包括REX字段1105、REX’字段1110、MODR/M.reg字段1144、MODR/M.r/m字段1146、VVVV字段1120、xxx字段1154以及bbb字段1156。
扩充操作字段
图11D是示出根据本发明的一个实施例的构成扩充操作字段1050的具有专用向量友好指令格式1100的字段的框图。当类(U)字段1068包含0时,它表明EVEX.U0(A类1068A);当它包含1时,它表明EVEX.U1(B类1068B)。当U=0且MOD字段1142包含11(表明无存储器访问操作)时,α字段1052(EVEX字节3,位[7]–EH)被解释为rs字段1052A。当rs字段1052A包含1(舍入1052A.1)时,β字段1054(EVEX字节3,位[6:4]–SSS)被解释为舍入控制字段1054A。舍入控制字段1054A包括一位SAE字段1056和两位舍入操作字段1058。当rs字段1052A包含0(数据变换1052A.2)时,β字段1054(EVEX字节3,位[6:4]–SSS)被解释为三位数据变换字段1054B。当U=0且MOD字段1142包含00、01或10(表达存储器存取操作)时,α字段1052(EVEX字节3,位[7]–EH)被解释为驱逐提示(EH)字段1052B且β字段1054(EVEX字节3,位[6:4]–SSS)被解释为三位数据操纵字段1054C。
当U=1时,α字段1052(EVEX字节3,比特[7]–EH)被解释为写掩码控制(Z)字段1052C。当U=1且MOD字段1142包含11(表明无存储器访问操作)时,β字段1054的一部分(EVEX字节3,位[4]–S0)被解释为RL字段1,057A;当它包含1(舍入1057A.1)时,β字段1054的其余部分(EVEX字节3,位[6-5]–S2-1)被解释为舍入操作字段1059A,而当RL字段1057A包含0(VSIZE 1057.A2)时,β字段1054的其余部分(EVEX字节3,位[6-5]-S2-1)被解释为向量长度字段1059B(EVEX字节3,位[6-5]–L1-0)。当U=1且MOD字段1142包含00、01或10(表明存储器访问操作)时,β字段1054(EVEX字节3,位[6:4]–SSS)被解释为向量长度字段1059B(EVEX字节3,位[6-5]–L1-0)和广播字段1057B(EVEX字节3,位[4]–B)。
图12是根据本发明的一个实施例的寄存器架构1200的方框图。在所示出的实施例中,有32个512位宽的向量寄存器1210;这些寄存器被引用为zmm0到zmm31。较低的16zmm寄存器的较低阶256个位覆盖在寄存器ymm0-16上。较低的16zmm寄存器的较低阶128个位(ymm寄存器的较低阶128个位)覆盖在寄存器xmm0-15上。专用向量友好指令格式1200对这些覆盖的寄存器组操作,如在以下表格中所示的。
换句话说,向量长度字段1059B在最大长度与一个或多个其他较短长度之间进行选择,其中每一这种较短长度是前一长度的一半,并且不具有向量长度字段1059B的指令模板对最大向量长度操作。此外,在一个实施例中,专用向量友好指令格式1200的B类指令模板对打包或标量单/双精度浮点数据以及打包或标量整数数据操作。标量操作是在zmm/ymm/xmm寄存器中的最低阶数据元素位置上执行的操作;取决于本实施例,较高阶数据元素位置保持与在指令之前相同或者填零。
写掩码寄存器1215-在所示的实施例中,存在8个写掩码寄存器(k0至k7),每一写掩码寄存器的尺寸是64位。在替换实施例中,写掩码寄存器1215的尺寸是16位。如先前所述的,在本发明的一个实施例中,向量掩码寄存器k0无法用作写掩码;当正常指示k0的编码用作写掩码时,它选择硬连线的写掩码0xFFFF,从而有效地停用该指令的写掩码操作。
通用寄存器1225——在所示出的实施例中,有十六个64位通用寄存器,这些寄存器与现有的x86寻址模式一起使用来寻址存储器操作数。这些寄存器通过名称RAX、RBX、RCX、RDX、RBP、RSI、RDI、RSP以及R8到R15来引用。
标量浮点堆栈寄存器组(x87堆栈)1245,在其上面使用了别名MMX打包整数平坦寄存器组1250——在所示出的实施例中,x87堆栈是用于使用x87指令集扩展来对32/64/80位浮点数据执行标量浮点操作的八元素堆栈;而使用MMX寄存器来对64位打包整数数据执行操作,以及为在MMX和XMM寄存器之间执行的某些操作保存操作数。
本发明的替换实施例可以使用较宽的或较窄的寄存器。另外,本发明的替换实施例可以使用更多、更少或不同的寄存器组和寄存器。
图13A-B示出了更具体的示例性有序核架构的框图,该核将是芯片中的若干逻辑块之一(包括相同类型和/或不同类型的其他核)。根据应用,这些逻辑块通过高带宽的互连网络(例如,环形网络)与一些固定的功能逻辑、存储器I/O接口和其它必要的I/O逻辑通信。
图13A是根据本发明的各实施例的单个处理器核以及它与管芯上互连网络1302的连接及其二级(L2)高速缓存的本地子集1304的框图。在一个实施例中,指令解码器1300支持具有打包数据指令集扩展的x86指令集。L1高速缓存1306允许对进入标量和向量单元中的高速缓存存储器的低等待时间访问。尽管在一个实施例中(为了简化设计),标量单元1308和向量单元1310使用分开的寄存器集合(分别为标量寄存器1312和向量寄存器1314),并且在这些寄存器之间转移的数据被写入到存储器并随后从一级(L1)高速缓存1306读回,但是本发明的替代实施例可以使用不同的方法(例如使用单个寄存器集合或包括允许数据在这两个寄存器组之间传输而无需被写入和读回的通信路径)。
L2高速缓存的本地子集1304是全局L2高速缓存的一部分,该全局L2高速缓存被划分成多个分开的本地子集,即每个处理器核一个本地子集。每个处理器核具有到其自己的L2高速缓存1304的本地子集的直接访问路径。被处理器核读出的数据被存储在其L2高速缓存子集1304中,并且可以与其他处理器核访问其自己的本地L2高速缓存子集并行地被快速访问。被处理器核写入的数据被存储在其自己的L2高速缓存子集1304中,并在必要的情况下从其它子集清除。环形网络确保共享数据的一致性。环形网络是双向的,以允许诸如处理器核、L2高速缓存和其它逻辑块之类的代理在芯片内彼此通信。每个环形数据路径为每个方向1012位宽。
图13B是根据本发明的各实施例的图13A中的处理器核的一部分的展开图。图13B包括L1高速缓存1304的L1数据高速缓存1306A部分,以及关于向量单元1310和向量寄存器1314的更多细节。具体地说,向量单元1310是16宽向量处理单元(VPU)(见16宽ALU 1328),该单元执行整型、单精度浮点以及双精度浮点指令中的一个或多个。该VPU通过混合单元1320支持对寄存器输入的混合、通过数值转换单元1322A-B支持数值转换、并通过复制单元1324支持对存储器输入的复制。写掩码寄存器1326允许断言所得的向量写入。

Claims (4)

1.一种用于执行向量精简的装置,包括:
解码器,用于解码指令;
执行电路,用于执行经解码的指令,所述执行电路包括:
精简逻辑树,包括N-1个精简逻辑块的集合,所述N-1个精简逻辑块的集合用于在N个向量元素的单个操作循环中执行精简,
第一输入向量寄存器,其以通信方式耦合到所述精简逻辑块的集合,用于存储第一输入向量,
第二输入向量寄存器,其以通信方式耦合到所述精简逻辑块的集合,用于存储第二输入向量,
掩码寄存器,用于存储掩码值,所述掩码值控制一个或多个复用器的集合,所述复用器的集合中的每一个用于选择直接来自第一输入向量寄存器的值或来自精简逻辑块之一的包含经处理的值的输出,以及
输出向量寄存器,其耦合到所述一个或多个复用器的输出,用于响应于控制信号,接收由每个所述复用器以直接来自所述第一输入向量寄存器的值或来自所述精简逻辑块之一的经处理的值的形式输出并传递的值。
2.如权利要求1所述的装置,其特征在于,所述精简逻辑块被配置成用于响应于由处理器生成的功能输入信号,对来自第一和第二输入向量寄存器的输入执行指定的逻辑或数学操作。
3.如权利要求2所述的装置,其特征在于,所述逻辑或数学操作选自从包含以下各项的组:
求和操作,用于对来自第一和第二输入向量寄存器的值求和;
求积操作,用于将来自第一和第二输入向量寄存器的值相乘的乘积操作;
逻辑移位操作;
算术移位操作;
按位AND操作;
按位OR操作;以及
按位XOR操作。
4.如权利要求1所述的装置,其特征在于,所述精简逻辑块被布置成多级,其中来自第N级的输出耦合到第(N+1)级的输入,且来自最后一级的输出耦合到所述一个或多个复用器的集合。
CN201280072063.7A 2012-03-30 2012-03-30 用于选择向量计算的元素的装置和方法 Expired - Fee Related CN104204989B (zh)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/US2012/031596 WO2013147869A1 (en) 2012-03-30 2012-03-30 Apparatus and method for selecting elements of a vector coumputation

Publications (2)

Publication Number Publication Date
CN104204989A CN104204989A (zh) 2014-12-10
CN104204989B true CN104204989B (zh) 2017-10-13

Family

ID=49260924

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201280072063.7A Expired - Fee Related CN104204989B (zh) 2012-03-30 2012-03-30 用于选择向量计算的元素的装置和方法

Country Status (4)

Country Link
US (1) US20130311530A1 (zh)
EP (1) EP2831692A1 (zh)
CN (1) CN104204989B (zh)
WO (1) WO2013147869A1 (zh)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9244684B2 (en) * 2013-03-15 2016-01-26 Intel Corporation Limited range vector memory access instructions, processors, methods, and systems
US9851970B2 (en) * 2014-12-23 2017-12-26 Intel Corporation Method and apparatus for performing reduction operations on a set of vector elements
US20170168819A1 (en) * 2015-12-15 2017-06-15 Intel Corporation Instruction and logic for partial reduction operations
US10846087B2 (en) 2016-12-30 2020-11-24 Intel Corporation Systems, apparatuses, and methods for broadcast arithmetic operations
US10268479B2 (en) * 2016-12-30 2019-04-23 Intel Corporation Systems, apparatuses, and methods for broadcast compare addition
GB2558955B (en) * 2017-01-24 2020-12-23 Advanced Risc Mach Ltd An apparatus and method for generating and processing a trace stream indicative of execution of predicated vector memory access instructions
US10108581B1 (en) 2017-04-03 2018-10-23 Google Llc Vector reduction processor
WO2019005165A1 (en) 2017-06-30 2019-01-03 Intel Corporation METHOD AND APPARATUS FOR VECTORIZING INDIRECT UPDATING BUCKLES
US11294670B2 (en) * 2019-03-27 2022-04-05 Intel Corporation Method and apparatus for performing reduction operations on a plurality of associated data element values
US20240004647A1 (en) * 2022-07-01 2024-01-04 Andes Technology Corporation Vector processor with vector and element reduction method

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR0168136B1 (ko) * 1994-12-31 1999-03-20 김주용 움직임 추정 칩의 처리소자 장치
US6473779B1 (en) * 1996-10-03 2002-10-29 Texas Instruments Incorporated Combinatorial polynomial multiplier for galois field 256 arithmetic
US6115812A (en) * 1998-04-01 2000-09-05 Intel Corporation Method and apparatus for efficient vertical SIMD computations
US6647449B1 (en) * 2000-10-05 2003-11-11 Hewlett-Packard Development Company, L.P. System, method and circuit for performing round robin arbitration
US6697980B1 (en) * 2000-10-10 2004-02-24 Intel Corporation Die fault testing utilizing an exclusive-or network of gates
US7028286B2 (en) * 2001-04-13 2006-04-11 Pts Corporation Methods and apparatus for automated generation of abbreviated instruction set and configurable processor architecture
US7873812B1 (en) * 2004-04-05 2011-01-18 Tibet MIMAR Method and system for efficient matrix multiplication in a SIMD processor architecture
US20080281897A1 (en) * 2007-05-07 2008-11-13 Messinger Daaven S Universal execution unit
US8904153B2 (en) * 2010-09-07 2014-12-02 International Business Machines Corporation Vector loads with multiple vector elements from a same cache line in a scattered load operation
US9141386B2 (en) * 2010-09-24 2015-09-22 Intel Corporation Vector logical reduction operation implemented using swizzling on a semiconductor chip

Also Published As

Publication number Publication date
US20130311530A1 (en) 2013-11-21
EP2831692A1 (en) 2015-02-04
CN104204989A (zh) 2014-12-10
WO2013147869A1 (en) 2013-10-03

Similar Documents

Publication Publication Date Title
CN104094218B (zh) 用于执行写掩码寄存器到向量寄存器中的一系列索引值的转换的系统、装置和方法
CN104011649B (zh) 用于在simd/向量执行中传播有条件估算值的装置和方法
CN104025040B (zh) 用于混洗浮点或整数值的装置和方法
CN104204989B (zh) 用于选择向量计算的元素的装置和方法
CN104509026B (zh) 用于处理sha-2安全散列算法的方法和设备
CN104040482B (zh) 用于在打包数据元素上执行增量解码的系统、装置和方法
CN104137060B (zh) 高速缓存协处理单元
CN104335166B (zh) 用于执行混洗和操作的装置和方法
CN104040488B (zh) 用于给出相应复数的复共轭的矢量指令
CN104081341B (zh) 用于多维数组中的元素偏移量计算的指令
CN104011673B (zh) 向量频率压缩指令
CN104025022B (zh) 用于具有推测支持的向量化的装置和方法
CN104126167B (zh) 用于从通用寄存器向向量寄存器进行广播的装置和方法
CN104011652B (zh) 打包选择处理器、方法、系统和指令
CN104081337B (zh) 用于响应于单个指令来执行横向部分求和的系统、装置和方法
CN104011650B (zh) 使用输入写掩码和立即数从源写掩码寄存器在目的地写掩码寄存器中设置输出掩码的系统、装置和方法
CN104011671B (zh) 用于执行置换操作的设备和方法
CN104126172B (zh) 用于掩码寄存器扩充操作的装置和方法
CN104185837B (zh) 在不同的粒度等级下广播数据值的指令执行单元
CN104025019B (zh) 用于执行双块绝对差求和的系统、装置和方法
CN104011665B (zh) 超级乘加(超级madd)指令
CN104094221B (zh) 基于零的高效解压缩
CN104321740B (zh) 利用操作数基础系统转换和再转换的向量乘法
CN104350461B (zh) 具有不同的读和写掩码的多元素指令
CN104583940B (zh) 用于skein256 sha3算法的处理器、方法、数据处理系统和设备

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20171013